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Abstract

For inaccessible cardinals κ, we investigate the relationship between(∏
i<κ x(i),≤∗

)
and (κκ,≤∗) for some x : κ→ Lim∩κ. To be precise,

we analyse when there is a continuous cofinal embedding

π :

∏
i<κ

x(i),≤∗

→ (κκ,≤∗)

We show that, under some constraints on x, this question is equivalent
to whether Hechler forcing on

∏
i<κ x(i) adds a κκ-dominating function

and also to the existence of a certain type of κ-Aronszajn tree. We also
prove that there is a <κ-distributive forcing that adds a κ-Aronszajn
tree of this type. It follows that the existence of such an embedding
on κ is independent of the theory ZFC+“κ is inaccessible”, relative to
a weakly compact cardinal. Finally, we discuss a strategy to produce
a model where

b

∏
i<κ

x(i),≤∗

 > bκ

1 Introduction

In this note, we investigate the relationship between the partial orders
(κκ,≤∗) and

(∏
i<κ x(i),≤∗

)
where x is a reasonable function x : κ→ κ. in

the case that κ is an inaccessible cardinal. Here, ≤∗ means eventual domin-
ation. For the rest, we will fix an inaccessible cardinal κ. This turns out to
be connected to generalised versions of Hechler forcing. For the rest of the
note, x is assumed to be a function x : κ→ Lim ∩ κ.

Definition 1. (i) H denotes the (unrestricted) generalised Hechler for-
cing at κ. Conditions are pairs (f, g) where f ∈ κ<κ and g ∈ κκ. The
order is defined via (f, g) ≤ (f ′, g′) iff

(a) f ⊇ f ′
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(b) g ≥ g′ and

(c) for i ∈ dom(f) \ dom(f ′) f(i) ≥ g′(i).

(ii) The x-restricted generalised Hechler forcing at κ Hx is the suborder
of H consisting only of conditions (f, g) with f ∈

∏
i<α x(i) for some

α < κ and g ∈
∏
i<κ x(i).

The idea is that the first component is the “working part” giving partial
information about a function with domain κ and the second component is a
“side condition” making sure that the first component will eventually dom-
inate all ground model functions.

Definition 2. A partial order P is <κ-progressively-closed if for any λ < κ
the set of conditions p such that P � p is λ-closed is dense.

Lemma 3. (i) H is <κ-closed and adds a function in κκ eventually dom-
inating all ground model functions in κκ.

(ii) If cof ◦x converges to κ, then Hx is <κ-progressively-closed (but not
<κ-closed) and adds a function in

∏
i<κ x(i) eventually dominating all

ground model functions in
∏
i<κ x(i).

Also recall the definition of the bounding number b(P) of a partial order
P: It is smallest size of an unbounded subset of P.

The main result here is the following.

Theorem 4. Assume b
(∏

i<κ x(i),≤∗
)
≥ κ+. Then the following four

conditions are equivalent:

(i) There is a continuous cofinal (w.r.t. both ≤ and ≤∗) embedding

π :

∏
i<κ

x(i);≤,≤∗
→ (

κκ;≤,≤∗
)

(ii) There is a continuous cofinal embedding

π :

∏
i<κ

x(i),≤∗
→ (κκ,≤∗)

(iii) Forcing with Hx adds a dominating function for (κκ,≤∗).

(iv) There is an x-increasing κ-Aronszajn tree.

If x only satisfies limi<κ cof ◦x(i) = κ then the implications from top to
bottom still hold.
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Remark 5. The assumption on x is satisfied for many natural examples of
x, see Lemma 9. We list a few of them.

• α 7→ α+, or more generally α 7→ α(+γ) for γ a successor ordinal

• α 7→ ℵα+1, or more generally α 7→ ℵα+γ for γ a successor ordinal

• α 7→ 2α

• α 7→ αcof |α| if SCH holds

• α 7→ next inaccessible above α if κ is a limit of inaccessibles, etc.

We still have to explain a few terms. Firstly, an embedding is an order-
preserving map. By continuous we mean that the spaces κκ and

∏
i<κ x(i)

are endowed with the box-topology w.r.t. the co-bounded filter and each
ordinal is considered discrete. I.e. a basic open set Nf is given by all
functions extending a partial f : α→ κ. This is the usual topology on these
spaces when they are considered as generalised Baire spaces.

Definition 6. An x-increasing κ-Aronszajn tree is a subtree T of
⋃
α<κ

∏
i<α x(i)

so that

(i) T is a κ-Aronszajn tree and

(ii) whenever α < κ and f, g ∈
∏
i<α x(i) with f ≤ g then f ∈ T ⇒ g ∈ T .

Since a weakly compact cardinal has the tree property we get the fol-
lowing corollary:

Corollary 7. If κ is weakly compact and cof ◦x converges to κ, then (i)−(iv)
of Theorem 4 fail.

It should be stressed, however, that the non-existence of an x-increasing
Aronszajn tree is not a trivial property.

Theorem 8. Suppose cof ◦x converges to κ. There is a <κ-progressively-
closed forcing P so that in V P there is an x-increasing κ-Aronszajn tree.

2 The Main Theorem

We start by calculating when b
(∏

i<κ x(i),≤∗
)
≥ κ+. Note that the as-

sumption of Theorem 8 is weaker than condition (ii).

Lemma 9. The following are equivalent:

(i) b
(∏

i<κ x(i),≤∗
)
≥ κ+
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(ii) cof ◦x converges to κ and ran(cof ◦x) is non-stationary.

(iii) There is an increasing unbounded y : κ→ κ with y < cof ◦x.

Proof. It is straightforward to show that∏
i<κ

x(i),≤∗
 and

∏
i<κ

cof(x(i)),≤∗


are Tukey-equivalent and hence have the same bounding number. Thus
(i)− (iii) remain unchanged if x is replaced by cof ◦x. This means we may
assume cof ◦x = x in the proof.
(i)⇒ (ii): First assume that lim infi<κ x(i) < κ. Then x is constant with
value β on an unbounded set U . If we set fα(i) = α for i ∈ U and fα(i) = 0
for i /∈ U then {fα | α < β} is an unbounded family of (

∏
i<κ x(i),≤∗) of

size λ, contradiction.
Next, suppose that S = ran(x) is stationary. Let C ⊆ κ be club so that any
i ∈ C is closed under both x and the map

α 7→ sup{j < κ | x(j) ≤ α}

Then for i ∈ C we must have ∀i ≤ α < κ x(α) ≥ i. Hence for any i ∈ C ∩ S
ther is some h(i) ≥ i so that x(h(i)) = i. Note that supC ∩ h(i) = i so that
h is strictly increasing. We will show that the family 〈fj | j < κ〉 defined by

fj(α) =

{
j if α = h(i) and j < i

0 else

is unbounded in
(∏

i<κ x(i),≤∗
)
.Let g be any function in

∏
i<κ x(i). Then

g ◦ h is regressive on C ∩ S. By Fodor’s Lemma, there is some unbounded
U ⊆ C∩S and some j so that g◦h has value j on U . Hence g(h(i)) < fj(αi)
for any i ∈ U so that fj �∗ g. Once again, this contradicts (i).

(ii)⇒ (iii): Let C be the club from before and let D be a club disjoint from
ran(cof ◦x). Then the map y defined by

y(i) = sup(C ∩D ∩ i)

does the job.

(iii)⇒ (i): Let {fj | j < κ} ⊆
∏
i<κ x(i) and let y witness (iii). Then g

defined by
g(i) = sup{fj(i) | j < y(i)}

is in
∏
i<κ x(i) as the supremum is taken over a set of size y(i) < cof(x(i)).

Since y is increasing and unbounded in κ, fj ≤∗ g for any j < κ.
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Remark 10. Note that ran(cof ◦x) can only ever be stationary if κ is Mahlo.
Also, if cof ◦x converges to κ, this is equivalent to cof ◦x = id on a stationary
set.

Let us proof the main theorem:

Proof. Fix x : κ → Lim ∩ κ with b
(∏

i<κ x(i),≤∗
)
≥ κ+. For convenience,

we will assume that x is strictly increasing and takes values in the regular
cardinals.
(i)⇒ (ii): This is trivial.

(ii)⇒ (iii): Let π :
(∏

i<κ x(i),≤∗
)
→ (κκ,≤∗) be a continuous cofinal

embedding. After forcing with Hx, let f ∈
∏
i<κ x(i) be the generic function.

The continuity of π allows us to make sense of π(f) and the cofinality of π
will imply that π(f) is dominating: We define π(f) as⋃

{g | ∃α < κ π[Nf�α] ⊆ Ng}

A simple density argument shows that π(f) is indeed a function with domain

κ. Now assume g ∈ (κκ)V . Then we can find ḡ ∈
(∏

i<κ x(i)
)V

so that g ≤∗
π(ḡ). From another routine density argument it follows that π(ḡ) ≤∗ π(f)
and hence g ≤∗ π(f).

(iii)⇒ (iv): We will prove the contraposition ¬(iv) ⇒ ¬(iii). The crucial
properties of Hx are that

(a) Any (f, g), (f ′, g′) ∈ Hx with f = f ′ are compatible.

(b) For any α < κ there are <κ-many f with dom(f) ⊆ α such that
(f, g) ∈ Hx for some g.

Note that (b) is not true for the unrestricted forcing H. Now let ḣ be a Hx-
name for a function h : κ → κ. For α < κ let Hαx be the set of (f, g) ∈ Hx
with dom(f) ⊆ α. We have to check that ḣ is forced to not be dominating,
so that we may as well assume

1Hx  ḣ /∈ V (∗)

(a) and (b) imply that for any i, α < κ there are <κ-many β such that some
(f, g) ∈ Hαx decides ḣ(̌i) to be β. Let us define

Fi : Hx → κ, Fi((f, g)) = min{α | ∃(f ′, g′) ∈ Hαx deciding ḣ(̌i)∧(f ′, g′) ≤ (f, g)}

and

H : κ→ κ, H(i) = sup{β | ∃(f, g) ∈ HsupFi[Hix]
x deciding ḣ(̌i) as β}+ 1

It will turn out that H �∗ ḣG for any generic G. But first, we must
check that H is well-defined and here we will use our assumption ¬(iv). It
is enough to verify the following claim:
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Claim 11. supFi[Hix] < κ for any i < κ.

Proof. So suppose supFi[Hix] = κ. There must then be a single first com-
ponent f with dom(f) ≤ i so that Fi((f, g)) gets arbitrarily large by varying
g. Let

Xα = {g ∈
∏
i<κ

x(i) | Fi(f, g) ≥ α}

Observe that membership of g in Xα depends only on g � α, so (abusing
notation) we will say g � α ∈ Xα. Consider the tree T whose α-th level Tα
is exactly

Tα = Xα ∩
∏
i<α

x(i)

and is ordered by end-extension. Then T is indeed a tree, all levels have size
<κ and by our choice of f , T has height κ. Moreover, if f, g ∈

∏
i<α x(i)

and f ≤ g and f ∈ T then g ∈ T as well, since a larger second component
only makes it more difficult to extend a condition in Hx. So T satisfies
all properties of an x-increasing κ-Aronszajn tree except maybe the non-
existence of a cofinal branch. Thus by ¬(iv), T must have cofinal branch. We
may think of that branch as a function g ∈

⋂
α<κXα. But then Fi((f, g)) ≥

κ, meaning (f, g) has no extension deciding the value of ḣ(̌i). This is clearly
a contradiction.

Finally H is not dominated (mod bounded) by ḣG for any generic G, as
the generic will often “pick minimal extensions deciding some value of ḣ”:
Let j < κ and p = (f, g) ∈ Hx. Then, by (∗) and as Hx is <κ-distributive,
there must be some max{j,dom(f)} < i < κ so that p does not decide ḣ(̌i).
Now let q ≤ p be a strengthening with first component of length Fi(p) so
that q decides ḣ(̌i) as β. Thus β < H(i) and this situation happens densely
often.

(iv)⇒ (i): Let T be an x-increasing κ-Aronszajn tree. As a warm up, we
describe a continuous cofinal embedding

π0 :

∏
i<κ

x(i),≤

→ (κ,≤)

The final one will be defined by “squeezing κ-many embeddings similar to
π0 together”. This process will turn the ≤ into a ≤∗ on the left hand side.
The map π0 is simply given by

π0(f) = min{α < κ | f � α /∈ T}

The minimum is taken over a non-empty set as T has no cofinal branch, so
π0 is welldefined. Also, if f ≤ g ∈

∏
i<κ x(i) then π0(f) ≤ π0(g). This is a

consequence of condition (ii) in the definition of a x-increasing κ-Aronszajn
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tree. Furthermore, π0 is cofinal, since T has height κ. It is also easy to see
that π0 is continuous. Now, let’s start to construct the final π. By Lemma
9, there is an increasing y ∈ κκ with y < x. We can choose for any i < κ a
sequence

〈γij | j < y(i)〉

so that any γij : x(i)→ x(i) is strictly increasing and so that

〈ranγij | j < y(i)〉

is a partition of x(i). Using this, we can turn any γ < x(i) into a sequence
in x(i)y(i) by mapping γ to

Ωi(γ) := 〈min{ξ < x(i) | γ < γij(ξ)} | j < y(i)〉

Note that γ ≤ δ < x(i) implies Ωi(γ) ≤ Ωi(δ). Putting this together, we
turn any f ∈

∏
i<κ x(i) into a map in

∏
i<κ x(i)y(i):

Ω(f) = 〈Ωi(f(i)) | i < κ〉

Via ∏
i<κ

x(i)y(i) ∼=
∏
i<κ

∏
j<y(i)

x(i) ∼=
∏
j<κ

∏
i<κ: j<y(i)

x(i)

we can also understand Ω(f) as a sequence

Ω(f) ∼= 〈fj | j < κ〉

where
dom(fj) = {i < κ | j < y(i)}

and for i ∈ dom(fj)
fj(i) = Ω(f)(i)(j)

Now for any j < κ choose some gj ∈ Tδj , where δj is the least i with j < y(i),
so that gj has extensions to arbitrarily high levels in T (equivalently T � gj
is an x-increasing κ-Aronszajn tree). Note that g_j fj ∈

∏
i<κ x(i). Finally

set
π(f) = 〈π0(g_j fj) | j < κ〉

Claim 12. π is a continuous cofinal (w.r.t. both ≤ and ≤∗ and preserves
≤ and ≤∗.

Proof. It follows from the other arguments that π is continuous, so we will
not make that explicit. First let’s see that

π(f) =∗ π(f ′)
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if f =∗ f ′ and f, f ′ ∈
∏
i<κ x(i). The reason is simply that

π(f)(j) = π0(g_j fj)

only depends on f � [δj , κ) and limj<κ δj = κ. Moreover, if only f ≤∗ f ′
then π(f) ≤∗ π(f ′) since the maps Ωi are increasing. This also shows that
π(f) ≤ π(f ′) if f ≤ f ′. Finally, let’s check for cofinality. Note that it is
enough to check cofinality w.r.t. ≤. Let h ∈ κκ. For j < κ, pick ĝj so that

g_j ĝj ∈ Th(j)

This is possible by our choice of gj . We will construct f ∈
∏
i<κ x(i) so that

for all j < κ,
ĝj ≤ fj � dom(ĝj)

From the properties of π0, it will then follow that even π(f) ≥ h. Simply
put

f(i) = sup{sup γij [ĝj(i)] | j < x−(i) ∧ i < h(j)}+ 1

for any i < κ. f ∈
∏
i<κ x(i) as the inner suprema are < x(i) as they

are taken over a set of size <x(i) and the outer supremum is <x(i) as
x−(i) < x(i). Note that x(i) is regular. By chasing definitions, one can
indeed verify that fj(i) ≥ ĝj(i) whenever this makes sense.

This proves (i).
Finally, we only needed the full assumption on x in (iv)⇒ (i). The implic-
ations (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) all go through as long as cof ◦x converges
to κ.

3 Producing x-increasing κ-Aronszajn Trees

Theorem 4 would not be that interesting if the three equivalent conditions
there were always false (like they are in case κ is weakly compact). The
fourth condition phrases the other ones in terms of existence of familiar set-
theoretical objects, namely κ-Aronszajn trees, and so this gives a natural
point of attack to force the conditions true. It should also be pointed out
here that Cummings-Shelah [CS95] proved that if Q is a wellfounded poset
with b(Q) ≥ κ+ then there is a forcing extension in which Q can be cofi-
nally embedded into (κκ,≤∗). This is however unapplicable to our current
situation for multiple reasons. First of all, in general

(∏
i<κ x(i),≤∗

)
need

not satisfy any of the assumptions on Q in that theorem even for reasonable
x. But more importantly, the structure

(∏
i<κ x(i),≤∗

)
has new objects in

the forcing extension, so embedding the ground model structure is different
from embedding the new structure. We will now prove Theorem 8.

8



Proof. Again we will assume for convenience that x is strictly increasing and
takes values in the regular cardinals. We modify the forcing, due to Jech,
Prikry and Silver, that adds a κ-Souslin tree. Let P be the forcing whose
conditions are subtrees t of

⋃
α<κ

∏
i<α x(i) with the following properties:

(i) γt := height(t) is a successor < κ.

(ii) t is a normal tree, i.e. all nodes not on the top level branch and can
be extended to the top level.

(iii) If f, g ∈
∏
i<α x(i) and f ≤ g then f ∈ t⇒ g ∈ t.

P is ordered by s ≤ t iff s is an end-extension of t, i.e. t = s≤γt . We will
show that if G is P-generic then TG =

⋃
G is an x-increasing κ-Aronszajn

tree and that P is <κ-progressively-closed.

Claim 13. Any t ∈ P can be extended to some s with γs arbitrarily high
below κ.

Proof. Let γt < α < κ. Put s = {g ∈
∏
i<α+1 x(i) | g � γt ∈ t} ↓,

where ↓ denotes the closure under initial segments. Then s ∈ P, s ≤ t and
γs = α+ 1.

Assume that δ < κ and that ~t = 〈ti | i < δ〉 is a strictly decreasing
sequence in P. Note that ~t has a lower bound in P iff in t∗ :=

⋃
i<δ ti every

node can be extended to a cofinal branch. A lower bound in this situation
is given by b(~t) := s, the downward-closure of all cofinal branches through
t∗. However, sometimes we would like to restrict the top level further. If
f ∈

∏
i<γs

x(i) then the downwards-closure of

{g ∈ sγs−1 | f <∗ g}

is also a lower bound of ~t which we denote by b(~t, f). Observe that f /∈
b(~t, f).

Claim 14. P is <κ-progressively-closed.

Proof. Let α < κ. Let t0 be a condition with γt > α. By the claim before
the set of such conditions is dense, so it is enough to show that P is α-
closed below t0. So assume that ~t = 〈ti | i < α〉 is a decreasing sequence of
conditions in P. It is enough to show that every condition in t∗ =

⋃
i<α ti

can be extended to a cofinal branch. So let f0 ∈ t∗ be a node. Since all
ti are normal, we may assume that f = fj is on the top level of some tj ,
in particular dom(f0) > α. For j ≤ i < α choose fj an end-extension of f
to the top level of ti. Then if f∗ is defined as the pointwise supremum of
the (fi)j≤i<α then f∗ ∈

∏
i<γ∗

x(i) as all the x(i) with j ≤ i < α have high
cofinality. Moreover, f∗ is a cofinal branch through t∗ by property (iii) of
forcing conditions.
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It follows that κ remains inaccessible in V [G] and that TG is a κ-tree.
Since P is <κ-progressively-closed, P does not add new <κ-sequences of
ordinals and hence it is trivial to check that if f, g ∈

∏
i<α x(i) with f ≤ g

then f ∈ TG ⇒ g ∈ TG.

Claim 15. In V [G], there is no cofinal branch through TG.

Proof. Assume that t0  “ḃ is a cofinal branch through ṪG”, where ṪG is
the canonical name for TG. We may assume that P is σ-closed below t0
(in fact the whole P is σ-closed). Construct a strictly descending sequence
〈ti | i < ω〉 in P as well as a sequence 〈fi | i < ω〉 such that always

ti+1  ḃ ∩ (ti)γti = {f̌i}

Note that the fi is an end-extension of fj if j ≤ i < ω. Hence f =
⋃
i<ω fi

is a cofinal branch through t∗ =
⋃
i<ω ti. Then b(~t, f) is a lower bound of ~t,

however as f /∈ b(~t, f)
b(~t, f)  f̌ /∈ ṪG

but on the other hand b(~t, f) extends all ti so that

b(~t, f)  f̌ ∈ ḃ

This is clearly a contradiction.

We have demonstrated that TG is an x-increasing κ-Aronszajn tree in
V [G].

One could try to adjust the above approach to get an x-increasing κ-
Souslin tree. That, however, would be a fruitless endeavor.

Lemma 16. Assume b
(∏

i<κ x(i),≤∗
)
≥ κ+. Then no x-increasing κ-

Aronszajn tree is κ-Souslin.

Proof. Using Lemma 9, find y : κ → κ increasing unbounded, y < cof ◦x.
For i < κ, let αi be the least α with y(α) ≥ i. Also choose fi ∈ Tαi+1. By
induction on i, define gi ∈

∏
j≤αi x(j) by

gi(j) = sup{fi(j), gi′(j) | i′ ≤ y(j) ∧ i′ < i}+ 1

Claim 17. A := {gi | i < κ} is an antichain in T .

Proof. First of all gi ∈
∏
j≤αi x(j) for all i since gi(j) is defined as the

supremum of a set of size y(j) < cof(x(j)) of ordinals below x(j) (+1) so
that gi(j) < x(j). Since gi ≥ fi and fi ∈ T we have gi ∈ T as well. Now
suppose i′ < i < κ. Then

gi(αi′) > gi′(αi′)

by definition of gi since i′ ≤ y(αi′) and hence gi and gi′ are incompatible in
T .
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This shows that A is an antichain of size κ.

Next up, we consturct x-increasing κ-Aronszajn trees from inifitary com-
binatorial principles.

Definition 18. [BR17] �−(κ) postulates the existence of a sequence ~C =
〈Cα | α < κ〉 so that for all α < κ:

(i) Cα ⊆ α

(ii) If α ∈ Lim then Cα is club in α.

(iii) If β ∈ Lim(Cα) then Cβ = Cα ∩ β.

(iv) If B ⊆ κ is any cofinal subset then there are stationarily many β < κ
with

sup[(Cβ \ Lim(Cβ) ∩B)] = β

i.e. the “successor points” in Cβ meet B cofinally often below β.

Lemma 19. Assume �−(κ)+♦κ. Then there is an x-increasing κ-Aronszajn
tree.

Proof. We roughly follow the construction in [BR17, Proposition 2.3]. Note,
however, that a κ-Souslin tree is produced in the reference while the tree
here will and must have large antichains in the end.
Let ~C = 〈Cα | α < κ〉 witness �−κ and let 〈gα | α < κ〉 witness ♦κ in the
sense that any gα is in αα and for any g ∈ κκ the set {α < κ | g � α = gα}
is stationary. Furthermore, fix a wellorder E of

⋃
α<κ

∏
i<α x(i).

We construct a normal x-increasing tree T by induction on the levels. We
let T0 = {∅} and if Tα is defined then

Tα+1 = {f ∈
∏

i<α+1

x(i) | f � α ∈ Tα}

It remains to define the limit levels of T . There, our task is to decide which
cofinal branches through T+

α :=
⋃
β<α Tβ remain inside the tree. We must

make sure that Tα is normal, so for any t ∈ T+
α we will construct a cofinal

branch bαt through T+
α . Since Cα is unbounded in α, it is enough to do so

assuming t ∈ T � Cα. Then we will set

Tα = {bαt | t ∈ T � Cα} ↑

where ↑ denotes the upwards closure under ≤ to make sure that T will be
x-increasing in the end.
Let ε = dom(t) ∈ Cα and let 〈δi | i ≤ γ〉 be the increasing enumeration of
Cα ∪ {α} \ ε. By induction, construct an increasing sequence 〈tαi | i ≤ γ〉 in
T so that
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(i) tα0 = t

(ii) ∀i < γ tαi ∈ Tδi

(iii) ∀i < γ tαi+1 ∈ Qαt,i := {s ∈ Tδi+1
| gδi+1

<∗ s} if Qαt,i 6= ∅

(iv) ∀i ∈ Lim ∩ γ + 1 tαi =
⋃
j<i t

α
j

(v) Any tαi is E-least with the above properties (relative to (tαj )j<i).

This construction is straightforward provided that at limit steps below γ we
stay inside T . In this case, we set bαt = tαγ . We will now check that indeed
the construction does not break down. So let j < γ be limit.

Claim 20. tαj ∈ Tδj

Proof. We take a close look at the construction of Tβ for β = δj : Note that

Cβ = Cα ∩ β so that t ∈ T � Cβ. We thus have chosen an extension bβt of
t to level β that we have put in Tβ. We have done so by constructing an

increasing sequence 〈tβi | i ≤ j〉 w.r.t. the increasing enumeration 〈δi | i ≤ j〉
of Cβ∪{β}\ε. At each step i ≤ j we chose tβi as E-minimal w.r.t. a property

only depending on δi and gδi . Hence tβi = tαi for i ≤ j and tαj = bβt ∈ Tβ.

Now T =
⋃
α<κ Tα is a κ-tree. It is clear from the construction that T is

x-increasing, so it remains to show that T has no cofinal branch. So assume
otherwise that g is a function with g � α ∈ Tα for all α < κ. Thus there is a
cofinal (even stationary) set

B = {α < κ | gα = g � α}

By the properties of a �−(κ)-sequence, we can find some α < κ so that

sup[(Cα \ Lim(Cα)) ∩B] = α

Since g � α ∈ Tα, there must be some t ∈ T � Cα so that g � α ≥ bαt . Let
〈δi | i ≤ γ〉 and 〈ti | i ≤ γ〉 be the sequences from the construction of bαt .
Now there must be some i < γ so that δi+1 ∈ B and hence gδi+1

= g � δi+1.
Note that Qαt,i 6= ∅ as T is x-increasing and hence

g � δi+1 = gδi+1
<∗ tδi+1

⊆ tγ = bαt ≤ g � α

a contradiction.

Remark 21. Surprisingly, the above construction works for any x : κ →
Lim ∩ κ.

Corollary 22. If V = L and b
(∏

i<κ x(i),≤∗
)
≥ κ+ then (i) − (iv) of

Theorem 4 are equivalent to κ not being weakly compact.
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Proof. Under V = L, ♦κ holds as κ is regular uncountable, while �−(κ) is
equivalent to κ not being weakly compact (see Proposition 1.9 and Corollary
1.10 in [BR17]). So if κ is not weakly compact then there is an x-increasing
κ-Aronszajn tree by Lemma 19 and if κ is weakly compact there are no
κ-Aronszajn trees at all.

4 The Other Direction

One can also ask the inverse question of (ii) in Theorem 4, i.e. does the
unrestricted Hechler forcing at κ add a

∏
i<κ x(i)-dominating function. It

is easy to see that this is impossible if x is unreasonable. We want to point
out that also for reasonable x it is consistent, at least relative to a Mahlo
cardinal, that H does not add such a function.

Lemma 23. Let κ be Mahlo and x be the increasing enumeration of regular
cardinals. Then H does not add a

∏
i<κ x(i)-dominating function.

Proof. The set S = {i < κ | i = x(i)} is stationary in κ and note that any
f ∈

∏
i<κ x(i) is regressive on S. Assume that after forcing with H there

is f ∈
∏
i<κ x(i) dominating all such functions in V (mod bounded). Then

f−1({ξ}) is bounded and thus non-stationary for any ξ < κ. By Fodor’s
Lemma this means that S is no longer stationary. However, H is <κ-closed
and so preserves the stationarity of S, contradiction.

Remark 24. The above argument also shows that Hx is an example of
a <κ-progressively-closed forcing that destroys a stationary set. Hence, in
general, <κ-progressive-closure is, in contrast to <κ-closure, not enough to
preserve stationary sets in κ.

5 Con(bκ < bx)?

For x : κ→ Lim ∩ κ let us abbreviate b
(∏

i<κ x(i),≤∗
)

by bx.

Question 25. Is bκ < bx consistent?

We will present a construction in an effort to answer the above question.
There are two possible outcomes: Either the construction succeeds and res-
ults in a model with bκ < bx or the construction fails and gives an example
where a preservation theorem which holds at ω for finite support iterations
of ccc forcings fails at κ for a <κ-support iteration of κ+-cc forcings. At the
moment it is not clear which direction it will go. We will prove the following:

Theorem 26. It is consistent relative to an unfoldable cardinal that 2κ = κ+

and there is x : κ→ Lim ∩ κ so that if

P = 〈Pα, Q̇α | α < κ++〉

13



is the <κ-support iteration of Hx (as defined in the extension) of length κ++

then:

(i) P is κ+-cc

(ii) P preserves all cofinalities

(iii) for any α < κ++:

Pα  “Hx̌ does not add a κ̌κ̌-dominating function”

In fact, κ++ can be replaced by any ordinal.

Calculating cardinal characteristics of the continuum in forcing extensions by
finite or countable support iteration often makes use of preservation theor-
ems that usually are of the form “if P is an iteration with a specific support
and all the iterands are nice then P does not add a certain object”. For
example with the following preservation theorem one can prove that some-
times the ground model functions in ωω stay an unbounded family in the
extension:

Fact 27. [JS90] If P = 〈Pα, Q̇α | α < β〉 is a ccc finite support iteration so
that for all α < β

Pα adds no ωω-dominating function

Then P adds no ωω-dominating function.

One can ask whether the natural generalisation of this fact on κ is still
true. We replace ccc by κ+-cc and finite support by <κ-support.

Question 28. Suppose P = 〈Pα, Q̇α | α < β〉 is a κ+-cc <κ-support itera-
tion such that for any α < β:

Pα adds no κκ-dominating function”

Does P add no κκ-dominating function?

Assume we are in the situation of Theorem 26. Let P be that iteration
of length κ++. Then P is a κ+-cc iteration with <κ-support so that at no
iterand adds a κκ-dominating function. If we extend by P there are two
possible outcomes:

(i) P indeed does not add a κκ-dominating function so that in the exten-
sion by P, bκ = κ+ < κ++ = bx or

(ii) P adds a κκ-dominating function so that in this situation some limit
stage of P is a counterexample to Question 28.

14



Both outcomes seem to be mathematically interesting.

Question 29. Which one is it?

Proposition 30. If bx ≥ κ+ then Hx is <κ-strategically closed.

Proof. By Lemma 9 there is an increasing cofinal function y : κ→ κ so that
y < cof ◦x. Let σ be the strategy of player II that:

• at successor steps depends only on the last move (s, f) of player I and
the round i of the game and extends (s, f) to (t, f) with the domain
α of t so large that y(α) ≥ i

• at limit steps takes any lower bound (if possible).

We have to show that if II follows σ then the lower bound at limit steps
exists. So let β ∈ Lim ∩ κ and 〈(si, fi) | i < β〉 a descending sequence in
Hx that is according to σ. Let s∗ =

⋃
i<β si. This is clearly a function in∏

i<α x(i) for some α < κ. By the definition of σ and since y is increasing
we must have y(α) ≥ β and hence cof(x(i)) > β for α ≤ i < κ. Hence we
can define f ∈

∏
i<κ x(i) to be 0 below α and

f(i) = sup
j<β

fj(i)

for α ≤ i < κ. Now, (s∗, f∗) is a condition in Hx and it is clear that it is a
lower bound of 〈(si, fi) | i < β〉.

The following two propositions are briefly sketched in the case of (unres-
tricted) generalised Hechler forcing in [BBTFM18].

Proposition 31. Assume x satisfies bx ≥ κ+ and let P = 〈Pα, Q̇α | α < β〉
be the <κ-support iteration of Hx for some β. Then the conditions p ∈ P so
that for all α ∈ supp(p), p � α decides the first component of p(α) is dense.

Proof. We prove this by induction on β. The only non-trivial step is when
β is a limit of cofinality <κ, so we restrict to this case. Let γ = cof(β) and
find an increasing cofinal sequence 〈αi | i < γ〉. Let p0 ∈ P. We construct an
descending sequence 〈pi | i < γ〉, writing pi(α) = (ṡαi , ḟ

α
i ) for α ∈ supp(pi),

satisfying for any i < γ and α ∈ supp(pi)

(i) If α < αj for some j < i then pi � α‖ṡαi .

(ii) p(α) is forced by p � α to be in the dense open set of conditions in Q̇α
below which Q̇α is ≤ γ-closed.

The construction is straightforward using the induction hypothesis and the
fact that each Q̇α, α < β, is (forced to be) <κ-progressively-closed. Finally
we can define a condition p∗ with support

⋃
i<γ supppi so that for α ∈

15



supp(p∗), p∗(α) = (š∗, ḟ∗) with s∗ the union of the (eventual) decisions of
what ṡαi is and ḟ∗ the name for the function that is 0 on dom(s∗) and above
that the supremum of ḟαi for i < γ (whenever ṡαi resp. ḟαi is defined). p∗
has the desired property by definition and is below p0 by construction.

Proposition 32. Let P = 〈Pα, Q̇α | α < β〉 be the <κ-support iteration of
Hx (as defined in the extensions) of length β. P is κ+-cc.

Corollary 33. If bx ≥ κ+ then <κ-support iterations of Hx preserve all
cofinalities.

Proof. These iterations preserve cofinalities ≥ κ+ as they have the κ+-cc.
Using Proposition 30 and Lemma 9, one can show by induction on the length
of the iteration that bx stays larger than κ in the extension, so that Hx stays
<κ-strategically closed so that the whole iteration is <κ-strategically closed
and preserves all cofinalities ≤ κ.

Proof. By Proposition 31, we can assume that for p ∈ P and i ∈ supp(p),
p(i) is of the form (špi , ḟ

p
i ) with spi ∈

∏
i<α x(i) for some α < κ and ḟpi a

Pi-name for a function in
∏
i<κ x(i). Suppose A ⊆ P is of size κ+. By the

∆-system lemma we may assume that {supp(p) | p ∈ A} is a ∆-system
with some root r. Since r is of size <κ there are at most κ|r| = κ-many
possibilities of

〈spi | i ∈ r〉

if p ranges over A. Thus there are p, q for which the respective sequences
coincide. p and q must be compatible: They are pointwise compatible out-
side r as at least one of them is trivial there and on r since two conditions
in Hx are compatible if their first coordinates coincide. So A is not an
antichain.

We will produce a model where κ is weakly compact, 2κ = κ+ and the
weak compactness of κ is not destroyed after iteratingHx with<κ-support at
most κ++-many times. The argument presented here seems to need slightly
more than mere weak compactness.

Definition 34. Assume κ ≤ θ. κ is θ + 1-strongly unfoldable if for any κ-
model M there is an elementary embedding j : M → N with critical point
κ and N transitive so that

(i) iθN ⊆ N

(ii) |N | = iθ+1

(iii) j(κ) > θ

This is not the standard definition of θ + 1-strong unfoldability, but it
is equivalent (see [DH06, Lemma 5]). It is easy to see if κ is θ + 1-strongly
unfoldable for any κ ≤ θ then κ is weakly compact as well.
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Lemma 35. Suppose bx ≥ κ+, κ is κ + 2-strongly unfoldable and GCH
holds. Then there is a preparatory forcing after which the weak compactness
of κ is indestructible by the <κ-support iteration of Hx of length κ++.

Note that in general this iteration can destroy the weak compactness of
κ. For example over L already Hx does so as it adds a new subset of κ all
of which initial segments lie in L.

Proof. Parts of the argument is inspired by the proof of the Main Theorem
in [HJ10]. Note, however, that the Main Theorem there only applies to <κ-
closed forcings (that preserve κ+) while Hx is not <κ-closed.
Let P = 〈Pα, Q̇α | α < κ〉 be the Easton-support iteration where Q̇α is a
Pα-name for

• the trivial forcing if α is not inaccessible or xα := x � α fails to be a
function with range in α so that bxα ≥ α+ and

• for the <α-support iteration of Hxα of length α++ otherwise.

We will show that P is the preparatory forcing we seek. So let G be P-generic
over V . In V [G], let Q be the <κ-support iteration of Hx of length κ++.
We will show that in V [G]Q, κ is weakly compact. So let g be Q-generic
over V [G]. Let A be a subset of κ in V [G ∗ g] and let Ȧ ∈ V be a name
for A. Also let Q̇ be a P-name for Q. In V , find a large regular θ and an
elementary substructure X ≺ Hθ so that

(i) P, Ȧ ∈ X and κ+ 1 ⊆ X

(ii) <κX ⊆ X

(iii) |X| = κ

By Proposition 32, P∗Q̇ is κ+-cc and thus G∗g is generic over X. Let M be
the Mostowski collapse of X with π : X →M the collapse map. Since κ+ is
absolute between V and V [G ∗ g], M is of size κ in V . Thus M is a κ-model
in V and there is an elementary embedding j : M → N with critical point κ
and N transitive with N closed under κ+-sequences and of size 22κ = κ++.
Let Q̇0 = π(Q̇), Ȧ0 = π(Ȧ) and g0 = π[g] (observe that G = π[G] is generic
over M and that g0 is Q̇G0 generic over M [G]).

Claim 36. There is a lift j++ : M [G ∗ g0]→ N [H ∗ h] of j.

Proof. First, we lift j to j+ : M [G] → N [H]. To do this, we are tasked to
find a generic H over N for j(P) with j[G] ⊆ H. Note that j[G] = G is
P-generic over N . The iterand of j(P) at κ is the <κ-support iteration of
Hx of length κ++ (as computed in N , but the closure of N guarantees that
this is the true Q). This means we can factor j(P) as P ∗ Q̇ ∗ Ṙ where the
latter is now (forced to be) <κ++-strategically closed in N [G∗g] and thus in
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V [G ∗ g] as well (standard computations show that κ+N [G ∗ g] ⊆ N [G ∗ g]).
As N [G ∗ g] still has size κ++, one can build a generic H0 inside V [G ∗ g].
We conclude that H = G ∗ g ∗ H0 is j(P)-generic over N with j[G] ⊆ H
which completes the first lift.
Next up we must further find a generic h for j+(Q0) with j+[g0] ⊆ h. We
will do so via a master condition argument. Note that QN := j+(Q̇G0 ) is

the <j(κ)-support iteration of HN [H]
j(x) of length (j(κ)++)N [H] as computed

in N [H]. By Proposition 31, we can replace Q by the dense subset of p
for which whenever α ∈ supp(p), p � α decides the first component of p(α).
Thus we can identify p(α) with the tuple (s, ḟ) where s is that decision and
ḟ is (a name for) the second component of p(α). We can do the same thing
for j+(Q). Let S = j+[κ++] = j[κ++]. The closure of N guarantees S ∈ N
as well as j+[g] ∈ N . For i < β0, let fi be the generic function added over
M by the i-th coordinate of g0. Now we define p∗ to be the condition with
support S so that for j(i) ∈ S, p(j(i)) = (fi, ġi) where ġi is a QN � j(i)-name
for the function that is

(i) 0 below κ

(ii) sup{j(ġ)(α̌) | ∃p ∈ g0 i ∈ supp(p) ∧ ∃s p(i) = (s, ġ)} for κ ≤ α < j(κ).

Claim 37. p∗ ∈ QN is below any condition in j[g0].

Proof. First of all, p∗ ∈ N [H] as the closure of N [H] in V [G ∗ g] ensures S
as well as j+ � g0 to be elements of N [H]. To show that p∗ is a condition, it
is enough to show that for i ∈ S, ġi is forced to be a function in ∏

k<j(κ)

j(x)(k)

N [H]QN �i

Since there are at most κ-many possibilities for ġ in the definition of ġi(α)
for a given κ ≤ α < j(κ) (as M [G] has size κ) and since N knows this, it is
enough to show that cof(j(x)(α)) > κ in N [H]QN �i. As cofinalities in N are
preserved by j(P) ∗QN , it suffices to demonstrate

cofN (j(x)(α)) > κ

Consider an increasing cofinal y : κ→ κ, y ∈M with y < cof ◦x guaranteed
to exist by Lemma 9. Then j(y) ∈ N is increasing and cofinal in j(κ) with
j(y) < cofN ◦j(x) and moreover j(y) � κ = y, so that y(κ) ≥ κ. Hence:

cof(j(x)(α))N > j(y)(α) ≥ j(y)(κ) ≥ κ

Now let q ∈ g0, i ∈ supp(q) and q(i) = (s, ġ). Then s is an initial segment
of fi and ġ appears in the definition of ġi at and above κ. Since p∗(j(i)) =
(fi, ġi) and as ġi dominates j+(ġ) at and above κ we have

QN �j(i) p∗(j(i)) ≤ j
+(s, ġ)
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Since this is true for any i in the support of q, p∗ ≤ j+(q).

This means that p∗ is a master condition in our situation, i.e. whenever
h is generic for QN over N [H] with p∗ ∈ h, then j+[g0] ⊆ h. Constructing
such an h can be done by a standard argument using

(i) κ+N [H] ⊆ N [H] in V [G ∗ g]

(ii) |N [H]| = κ++ in V [G ∗ g]

(iii) N [H] |= “QN is <j(κ)-strategically closed”

(iv) j(κ) > κ++

This yields the second and final lift j++ : M [G ∗ g0]→ N [H ∗ h].

Claim 38. A ∈M [G ∗ g0]

Proof. Let i < κ. In M , Let B be a maximal antichain of conditions that
decide whether or not ǐ ∈ Ȧ0. Let p ∈ G ∗ g ∩ π(B). Then p decides wheter
ǐ ∈ Ȧ depending on whether i ∈ A. As B is of size ≤ κ in M , π(B) is of size
≤ κ and hence a subset of X. Thus π(p) ∈ G ∗ g0 decides correctly whether
ǐ ∈ Ȧ0. This shows A = ȦG∗g00 ∈M [G ∗ g0].

Thus, in V [G ∗ g], for any subset of κ there is a κ-model that admits
an elementary embedding into a transitive model with critical point κ. We
conclude that κ is indeed weakly compact in V [G ∗ g].

Remark 39. Indeed κ remains κ+2-strongly unfoldable in V [G∗g], however
this is not relevant to the discussion here. It is also possible to make the weak
compactness of κ indestructible by longer iterations of Hx using a similar
argument as above if one is willing to assume more strong unfoldability. In
fact, one can do this for iterations of arbitrary length if κ is fully strongly
compact to begin with. For the longer iterations one must incorporate Laver
functions for unfoldability into the above argument.

Proof. (Of Theorem 26) Start with a model V of GCH in which κ is (κ+ 2-
)unfoldable. Let x : κ→ Lim∩κ be any function with bx ≥ κ+, for example
the map α→ α+. Apply Lemma 35 to get a model V [G] so that if

P = 〈Pα, Q̇α | α < κ++〉

is the <κ-support iteration of Hx then κ is weakly compact in V [G]P. Note
that P is κ+-cc and <κ-strategically closed by Propositions 32 and 30.

Claim 40. κ is weakly compact in V [G]Pα for any α < κ.
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Proof. Since P does not add sequences of ordinals of length <κ, P factors
as Pα ∗ Ṗ>α where the latter is forced to be a <κ-support iteration of <κ-
strategically-closed forcings. Thus V [G]P is an extension of V [G]Pα by <κ-
strategically closed forcing and hence any κ-Aronszajn tree in V [G]Pα would
still have no cofinal branch in V [G]Pα , which is impossible. Thus there are
no such trees in V [G]Pα which means that κ is weakly compact there.

By Theorem 4, this implies that for all α < κ++ we have

Pα  “Q̇α does not add a κ̌κ̌-dominating function”

The Theorem is proven.
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