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Abstract

For inaccessible cardinals k, we investigate the relationship between
(HKN x(3), S*) and (k*, <*) for some z : kK — LimN«. To be precise,
we analyse when there is a continuous cofinal embedding

T Hx(i),g* — (K", <)
<K

We show that, under some constraints on x, this question is equivalent
to whether Hechler forcing on [], . (i) adds a x"-dominating function
and also to the existence of a certain type of k-Aronszajn tree. We also
prove that there is a <x-distributive forcing that adds a x-Aronszajn
tree of this type. It follows that the existence of such an embedding
on « is independent of the theory ZFC+ “k is inaccessible”, relative to
a weakly compact cardinal. Finally, we discuss a strategy to produce
a model where

b | [[=6), <" | > b

1<K

1 Introduction

In this note, we investigate the relationship between the partial orders
(k*,<*) and ([],, z(i), <*) where z is a reasonable function z : K — . in
the case that k is an inaccessible cardinal. Here, <* means eventual domin-
ation. For the rest, we will fix an inaccessible cardinal x. This turns out to
be connected to generalised versions of Hechler forcing. For the rest of the
note, x is assumed to be a function z : k — Lim N k.

Definition 1. (i¢) H denotes the (unrestricted) generalised Hechler for-
cing at . Conditions are pairs (f,g) where f € k<% and g € k". The
order is defined via (f,g) < (f',¢') iff

(a) f2f



(b) g > ¢ and
(c) for i € dom(f) \ dom(f") f(i) = ¢'(i).
(11) The z-restricted generalised Hechler forcing at « H, is the suborder

of H consisting only of conditions (f,g) with f € [],_, x(i) for some
a<randge€][]; . z(i).

The idea is that the first component is the “working part” giving partial
information about a function with domain x and the second component is a
“side condition” making sure that the first component will eventually dom-
inate all ground model functions.

Definition 2. A partial order P is <k-progressively-closed if for any A < &
the set of conditions p such that PP [ p is A-closed is dense.

Lemma 3. (i) H is <k-closed and adds a function in " eventually dom-
imnating all ground model functions in k.

(73) If cof ox converges to k, then H, is <k-progressively-closed (but not
<k-closed) and adds a function in [],_, x(i) eventually dominating all
ground model functions in [],_,. x(i).

Also recall the definition of the bounding number b(P) of a partial order
P: It is smallest size of an unbounded subset of P.
The main result here is the following.

Theorem 4. Assume b ([[;_, x(i),<*) > sT. Then the following four
conditions are equivalent:

(1) There is a continuous cofinal (w.r.t. both < and <*) embedding

(13) There is a continuous cofinal embedding
mo | [[=6), <" | = (7, <)
1<K
(1it) Forcing with H adds a dominating function for (k",<*).
(tv) There is an x-increasing k-Aronszajn tree.

If © only satisfies lim;<, cof ox(i) = Kk then the implications from top to
bottom still hold.



Remark 5. The assumption on x is satisfied for many natural examples of
x, see Lemma 9. We list a few of them.

e o+ at, or more generally o — ot for 4 a successor ordinal
e o N1, or more generally o +— N, for v a successor ordinal
o o+ 2%

o o aflelif SCH holds

e o — next inaccessible above « if k is a limit of inaccessibles, etc.

We still have to explain a few terms. Firstly, an embedding is an order-
preserving map. By continuous we mean that the spaces " and [[,_, x(i)
are endowed with the box-topology w.r.t. the co-bounded filter and each
ordinal is considered discrete. I.e. a basic open set Ny is given by all
functions extending a partial f : &« — x. This is the usual topology on these
spaces when they are considered as generalised Baire spaces.

Definition 6. An z-increasing x-Aronszajn tree is a subtree 7" of | J,, . [ ;. #(4)
so that

(i) T is a k-Aronszajn tree and
(i) whenever o < k and f,g € [[,., z(i) with f < gthen fe T =geT.

Since a weakly compact cardinal has the tree property we get the fol-
lowing corollary:

Corollary 7. If k is weakly compact and cof ox converges to k, then (i)—(iv)
of Theorem 4 fail.

It should be stressed, however, that the non-existence of an z-increasing
Aronszajn tree is not a trivial property.

Theorem 8. Suppose cof ox converges to k. There is a <k-progressively-
closed forcing P so that in VT there is an x-increasing r-Aronszajn tree.

2 The Main Theorem

We start by calculating when b (T, (i), <*) > xT. Note that the as-
sumption of Theorem 8 is weaker than condition (7).

Lemma 9. The following are equivalent:

(i) b(TTic, z(d),<*) > KT



(13) cof ox converges to k and ran(cof ox) is non-stationary.
(ii1) There is an increasing unbounded y : k — Kk with y < cof ox.

Proof. Tt is straightforward to show that

H z(i),<* | and H cof (x (7)), <*

1<K 1<K

are Tukey-equivalent and hence have the same bounding number. Thus
(i) — (4i7) remain unchanged if z is replaced by cof oz. This means we may
assume cof oz = x in the proof.

(i) = (éi): First assume that liminf;., x(i) < k. Then x is constant with
value 3 on an unbounded set U. If we set f, (i) = a for i € U and f,(i) =0
for i ¢ U then {f, | @ < S} is an unbounded family of ([[,_,. (), <*) of
size A, contradiction.

Next, suppose that S = ran(z) is stationary. Let C' C k be club so that any
1 € C' is closed under both = and the map

1<K

a = sup{j < x| z(j) < a}

Then for ¢ € C' we must have Vi < o < k x(a) > i. Hence for any i € CN S
ther is some h(i) > i so that z(h(i)) = i. Note that sup C N h(i) =i so that
h is strictly increasing. We will show that the family (f; | j < &) defined by

0 else

f'(a)_{j if @ = h(i) and j < i
(o) =

is unbounded in (], (i), <*).Let g be any function in [],_, #(7). Then
g o h is regressive on C' N S. By Fodor’s Lemma, there is some unbounded
U C CNS and some j so that goh has value j on U. Hence g(h(i)) < fj(a;)
for any i € U so that f; £* g. Once again, this contradicts (i).

(79) = (i1i): Let C be the club from before and let D be a club disjoint from
ran(cof o). Then the map y defined by
y(i) =sup(CNDNi)

does the job.

(i73) = (1): Let {fj | j < K} C [l;c,x(7) and let y witness (ii7). Then g
defined by
9(2) = sup{f; () | j < y(0)}

is in [ [, z(7) as the supremum is taken over a set of size y(i) < cof (x(i)).
Since y is increasing and unbounded in &, f; <* g for any j < k. O



Remark 10. Note that ran(cof oz) can only ever be stationary if x is Mahlo.
Also, if cof ox converges to k, this is equivalent to cof oz = id on a stationary
set.

Let us proof the main theorem:

Proof. Fix x : k — Lim N x with b ([],., (i), <*) > k. For convenience,
we will assume that x is strictly increasing and takes values in the regular
cardinals.

(i) = (it): This is trivial.

(id) = (i11): Let 7 : ([];-, (i), <*) — (k",<*) be a continuous cofinal
embedding. After forcing with Hy, let f € [];_, #(i) be the generic function.
The continuity of 7 allows us to make sense of 7(f) and the cofinality of 7
will imply that 7(f) is dominating: We define 7(f) as

{9 130 < & 7[Nyja] € Ny}

A simple density argument shows that 7(f) is indeed a function with domain

%. Now assume g € (xk*)". Then we can find g € (Hi<nl‘(i))v so that g <*
m(g). From another routine density argument it follows that 7(g) <* m(f)
and hence g <* 7(f).

(791) = (iv): We will prove the contraposition —(iv) = —(7i¢). The crucial
properties of H, are that
(a) Any (f,9),(f",¢") € H, with f = f" are compatible.

(b) For any a < k there are <sk-many f with dom(f) C « such that
(f,9) € H, for some g.

Note that (b) is not true for the unrestricted forcing H. Now let h be a H,-
name for a function h : kK — k. For a < k let HY be the set of (f,g) € H,
with dom(f) C . We have to check that h is forced to not be dominating,
so that we may as well assume

1y, FheV (*)

(a) and (b) imply that for any i, < k there are <sx-many j such that some
(f,g) € HY decides h(7) to be 3. Let us define

Fy:Hy = &, Fi((f,9)) = min{a | 3(f',¢) € Hy deciding h(D)A(f',¢') < (f,9)}
and
H:x—k, H@i) =sup{B8 | 3(f,9) € Hi.upFi[Hgf] deciding h(i) as 8} + 1

It will turn out that H £* hC for any generic G. But first, we must
check that H is well-defined and here we will use our assumption —(iv). It
is enough to verify the following claim:



Claim 11. sup F;[H] < & for any i < k.

Proof. So suppose supF;[H.] = k. There must then be a single first com-
ponent f with dom(f) < so that F;((f,g)) gets arbitrarily large by varying
g. Let
Xo={g € [[20) | Fi(f,9) > a}
1<K
Observe that membership of g in X, depends only on g | «, so (abusing
notation) we will say g | @ € X,,. Consider the tree T' whose a-th level T,

is exactly
To = Xo N [ ()
<o

and is ordered by end-extension. Then T is indeed a tree, all levels have size
<x and by our choice of f, T has height x. Moreover, if f,g € [[,., (i)
and f < gand f € T then g € T as well, since a larger second component
only makes it more difficult to extend a condition in H,. So T satisfies
all properties of an z-increasing x-Aronszajn tree except maybe the non-
existence of a cofinal branch. Thus by —(iv), T must have cofinal branch. We
may think of that branch as a function g € (., Xo. But then F;((f,g)) >
k, meaning (f, g) has no extension deciding the value of h(i) This is clearly
a contradiction. O

Finally H is not dominated (mod bounded) by hG for any generic G, as
the generic will often “pick minimal extensions deciding some value of b
Let j < k and p = (f,g) € H,. Then, by (%) and as H, is <k-distributive,
there must be some max{j,dom(f)} <i < & so that p does not decide h(3).
Now let ¢ < p be a strengthening with first component of length F;(p) so
that ¢ decides h(i) as . Thus 8 < H (i) and this situation happens densely
often.

(iv) = (i): Let T be an z-increasing x-Aronszajn tree. As a warm up, we
describe a continuous cofinal embedding

Hw - (K, <)

1<K

The final one will be defined by “squeezing k-many embeddings similar to
o together”. This process will turn the < into a <* on the left hand side.
The map 7 is simply given by

mo(f) = minfa <k [ f ¢ T}

The minimum is taken over a non-empty set as 1" has no cofinal branch, so

mg is welldefined. Also, if f < g € [, . z(i) then mo(f) < mo(g). This is a

consequence of condition (i7) in the definition of a z-increasing x-Aronszajn



tree. Furthermore, 7y is cofinal, since T" has height k. It is also easy to see
that my is continuous. Now, let’s start to construct the final 7. By Lemma
9, there is an increasing y € k™ with y < z. We can choose for any i < k a
sequence

(v 15 <w(@)
so that any fyj’: t (i) — (i) is strictly increasing and so that
(ranj | j < y(i))

is a partition of x(i). Using this, we can turn any v < z(i) into a sequence
in (i)™ by mapping 7 to

Qi(y) := (min{€ < 2(i) | v <75} | 7 < (7))

Note that v < § < x(7) implies ©;(y) < ©;(5). Putting this together, we
turn any f € [[;,. #(i) into a map in [],_, z(i)¥@:

Q(f) = Qu(f(@) [ i < x)

[Tz =]] II =o=]] II =&

<K i<k j<y(i) J<kri<r: j<y(i)

Via

we can also understand Q(f) as a sequence

Q) =i ld <r)

where
dom(fj) ={i<k|j<y(i)}
and for ¢ € dom(f;)

fi(@) =Q(f) (@) ()
Now for any j <  choose some g; € T, where d; is the least i with j < y(i),
so that g; has extensions to arbitrarily high levels in T" (equivalently T | g;
is an z-increasing k-Aronszajn tree). Note that g7~ f; € [[;, (i). Finally
set

m(f) = (molg; fi) |7 <)

Claim 12. 7 is a continuous cofinal (w.r.t. both < and <* and preserves
< and <*.

Proof. 1t follows from the other arguments that 7 is continuous, so we will
not make that explicit. First let’s see that

n(f) =" 7(f")



if f="f"and f, f' €[], x(i). The reason is simply that

m(f)(J) = molg; ;)

only depends on f | [dj, k) and limj.d; = k. Moreover, if only f <* f
then m(f) <* w(f’) since the maps €); are increasing. This also shows that
w(f) < w(f") if f < f'. Finally, let’s check for cofinality. Note that it is
enough to check cofinality w.r.t. <. Let h € k™. For j < &, pick g; so that

95 95 € Th(j)

This is possible by our choice of g;. We will construct f € [[,_,. (i) so that
for all j < &,

g; < fj | dom(g;)
From the properties of 7, it will then follow that even 7« (f) > h. Simply
put ‘
f(@) = sup{sup~j[g;(0)] | j <z~ () Ni <h(j)}+1

for any i < . f € [[,.,.2(i) as the inner suprema are < x(i) as they
are taken over a set of size <z(i) and the outer supremum is <z(i) as
2~ (i) < z(i). Note that z(i) is regular. By chasing definitions, one can
indeed verify that f;(i) > g;(¢) whenever this makes sense. O

This proves ().
Finally, we only needed the full assumption on z in (iv) = (7). The implic-
ations (i) = (i#9) = (iii) = (iv) all go through as long as cof ox converges
to K. O

3 Producing z-increasing x-Aronszajn Trees

Theorem 4 would not be that interesting if the three equivalent conditions
there were always false (like they are in case k is weakly compact). The
fourth condition phrases the other ones in terms of existence of familiar set-
theoretical objects, namely x-Aronszajn trees, and so this gives a natural
point of attack to force the conditions true. It should also be pointed out
here that Cummings-Shelah [CS95] proved that if Q is a wellfounded poset
with b(Q) > k™ then there is a forcing extension in which Q can be cofi-
nally embedded into (k",<*). This is however unapplicable to our current
situation for multiple reasons. First of all, in general (Hl < T(1), S*) need
not satisfy any of the assumptions on QQ in that theorem even for reasonable
2. But more importantly, the structure (H¢<n$(i)7 S*) has new objects in
the forcing extension, so embedding the ground model structure is different
from embedding the new structure. We will now prove Theorem 8.



Proof. Again we will assume for convenience that x is strictly increasing and
takes values in the regular cardinals. We modify the forcing, due to Jech,
Prikry and Silver, that adds a x-Souslin tree. Let P be the forcing whose
conditions are subtrees t of | J, ., [];<, #(7) with the following properties:

(i) =y := height(t) is a successor < k.

(74) t is a normal tree, i.e. all nodes not on the top level branch and can
be extended to the top level.

(i13) If f,g € [[,cox(i) and f < gthen f €t = g€t

IP is ordered by s <t iff s is an end-extension of ¢, i.e. t = s<,,. We will
show that if G is P-generic then Tz = |J G is an z-increasing x-Aronszajn
tree and that P is <k-progressively-closed.

Claim 13. Any t € P can be extended to some s with s arbitrarily high
below k.

Proof. Let v+ < a < k. Put s = {g € [[jcq12(@) | g I m € t} |,
where | denotes the closure under initial segments. Then s € P, s < ¢t and

vs = a+ 1. O

Assume that § < x and that © = (¢; | i < §) is a strictly decreasing
sequence in P. Note that ¢ has a lower bound in P iff in t, := Ui<sti every
node can be extended to a cofinal branch. A lower bound in this situation
is given by b(t) := s, the downward-closure of all cofinal branches through
t.. However, sometimes we would like to restrict the top level further. If
f € 1lic,, z(i) then the downwards-closure of

{g€sy, 1| f< g}

is also a lower bound of ¢ which we denote by b(f, f). Observe that f ¢
b(t, f)-

Claim 14. P is <k-progressively-closed.

Proof. Let a@ < k. Let tg be a condition with v > «. By the claim before
the set of such conditions is dense, so it is enough to show that P is a-
closed below tg. So assume that £ = (t; | i < a) is a decreasing sequence of
conditions in P. It is enough to show that every condition in t, = (J, i
can be extended to a cofinal branch. So let fy € ¢, be a node. Since all
t; are normal, we may assume that f = f; is on the top level of some t;,
in particular dom(fp) > a. For j < i < a choose f; an end-extension of f
to the top level of t;. Then if f, is defined as the pointwise supremum of
the (fi)j<i<a then fi € [[,, (i) as all the z(i) with j <7 < a have high
cofinality. Moreover, f, is a cofinal branch through ¢, by property (iii) of
forcing conditions. O



It follows that x remains inaccessible in V[G] and that T is a k-tree.
Since P is <k-progressively-closed, P does not add new <k-sequences of
ordinals and hence it is trivial to check that if f,g € [[._, z(i) with f <g
then f e Tg = g € Tg.

Claim 15. In V|G|, there is no cofinal branch through T¢.

<«

Proof. Assume that tgy I- “b is a cofinal branch through T¢”, where T is
the canonical name for T;. We may assume that P is o-closed below tg
(in fact the whole P is o-closed). Construct a strictly descending sequence
(t; | i < w) in P as well as a sequence (f; | i < w) such that always

tiv1 IF DN (ti)y, = {fi}

Note that the f; is an end-extension of f; if j <i < w. Hence f = |, f,
is a cofinal branch through t, = | J,__ t;. Then b(t, f) is a lower bound of ,
however as f ¢ b(t, f)

i<w

b(t, ) f ¢ T
but on the other hand b(#, f) extends all t; so that
b(t, f) I feb
This is clearly a contradiction. O

We have demonstrated that Tz is an z-increasing x-Aronszajn tree in
V[G]. O

One could try to adjust the above approach to get an z-increasing k-

Souslin tree. That, however, would be a fruitless endeavor.

Lemma 16. Assume b (][]
Aronszajn tree is k-Souslin.

i<ﬁx(z’),§*) > kt. Then no x-increasing k-

Proof. Using Lemma 9, find y : Kk — & increasing unbounded, y < cof ox.
For i < K, let ; be the least o with y(«) > i. Also choose f; € Ty, +1. By
induction on ¢, define g; € [];,. z(j) by

9i(4) = sup{fi(4), 9 (4§) | " < y(j) A" <} +1
Claim 17. A:={g; | i < K} is an antichain in T.

Proof. First of all g; € [];.,, z(j) for all i since g;(j) is defined as the
supremum of a set of size y(j) < cof(z(j)) of ordinals below x(j) (4+1) so
that g;(j ) < x(j). Since g; > f; and f; € T we have g; € T as well. Now

suppose i’ < i < k. Then

gi(air) > gir(ay)

by definition of g; since i’ < y(a;/) and hence g; and gy are incompatible in
T. O

10



This shows that A is an antichain of size k. O

Next up, we consturct z-increasing x-Aronszajn trees from inifitary com-
binatorial principles.

Definition 18. [BR17] K~ (k) postulates the existence of a sequence C' =
(Cy | @ < k) so that for all a < &:

(1) Co C

(74) If & € Lim then C,, is club in «.

(t3i) If B € Lim(C,) then Cg = Cy N 5.
)

(1v) If B C k is any cofinal subset then there are stationarily many 5 < k
with
sup[(Cg \ Lim(Cg) N B)] = 3

i.e. the “successor points” in Cg meet B cofinally often below (.

Lemma 19. Assume X~ (k)+<{x. Then there is an x-increasing k-Aronszagn
tree.

Proof. We roughly follow the construction in [BR17, Proposition 2.3]. Note,
however, that a x-Souslin tree is produced in the reference while the tree
here will and must have large antichains in the end.

Let C = (C, | o < k) witness K. and let (g, | @ < k) witness ¢ in the
sense that any g, is in a® and for any g € k" the set {a < k| g | @ = go}
is stationary. Furthermore, fix a wellorder < of |, [, (7).

We construct a normal z-increasing tree T' by induction on the levels. We
let Ty = {0} and if T}, is defined then

Tonn={fe [] 2| flacTu}

1<a+1

It remains to define the limit levels of T'. There, our task is to decide which
cofinal branches through 77 := g<q I remain inside the tree. We must
make sure that T, is normal, so for any ¢ € T we will construct a cofinal
branch b¢ through Tf. Since C, is unbounded in «, it is enough to do so
assuming t € T' [ C,. Then we will set

To ={0 |teT | Cy}t

where 1 denotes the upwards closure under < to make sure that T will be
z-increasing in the end.

Let € = dom(t) € C, and let (0; | i < ) be the increasing enumeration of
Cq U {a} \ e. By induction, construct an increasing sequence (t& | i <) in
T so that

11



(i

(i1) Vi <yt €Ty,

(iv) Vie LimNy+1t¢ =, t¢

) t§
)
(i11) Vi <y t8, € Qf; i={s € Ts,, | gs,,, <" s}if Qf; # 0
) j<il]
)

(v

This construction is straightforward provided that at limit steps below v we
stay inside T'. In this case, we set bf' = ¢5. We will now check that indeed
the construction does not break down. So let j < v be limit.

Any ¢ is <-least with the above properties (relative to (¢3);<:)-

Claim 20. t¢ € Ty,

Proof. We take a close look at the construction of T for 3 = d;: Note that

Cg = CyNpBsothat t € T | Cg. We thus have chosen an extension btﬂ of
t to level 3 that we have put in Tj. We have done so by constructing an

increasing sequence <tf} | i < j) w.r.t. the increasing enumeration (d; | i < j)
of CgU{B}\e. At each step i < j we chose tiﬁ as <-minimal w.r.t. a property
only depending on ¢; and gs,. Hence t? =t for i < j and S bf €Tg. O

Now T' = J, <, T is a k-tree. It is clear from the construction that 7" is
z-increasing, so it remains to show that 7" has no cofinal branch. So assume
otherwise that g is a function with g | a € T, for all @ < k. Thus there is a
cofinal (even stationary) set

B={a<k|ga=9|a}
By the properties of a X~ (k)-sequence, we can find some « < k so that
sup[(Cy \ Lim(Cy,)) N B] = «

Since g | a € T, there must be some t € T' [ Cy, so that g [ a > bf*. Let
(0; | © <) and (t; | i < =) be the sequences from the construction of b¢.
Now there must be some i < < so that d;11 € B and hence gs,., = g [ di11.
Note that Qf; # () as T is z-increasing and hence

gl 0iy1 =95, <'ts;, Cty=0<gla
a contradiction. O

Remark 21. Surprisingly, the above construction works for any = : K —
Lim N «.

Corollary 22. If V = L and b ([];., (i), <*) > kT then (i) — (iv) of

Theorem 4 are equivalent to k not being weakly compact.

12



Proof. Under V = L, {, holds as & is regular uncountable, while X~ (k) is
equivalent to x not being weakly compact (see Proposition 1.9 and Corollary
1.10 in [BR17]). So if x is not weakly compact then there is an z-increasing
k-Aronszajn tree by Lemma 19 and if x is weakly compact there are no
k-Aronszajn trees at all. O

4 The Other Direction

One can also ask the inverse question of (i7) in Theorem 4, i.e. does the
unrestricted Hechler forcing at x add a [],_, z(i)-dominating function. It
is easy to see that this is impossible if x is unreasonable. We want to point
out that also for reasonable x it is consistent, at least relative to a Mahlo
cardinal, that H does not add such a function.

Lemma 23. Let k be Mahlo and x be the increasing enumeration of reqular

cardinals. Then H does not add a [];_, x(i)-dominating function.

Proof. The set S = {i < k| i = z(i)} is stationary in x and note that any
[ € Il;c.x(i) is regressive on S. Assume that after forcing with H there
is f € [];<,. z(i) dominating all such functions in V' (mod bounded). Then
F71({¢}) is bounded and thus non-stationary for any & < x. By Fodor’s
Lemma this means that S is no longer stationary. However, H is <k-closed
and so preserves the stationarity of S, contradiction. ]

Remark 24. The above argument also shows that H, is an example of
a <k-progressively-closed forcing that destroys a stationary set. Hence, in
general, <k-progressive-closure is, in contrast to <s-closure, not enough to
preserve stationary sets in k.

5 Con(b, <b,)?
For z : k — Lim Nk let us abbreviate b (], (i), <*) by b,.
Question 25. Is b, < b, consistent?

We will present a construction in an effort to answer the above question.
There are two possible outcomes: Either the construction succeeds and res-
ults in a model with b, < b, or the construction fails and gives an example
where a preservation theorem which holds at w for finite support iterations
of ccc forcings fails at x for a <k-support iteration of k™ -cc forcings. At the
moment it is not clear which direction it will go. We will prove the following;:

Theorem 26. It is consistent relative to an unfoldable cardinal that 2% = k™

and there is x : k = Lim N k so that if

P= <]P’a,(@a |a< k™)
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is the <k-support iteration of H, (as defined in the extension) of length k™
then:

(i) Pis kt-cc
(1) P preserves all cofinalities
(i) for any a < kT :

P, I+ “H; does not add a k*-dominating function”

In fact, s can be replaced by any ordinal.

Calculating cardinal characteristics of the continuum in forcing extensions by
finite or countable support iteration often makes use of preservation theor-
ems that usually are of the form “if P is an iteration with a specific support
and all the iterands are nice then P does not add a certain object”. For
example with the following preservation theorem one can prove that some-
times the ground model functions in w* stay an unbounded family in the
extension:

Fact 27. [JS90] If P = (P,,Qq | o < B) is a ccc finite support iteration so
that for all o < 8

P, adds no w”-dominating function

Then P adds no w*-dominating function.

One can ask whether the natural generalisation of this fact on & is still
true. We replace ccc by k1-cc and finite support by <s-support.

Question 28. Suppose P = <IPa,Qa | a < B) is a kT-cc <k-support itera-
tion such that for any a < 3:

P, adds no k"-dominating function”

Does P add no «"-dominating function?

Assume we are in the situation of Theorem 26. Let P be that iteration
of length k™. Then P is a k'-cc iteration with <s-support so that at no
iterand adds a k"-dominating function. If we extend by P there are two
possible outcomes:

(i) P indeed does not add a k"-dominating function so that in the exten-
sion by P, b, = kT < k7T = b, or

(17) P adds a k"-dominating function so that in this situation some limit
stage of P is a counterexample to Question 28.

14



Both outcomes seem to be mathematically interesting.
Question 29. Which one is it?
Proposition 30. If b, > x™ then H, is <k-strategically closed.

Proof. By Lemma 9 there is an increasing cofinal function y : K — & so that
y < cof ox. Let o be the strategy of player I1 that:

e at successor steps depends only on the last move (s, f) of player I and
the round ¢ of the game and extends (s, f) to (¢, f) with the domain
a of t so large that y(«) >

e at limit steps takes any lower bound (if possible).

We have to show that if 11 follows o then the lower bound at limit steps
exists. So let f € Lim N« and ((s;, fi) | i < B) a descending sequence in
H,. that is according to o. Let s, = Ui<ﬂ s;. This is clearly a function in
[Licq (i) for some o < k. By the definition of o and since y is increasing
we must have y(a) > f and hence cof(z(i)) > 5 for @ < i < k. Hence we
can define f € [[,.,. z(i) to be 0 below o and

f(i) = sup f;(i)
j<B
for @ < i < k. Now, (s, f«) is a condition in H, and it is clear that it is a
lower bound of {((s;, f;) | i < ). O

The following two propositions are briefly sketched in the case of (unres-
tricted) generalised Hechler forcing in [BBTFM18].

Proposition 31. Assume x satisfies by > xk* and let P = <Pa,@a | a < B)
be the <k-support iteration of H, for some 8. Then the conditions p € P so
that for all « € supp(p), p | « decides the first component of p(«) is dense.

Proof. We prove this by induction on 5. The only non-trivial step is when
B is a limit of cofinality <k, so we restrict to this case. Let v = cof(8) and
find an increasing cofinal sequence («; | ¢ < 7). Let pg € P. We construct an
descending sequence (p; | i < ), writing p;(a) = (5%, ff‘) for av € supp(p;),
satisfying for any ¢ < v and « € supp(p;)

(1) If @ < o for some j < i then p; | o 53,

(i) p(c) is forced by p [ a to be in the dense open set of conditions in Qa
below which Q, is < 7-closed.

The construction is straightforward using the induction hypothesis and the
fact that each Q,, a < 8, is (forced to be) <k-progressively-closed. Finally
we can define a condition p, with support J; <~ SUPPP; SO that for a €
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supp(ps), p«(@) = (3, f») with s, the union of the (eventual) decisions of
what §3* is and f+ the name for the function that is 0 on dom(s,) and above
that the supremum of ff‘ for i <  (whenever s resp. ff‘ is defined). p.
has the desired property by definition and is below pg by construction. [

Proposition 32. Let P = <Pa,Qa | o < B) be the <k-support iteration of
H, (as defined in the extensions) of length B. P is k™ -cc.

Corollary 33. If b, > kT then <k-support iterations of H, preserve all
cofinalities.

Proof. These iterations preserve cofinalities > x™ as they have the x™-cc.
Using Proposition 30 and Lemma 9, one can show by induction on the length
of the iteration that b, stays larger than x in the extension, so that H, stays
<k-strategically closed so that the whole iteration is <x-strategically closed
and preserves all cofinalities < k. ]
Proof. By Proposition 31, we can assume that for p € P and i € supp(p),
p(i) is of the form (37, f) with s? € [[,_, «(i) for some a < & and f7 a
P;-name for a function in [];_, z(i). Suppose A C PP is of size k. By the
A-system lemma we may assume that {supp(p) | p € A} is a A-system
with some root r. Since r is of size <k there are at most s!"l = x-many
possibilities of
(si lier)

if p ranges over A. Thus there are p,q for which the respective sequences
coincide. p and ¢ must be compatible: They are pointwise compatible out-
side r as at least one of them is trivial there and on r since two conditions
in H, are compatible if their first coordinates coincide. So A is not an
antichain. O

We will produce a model where k is weakly compact, 2% = k™ and the
weak compactness of k is not destroyed after iterating H, with <k-support at
most kT -many times. The argument presented here seems to need slightly
more than mere weak compactness.

Definition 34. Assume k < 0. k is 6 + 1-strongly unfoldable if for any k-
model M there is an elementary embedding j : M — N with critical point
k and N transitive so that

(i) %N C N
(i) [N| = ot
(ii1) j(k) >0
This is not the standard definition of § + 1-strong unfoldability, but it

is equivalent (see [DHO06, Lemma 5]). It is easy to see if x is 6 + 1-strongly
unfoldable for any x < € then x is weakly compact as well.
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Lemma 35. Suppose b, > k™, k is k + 2-strongly unfoldable and GCH
holds. Then there is a preparatory forcing after which the weak compactness
of k is indestructible by the <rk-support iteration of H, of length k™.

Note that in general this iteration can destroy the weak compactness of
k. For example over L already H, does so as it adds a new subset of k all
of which initial segments lie in L.

Proof. Parts of the argument is inspired by the proof of the Main Theorem
in [HJ10]. Note, however, that the Main Theorem there only applies to <k-
closed forcings (that preserve k™) while H, is not <r-closed.

Let P = (Py, Qq | @ < k) be the Easton-support iteration where Q. is a
P,-name for

e the trivial forcing if « is not inaccessible or xz, := x | « fails to be a
function with range in « so that b, > ot and

e for the <a-support iteration of H,,_ of length ™" otherwise.

We will show that PP is the preparatory forcing we seek. So let G be P-generic
over V. In V[G], let Q be the <k-support iteration of H of length x* .
We will show that in V[G]?, x is weakly compact. So let g be Q-generic
over V[G]. Let A be a subset of x in V[G * g] and let A € V be a name
for A. Also let Q be a P-name for Q. In V, find a large regular 6 and an
elementary substructure X < Hy so that

(i) PAc X and k +1C X
(it) "X C X
(t3i) | X| =k

By Proposition 32, P+Q is kT-cc and thus G * g is generic over X. Let M be
the Mostowski collapse of X with 7 : X — M the collapse map. Since 7 is
absolute between V' and V[G x g], M is of size £ in V. Thus M is a k-model
in V and there is an elementary embedding j : M — N with critical point x
and N transitive with N closed under xt-sequences and of size 22" = x* 7.
Let Qo = 7(Q), Ag = 7(A) and go = 7[g] (observe that G = 7[G] is generic

over M and that go is QF generic over M[G]).
Claim 36. There is a lift 77+ : M[G * go] — N[H * h] of j.

Proof. First, we lift j to j* : M[G] — N[H]. To do this, we are tasked to
find a generic H over N for j(P) with j[G] € H. Note that j|G] = G is
P-generic over N. The iterand of j(P) at  is the <k-support iteration of
H, of length s (as computed in N, but the closure of N guarantees that
this is the true Q). This means we can factor j(P) as P« Q * R where the
latter is now (forced to be) <x*T-strategically closed in N[G*g] and thus in
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V|G # g] as well (standard computations show that " N[G  g] C NG * g]).
As NIG * g] still has size k™", one can build a generic Hy inside V[G * g.
We conclude that H = G x g x Hy is j(P)-generic over N with j[G] C H
which completes the first lift.

Next up we must further find a generic h for j7(Qq) with j™[go] C h. We
will do so via a master condition argument. Note that Qy := j*((@oc) is
the <j(x)-support iteration of H;\(f:[g] of length (j(r)*H)NMH] as computed
in N[H]. By Proposition 31, we can replace Q by the dense subset of p
for which whenever a € supp(p), p | « decides the first component of p(«).
Thus we can identify p(a) with the tuple (s, f) where s is that decision and
f is (a name for) the second component of p(a). We can do the same thing
for j7(Q). Let S = jT[xT1] = j[sTT]. The closure of N guarantees S € N
as well as jT[g] € N. For i < f3y, let f; be the generic function added over
M by the i-th coordinate of gy. Now we define p, to be the condition with
support S so that for j(i) € S, p(j(i)) = (fi, §i) where g; is a Qn [ j(i)-name
for the function that is

(7) 0 below k

(i) sup{j(9)(@) [ Ip € go i € supp(p) A s p(i) = (s,9)} for Kk < o < j(~).
Claim 37. p,. € Qn is below any condition in j[go].
Proof. First of all, p, € N[H] as the closure of N[H] in V|G * g| ensures S

as well as j7 | go to be elements of N[H]|. To show that p, is a condition, it
is enough to show that for i € S, g; is forced to be a function in

N[H]ON T
II i@®)
k<j(r)

Since there are at most k-many possibilities for ¢ in the definition of g;(«)
for a given k < o < j(k) (as M[G] has size k) and since N knows this, it is
enough to show that cof(j(x)(a)) > x in N[H]2N. As cofinalities in N are
preserved by j(P) * Qp, it suffices to demonstrate

cof ¥ (j(z)(a)) > K

Consider an increasing cofinal y : kK = k, y € M with y < cof ox guaranteed
to exist by Lemma 9. Then j(y) € N is increasing and cofinal in j(x) with
§(y) < cof oj(x) and moreover j(y) | k =y, so that y(x) > x. Hence:

cof (j () ()N > j(y)(a) > j(y)(r) > K

Now let g € go, @ € supp(q) and ¢(i) = (s,g). Then s is an initial segment

of f; and ¢ appears in the definition of §; at and above k. Since p.(j(i)) =
(fi,9:) and as ¢; dominates j7(g) at and above x we have

Fanti) P(d(i) <37 (s,9)
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Since this is true for any i in the support of ¢, p. < j(q). O

This means that p, is a master condition in our situation, i.e. whenever
I is generic for Qy over N[H| with p, € h, then j%[go] C h. Constructing
such an h can be done by a standard argument using

(i) *"N[H] C N[H] in V[G * g]

N[H]| =k*T in V|G x g]
(1it) N[H] E “Qn is <j(k)-strategically closed”

)
(i)
)
(iv) j(x) > n+

This yields the second and final lift 57 : M[G x go] — N[H = h]. O
Claim 38. A € M[G * go|

Proof. Let i < k. In M, Let B be a maximal antichain of conditions that
decide whether or not i € Ag. Let p € G % g Nw(B). Then p decides wheter
i € A depending on whether i € A. As B is of size < k in M, m(B) is of size
< k and hence a subset of X. Thus 7(p) € G * go decides correctly whether
i € Ag. This shows A = A(()?*go € MG * go. O

Thus, in V[G * g|, for any subset of x there is a k-model that admits
an elementary embedding into a transitive model with critical point k. We
conclude that & is indeed weakly compact in V|G * g]. O

Remark 39. Indeed x remains £+ 2-strongly unfoldable in V[Gxg], however
this is not relevant to the discussion here. It is also possible to make the weak
compactness of k indestructible by longer iterations of H, using a similar
argument as above if one is willing to assume more strong unfoldability. In
fact, one can do this for iterations of arbitrary length if x is fully strongly
compact to begin with. For the longer iterations one must incorporate Laver
functions for unfoldability into the above argument.

Proof. (Of Theorem 26) Start with a model V' of GCH in which k is (k + 2-
Junfoldable. Let z : k — LimNkx be any function with b, > k™, for example
the map o — a™. Apply Lemma 35 to get a model V[G] so that if

P=(Py,Qu | a < k*F)

is the <s-support iteration of H, then & is weakly compact in V[G]¥. Note
that P is k*-cc and <k-strategically closed by Propositions 32 and 30.

Claim 40.  is weakly compact in V[G]F> for any a < k.
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Proof. Since P does not add sequences of ordinals of length <k, P factors
as P, ]I"’>a where the latter is forced to be a <x-support iteration of <k-
strategically-closed forcings. Thus V[G]¥ is an extension of V[G]¥> by <x-
strategically closed forcing and hence any x-Aronszajn tree in V[G]"e would
still have no cofinal branch in V[G]P*, which is impossible. Thus there are
no such trees in V[G]¥> which means that  is weakly compact there. [

By Theorem 4, this implies that for all @ < k™ we have
P, Ik “Qa does not add a /%’%—dominating function”

The Theorem is proven. O
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