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Abstract

We prove an iteration theorem which guarantees for a wide class of nice
iterations of ω1-preserving forcings that ω1 is not collapse, at the price of
needing large cardinals to burn as fuel. More precisely, we show that a
nice iteration of ω1-preserving forcings which force SRP at successor steps
and preserves old stationary sets does not collapse ω1.

1 Introduction

The method of iterated forcing is a powerful yet flexible tool in establishing
independence results. Say, the goal is to produce a forcing extension of the
universe with a specific property. Frequently, it is the case that it is much easier
to find a forcing P, which solves this problem for “a single instance” or ”all
instances in V ”, but may add new “unresolved instances” at the same time.
One can then hope to iterate P up to some closure point, usually a sufficiently
large regular cardinal κ so that the whole iteration is κ-c.c., so that in end all
instances have been dealt with and the full desired property holds. This can
only work if the iteration in question preserves the progress of earlier stages up
until the end. Theorems which guarantee such a preservation are often called
iteration theorems. If the property in question is one about Hω2

then at the
very least it is required that ω1 is preserved or maybe the somewhat stronger
property that stationary sets are preserved. We give some examples.

1.1 Iterations of c.c.c. Forcings

The earliest iteration theorem is due to Solovay-Tennenbaum.

Theorem 1.1 (Solovay-Tennenbaum, [ST71]). Suppose xPα, 9Qβ | α ď γ, β ă γy
is a finite support iteration of c.c.c. forcings. Then Pγ is c.c.c..
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A Suslin tree is a tree of height ω1 with no uncountable chains and antichains.
Forcing with a Suslin tree T (with the reverse order) is a c.c.c. forcing and in
the forcing extension T is no longer Suslin. Not being a Suslin tree is a Σ1pω1q-
property and so is upwards absolute to forcing extensions preserving ω1. As
c.c.c. forcings preserve ω1, iterating forcing with Suslin trees produces models
in which there are no Suslin tree and hence in which Suslin’s hypothesis holds.

Theorem 1.2 (Solovay-Tennenbaum, [ST71]). There is a c.c.c. forcing P so
that V P |ù “Suslin’s hypothesis”.

1.2 Iterations of Proper Forcings

The class of forcings with the countable chain condition is rather small, so not
suitable in all cases. Shelah discovered the beautiful notion of proper forcing
which is large enough to include both c.c.c. and σ-closed forcing, but nonetheless
all such forcings preserve ω1.

Definition 1.3 (Shelah,[She98]). A forcing P is proper if for any large enough
regular θ and any countable X ă Hθ with P P X, whenever p P P X X then
there is some q ď p with

q , X̌ XOrd “ X̌r 9Gs XOrd.

Shelah proved a famous iteration theorem for proper forcings. Though, as
finite support iterations of non-c.c.c. forcings usually collapse ω1, the preferred
support in this instance is countable support.

Theorem 1.4 (Shelah,[She98]). Suppose xPα, 9Qβ | α ď γ, β ă γy is a countable
support iteration of proper forcings. Then Pγ is proper.

An Aronszajn tree T is a tree of height ω1 with all countable levels and
no cofinal branch. For a tree T of height ω1 and A Ď ω1, let T æ A denote
the tree with nodes of a level α of T with α P A and the tree order inherited
from T . Two trees S, T of height ω1 are club-isomorphic iff there is a club
C Ď ω1 so that S æ C – T æ C as partial orders. Given two Aronszajn trees
S, T , Abraham-Shelah discovered a proper forcing PpT, Sq which forces S and
T to be club-isomorphic. Note that the property “S, T are club-isomorphic” is
Σ1pS, T, ω1q and thus upwards-absolute to any ω1-preserving forcing extension.

Theorem 1.5 (Abraham-Shelah, [AS85]). There is a proper forcing P so that

V P |ù “Any two Aronszajn trees S, T are club-isomorphic”.

We remark that Suslin’s hypothesis is an immediate consequence of “any
two Aronszajn trees are club-isomorphic”. There provably is an Aronszajn tree
which is special, i.e. the union of countably many antichains. Such a tree cannot
be club-isomorphic to a Suslin tree.
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1.3 Iterations of Semiproper Forcings

Later, Shelah proved another iteration theorem for the even larger class of
semiproper forcings.

Definition 1.6 (Shelah, [She98]). A forcing P is semiproper if for any large
enough regular θ and any countable X ă Hθ with P P X, whenever p P P XX
then there is some q ď p with

q , X̌ X ω1 “ X̌r 9Gs X ω1.

From now on, we will denote X Ď Y ^X X ω1 “ Y X ω1 by X Ď Y . So for
example above we have q , X̌ Ď X̌r 9Gs.

Theorem 1.7 (Shelah). Suppose xPα, 9Qβ | α ď γ, β ă γy is a RCS-iteration of
semiproper forcings. Then Pγ is semiproper.

Once again, the notion of support had to be changed. In the argument of
Theorem 1.7 it is crucial that if α ă γ and Gα is Pα-generic over V , then the
tail iteration xPα,ξ, 9Qβ | ξ ď γ, β ă γy is still a RCS-iteration. This can fail for
countable support iterations as, unlike proper forcings, semiproper forcings can
turn regular cardinals into cardinals of countable cofinality. In fact, Theorem
1.7 fails if RCS-support is replaced with countable support.

Suppose I is an ideal on ω1. An I-antichain is a set A Ď Ppω1q ´ I so that
S X T P I for any S ‰ T P A. The ideal I is saturated if for all I-antichains A
we have |A|ďω1.

Theorem 1.8 (Shelah, see [Sch11] for a proof). Assume there is a Woodin
cardinal. Then there is a semiproper forcing P so that

V P |ù “NSω1 is saturated”.

If A is a maximal NSω1
-antichain then the sealing forcing SA is a natural

stationary-set-preserving forcing which turns A into a maximal NSω1
-antichain

of size ďω1 and the statement “A is a maximal antichain of size ďω1” turns
out to be Σ1pA, ω1q. Now, an instance of the sealing forcing is not semiproper
in general, but Shelah shows that when iterating up to a Woodin cardinal and
using a sealing forcing only when it is semiproper, it can be arranged that often
enough sealing forcings are semiproper that in the end, NSω1

is saturated.

1.4 Iterations of Stationary-Set-Preserving Forcing

So what are the limits of iteration theorems? We have

c.c.cñ properñ semiproperñ stationary set preserving.

and none of the implications can be reversed. However, while there are always
non-c.c.c. proper forcings and non-proper semiproper forcings, consistently the
class of semiproper forcings can agree with the class of stationary set preserving
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forcing, so these two notions are quite close. Nonetheless, there is no analogue of
Theorem 1.7 for stationary set preserving forcings. Consistently, a counterex-
ample can be given along the lines of the discussion of Theorem 1.8. In the
argument, the Woodin cardinal is used solely to verify that instances of seal-
ing forcing are semiproper often enough, an inaccessible cardinal would suffice
otherwise. But a Woodin cardinal is indeed required for the conclusion.

Theorem 1.9 (Steel, Jensen-Steel [JS13]). Suppose that there is a normal sat-
urated ideal on ω1. Then there is an inner model with a Woodin cardinal.

So suppose we work in an model without an inner model with a Woodin
cardinal, say V “ L, and there is an inaccessible cardinal. One could then try
to iterate instances of the Sealing forcing along a suitable bookkeeping up to
κ. In light of Theorem 1.9, this cannot result in a forcing extension in which
NSω1

is saturated. It follows that the iteration collapses ω1 at some point, yet
instances of the sealing forcing are always stationary set preserving.

A much more serious example is due to Shelah.

Theorem 1.10 (Shelah [She98]). There is a full support iteration

:“ xPn, 9Qm | n ď ω,m ă ωy

of stationary set preserving forcings so that Pω collapses ω1.

In fact, in the above example it does not matter at all which kind of limit is
taken, though we want to mention that countable support, RCS and full support
iterations agree on length ω iterations. The first forcing in Shelah’s example
is semiproper, but all subsequent forcings are not semiproper in the relevant
extension. Semiproper forcing is the correct regularity property for stationary
set preserving forcings in terms of iterations in the sense that

1. all semiproper forcings are stationary set preserving,

2. consistently, all stationary set preserving forcings are semiproper and

3. semiproper forcings can be iterated.

We will define the class of respectful forcing which, in a slightly weaker
sense, is a regularity property corresponding to the wider class of ω1-preserving
forcings.

1.5 Iterations of ω1-Preserving Forcings

When iterating ω1-preserving forcing which kill stationary sets there is another
threat to preserving ω1 in the limit as illustrated in the following folklore ex-
ample: For S Ď ω1 stationary, the club shooting forcing CSpSq is the canonical
forcing that shoots a club trough S. Conditions are closed countable sets c Ď S
ordered by d ďCSpSq c iff d X pmaxpcq ` 1q “ c. If G is generic for CSpSq then
Ť

G is a club contained in S, so ω1 ´ S is nonstationary in V rGs, but ω1 is not
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collapsed, that is ω
V rGs

1 “ ωV
1 . Now suppose xSn | n ă ωy be a partition of ω1

into stationary sets. Let P be a length ω iteration of the forcings CSpω1 ´ Snq

(it does not matter which limit we take at ω). Then P must collapse ω1 as in
V P, ωV

1 “
Ť

năω Sn is a countable union of nonstationary sets and hence must

be nonstationary itself. Clearly, this is only possible if ωV
1 ă ωV P

1 .
The issue here does not stem from a lack of regularity of the forcings we

used. In fact, for a stationary set S Ď ω1, the club shooting CSpSq is S-proper.
The problem is much more that at each step of the iteration, we come back to
V to kill an “old” stationary set. If we avoid the two presented issues of

1. using too many forcings lacking regularity properties and

2. killing old stationary sets

then we can prove an iteration theorem for ω1-preserving forcings. Without
defining respectful forcings, a special case of our main result can be stated as
follows.

Theorem 1.11. Suppose xPα, 9Qβ | α ď γ, β ă γy is a nice iteration of ω1-
preserving forcings so that

piq if α` 2 ă γ then ,Pα`2 “Strong Reflection Principle” and

piiq if α ă γ then 9Qα is forced to preserve old stationary sets, i.e.

@β ă α ,Pα`1
NSω1

X V r 9Gβs “ NSV r 9Gαs
ω1

X V r 9Gβs.

Then Pγ preserves ω1. Moreover, we have for all α` 1 ď γ

@β ď α ,Pγ NSω1 X V r 9Gβs “ NSV r 9Gβ`1s
ω1

X V r 9Gβs.

In fact we will prove something more general which allows, e.g. the preser-
vation of a Suslin tree on the side.

Here, the Strong Reflection Principle is the reflection principle isolated by
Todorčević.

Definition 1.12 (Todorčević, [Tod87]).

piq For θ an uncountable cardinal and S Ď rHθs
ω we define

SK “ tX P rHθs
ω | @Y P rHθs

ωpX Ď Y Ñ Y R Squ.

piiq The Strong Reflection Principle (SRP) holds if: Whenever θ ě ω2 is
regular, a P Hθ and S Ď rHθs

ω then S Y SK contains a continuous in-
creasing ω1-chain of countable elementary substructures of Hθ containing
a, i.e. there is xXα | α ă ω1y so that for all α ă ω1

pX⃗.iq Xα ă Hθ is countable,

5



pX⃗.iiq Xα P S Y SK,

pX⃗.iiiq a P X0,

pX⃗.ivq Xα P Xα`1 and

pX⃗.vq if α P Lim then Xα “
Ť

βăα Xβ .

We note that SRP can always be forced assuming large cardinals.

Theorem 1.13 (Shelah). Suppose there is a supercompact cardinal. Then there
is a semiproper forcing P so that V P |ù SRP.

As a consequence of this, assuming large cardinals, Theorem 1.11 can be
understood as a strategic iteration theorem. Consider the following two player
game IGγ of length γ.

Player I 9Q0
9Q2 . . . 9Qω . . .

Player II 9Q1
9Q3 . . . 9Qω`1 . . .

Player I plays at all even stages, including limit steps. Player I and II
cooperate in this way to produce an RCS-iteration xPα, 9Qβ | α ď γ, β ă γy of
forcings which do not kill old stationary sets. Player II wins iff Pγ preserves
ω1.

Corollary 1.14. Suppose there is a proper class of supercompact cardinals.
Then for any γ, Player II has a winning strategy for the game IGγ .
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2 Notation

First, we fix some notation. We will extensively deal with countable elementary
substructures X ă Hθ for large regular θ. We will make frequent use of the
following notation:

Definition 2.1. Suppose X is any extensional set.

piq MX denotes the transitive isomorph of X.

piiq πX : MX Ñ X denotes the inverse collapse.

piiiq δX :“ ω1 XX.
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In almost all cases, we will apply this definition to a countable elementary
substructure X ă Hθ for some uncountable cardinal θ. In some cases, the X
we care about lives in a generic extension of V , even though it is a substructure
of HV

θ . In that case, δX will always mean X X ωV
1 .

We will also sometimes make use of the following convention in order to
“unclutter” arguments.

Convention 2.2. If X ă Hθ is an elementary substructure and some object a
has been defined before and a P X then we denote π´1

X paq by ā.

We will make use of this notation only if it is unambiguous.

Definition 2.3. If X,Y are sets then X Ď Y holds just in case

piq X Ď Y and

piiq δX “ δY .

We use the following notions of clubs and stationarity on rHθs
ω:

Definition 2.4. Suppose A is an uncountable set.

piq rAsω is the set of countable subsets of A.

piiq C Ď rAsω is a club in rAsω if

aq for any X P rAsω there is a Y P C with X Ď Y and

bq if xYn | n ă ωy is a Ď-increasing sequence of sets in C then
Ť

năω Yn P

C.

piiiq S Ď rAsω is stationary in rAsω if S X C ‰ H for any club C in rAsω.

Next, we explain our notation for forcing iterations.

Definition 2.5. Suppose P “ xPα, 9Qβ | α ď γ, β ă γy is an iteration and
β ď γ. We consider elements of P as functions of domain (or length) γ.

piq If p P Pβ then lhppq “ β.

piiq If G is P-generic then Gβ denotes the restriction of G to Pβ , i.e.

Gβ “ tp æ β | p P Gu.

Moreover, 9Gβ is the canonical P-name for Gβ .

piiiq If Gβ is Pβ-generic then Pβ,γ denotes (by slight abuse of notation) the
remainder of the iteration, that is

Pβ,γ “ tp P Pγ | p æ β P Gβu.

9Pβ,γ denotes a name for Pβ,γ in V .
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pivq If G is P-generic and α ă β then Gα,β denotes the projection of G onto
Pα,β .

There will be a number of instances were we need a structure to satsify a
sufficiently large fragment of ZFC. For completeness, we make this precise.

Definition 2.6. Sufficiently much of ZFC is the fragment ZFC´
`“ω1 exists”.

Here, ZFC´ is ZFC without the powerset axiom and with the collection scheme
instead of the replacement scheme.

3 ♢pBq and ♢`pBq

We will introduce the combinatorial principle which will parameterize the main
iteration theorem. These are generalizations of the principles ♢pωăω

1 q and
♢`pωăω

1 q isolated by Woodin [Woo10] in his study of Qmax [Woo10, Section
6.2]. Most results in this Section are essentially due to Woodin and proven in
[Woo10, Section 6.2].

Definition 3.1. Suppose B Ď ω1 is a forcing.

piq We say that f guesses B-filters if f is a function

f : ω1 Ñ Hω1

and for all α ă ω1, fpαq is a BX α-filter1.

piiq Suppose θ ě ω2 is regular and X ă Hθ is an elementary substructure. We
say X is f -slim2 if

pX.iq X is countable,

pX.iiq f,B P X and

pX.iiiq fpδXq is BX δX -generic over MX .

Definition 3.2. Let B Ď ω1 be a forcing. ♢pBq states that there is a function
f so that

piq f guesses B-filters and

piiq for any b P B and regular θ ě ω2

tX ă Hθ | X is f -slim^b P fpδXqu

is stationary in rHθs
ω.

♢`pBq is the strengthening of ♢pBq where piiq is replaced by:

1We consider the empty set to be a filter.
2We use the adjective “slim” for the following reason: An f -slim X ă Hθ cannot be too

fat compared to its height below ω1, i.e. δX . If X Ď Y ă Hθ and Y is f -slim then X is f -slim
as well, but the converse can fail.
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piiq` For any regular θ ě ω2

tX ă Hθ | X is f -slimu

contains a club of rHθs
ω. Moreover, for any b P B

tα ă ω1 | b P fpαqu

is stationary.

We say that f witnesses ♢pBq, ♢`pBq respectively.

Remark 3.3. Observe that if f witnesses ♢pBq and B is separative then B can
be “read off” from f : We have B “

Ť

αăω1
fpαq and for b, c P B, b ďB c iff

whenever b P fpαq then c P fpαq as well. Thus, it is usually not necessary to
mention B.

We introduce some convenient shorthand notation.

Definition 3.4. If B Ď ω1 is a forcing, f guesses B-filters and b P B then

Sf
b :“ tα ă ω1 | b P fpαqu.

If f is clear from context we will sometimes omit the superscript f .

Note that if f witnesses ♢pBq, then Sf
b is stationary for all b P B. This

is made explicit for ♢`pBq. This is exactly the technical strengthening over
Woodin’s definition of ♢pωăω

1 q,♢`pωăω
1 q. Lemma 3.11 shows that this strength-

ening is natural. Moreover, this implies

♢pB‘ Cq ñ ♢pBq ^♢pCq

whenever B,C Ď ω1 are forcings and B ‘ C is the disjoint union of B and C
coded into a subset of ω1. This becomes relevant in Subsection ??. Nonetheless,
the basic theory of these principles is not changed by a lot.

Definition 3.5. If f witnesses ♢pBq and P is a forcing, we say that P preserves
f if whenever G is P-generic then f witnesses ♢pBq in V rGs.

We remark that if f witnesses ♢`pBq then “P preserves f” still only means
that f witnesses ♢pBq in V P.

Next, we define a variant of stationary sets related to a witness of ♢pBq.
Suppose θ ě ω2 is regular. Then S Ď ω1 is stationary iff for any club C Ď rHθs

ω,
there is some X P C with δX P S. f -stationarity results from restricting to f -
slim X ă Hθ only.

Definition 3.6. Suppose f guesses B-filters.

piq A subset S Ď ω1 is f -stationary iff whenever θ ě ω2 is regular and C Ď
rHθs

ω is club then there is some f -slim X P C with δX P S.
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piiq A forcing P preserves f -stationary sets iff any f -stationary set is still
f -stationary in V P.

We make use of f -stationarity only when f witnesses ♢pBq. However, with
the above definition it makes sense to talk about f -stationarity in a forcing
extension before we know that f has been preserved. Note that all f -stationary
sets are stationary, but the converse might fail, see Proposition ??. We will
later see that f -stationary sets are the correct replacement of stationary set in
our context. Most prominently this notion will be used in the definition of the
MM``-variant MM``

pfq we introduce in Subsection ??. It will be useful to
have an equivalent formulation of f -stationarity at hand.

Proposition 3.7. Suppose f guesses B-filters. The following are equivalent for
any set S Ď ω1:

piq S is f -stationary.

piiq Whenever xDα | α ă ω1y is a sequence of dense subsets of B, the set

tα P S | @β ă α fpαq XDβ ‰ Hu

is stationary.

Proposition 3.8. Suppose f guesses B-filters. The following are equivalent:

piq f witnesses ♢pBq.

piiq Sf
b is f -stationary for all b P B.

piiiq For any b P B and sequence xDα | α ă ω1y of dense subsets of B,

tα P Sf
b | @β ă α fpαq XDβ ‰ Hu

is stationary.

We mention a handy corollary.

Corollary 3.9. Suppose f witnesses ♢pBq. Any forcing preserving f -stationary
sets preserves f .

Proposition 3.10. Suppose f guesses B-filters. The following are equivalent:

piq f witnesses ♢`pBq.

piiq For any b P B, Sf
b is stationary and all stationary sets are f -stationary.

piiiq If D is dense in B then

tα ă ω1 | fpαq XD ‰ Hu

contains a club and for all b P B, Sf
b is stationary.
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pivq All countable X ă Hθ with f P X and θ ě ω2 regular are f -slim and

moreover for all b P B, Sf
b is stationary.

We will now give a natural equivalent formulation of ♢`pBq.
Witnesses of ♢`pBq are simply codes for regular embeddings3 of B into NS`

ω1
.

Lemma 3.11. The following are equivalent:

piq ♢`pBq.

piiq There is a regular embedding η : BÑ pPpω1q{NSω1
q`.

The argument above suggests the following definition.

Definition 3.12. Suppose f witnesses ♢pBq. We define

ηf : BÑ pPpω1q{NSω1q
`

by b ÞÑ rSf
b sNSω1

and call ηf the embedding associated to f .

We will now show that ♢pBq is consistent for any forcing B Ď ω1, even
simultaneously so for all such B. We will deal with the consistency of ♢`pBq in
the next section.

Proposition 3.13. Assume ♢. Then ♢pBq holds for any poset B Ď ω1.

Corollary 3.14. Suppose B Ď ω1 is a forcing. Then ♢pBq holds in V Addpω1,1q.

In a number of arguments, we will deal with f -slim X ă Hθ that become
thicker over time, i.e. at a later stage there will be some f -slim X Ď Y ă Hθ.

Definition 3.15. In the above case of X Ď Y , we denote the canonical elemen-
tary embedding from MX to MY by

µX,Y : MX ÑMY .

µX,Y is given by π´1
Y ˝ πX .

Usually, both X and Y will be f -slim. It is then possible to lift µX,Y .

Proposition 3.16. Suppose f guesses B-filters and X,Y ă Hθ are both f -slim
with X Ď Y . Then the lift of µX,Y to

µ`
X,Y : MX rfpδ

Xqs ÑMY rfpδ
Xqs

exists.

Proof. As δX “ δY , the critical point of µX,Y is ąδX (if it exists). As π´1
X pBq

is a forcing of size ďωMX
1 “ δX and fpδXq is generic over both MX and MY ,

the lift exists.

3Regular embeddings, also known as complete embeddings, are embeddings between partial
orders which preserve maximal antichains.
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We consider the above proposition simultaneously as a definition: From now
on µ`

X,Y will refer to this lift if it exists.

Definition 3.17. Suppose f witnesses♢pBq. NSf is the ideal of f -nonstationary
sets, that is

NSf “ tN Ď ω1 | N is not f -stationaryu.

Lemma 3.18. Suppose f witnesses ♢pBq. NSf is a normal uniform ideal.

3.1 Miyamoto’s theory of nice iterations

For all our intents and purposes, it does not matter in applications how the limit
our iterations look like as long as we can prove a preservation theorem about it.

We give a brief introduction to Miyamoto’s theory of nice iterations. These
iterations are an alternative to RCS-itertaions when dealing with the problem
described above. In the proof of the iteration theorem for (f -)proper forcings,
one constructs a generic condition q by induction as the limit of a sequence
xqn | n ă ωy. In case of (f -)semiproper forcings, the length of the iteration
may have uncountable cofinality in V but become ω-cofinal along the way. In
this case, a sequence xqn | n ă ωy with the desired properties cannot be in V .
The key insight to avoid this issue is that one should give up linearity of this
sequence and instead build a tree of conditions in the argument. Nice supports
follow the philosophy of form follows function, i.e. its definitions takes the shape
of the kind of arguments it is intended to be involved in. The conditions allowed
in a nice limit are represented by essentially the kind of trees that this inductive
nonlinear constructions we hinted at above produces.

Miyamoto works with a general notion of iteration. For our purposes, we
will simply define nice iterations by induction on the length. Successor steps
are defined as usual, that is if Pγ “ xPα, 9Qβ | α ď γ, β ă γy is a nice iteration

of length γ and 9Qγ is a Pγ-name for a forcing then xPα, 9Qβ | α ď γ ` 1, β ď γy

is a nice iteration of length γ ` 1 where Pγ`1 – Pγ ˚ 9Qγ .

Definition 3.19 (Miyamoto, [Miy02]). Let P⃗ “ xPα, 9Qα | α ă γy be a potential
nice iteration, that is

pP⃗.iq Pα is a nice iteration of length α for all α ă γ,

pP⃗.iiq Pα`1 – Pα ˚ 9Qα for all α` 1 ă γ and

pP⃗.iiiq Pβ æ α “ Pα for all α ď β ă γ.

A nested antichain in P⃗ is of the form

pT, xTn | n ă ωy, xsucnT | n ă ωyq

so that for all n ă ω the following hold4:

4Usually, we identify the nested antichain with T , its first component and write sucpaq

instead of sucnT paq if n, T are clear from context.
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piq T “
Ť

năω Tn.

piiq T0 “ ta0u for some a0 P
Ť

αăγ Pα.

piiiq Tn Ď
Ť

αăγ Pα and sucnT : Tn Ñ PpTn`1q.

pivq For a P Tn and b P sucnT paq, lhpaq ď lhpbq and b æ lhpaq ď a.

pvq For a P Tn and distinct b, b1 P sucnT paq, b æ lhpaq K b1 æ lhpaq.

pviq For a P Tn, tb æ lhpaq | b P sucnT paqu is a maximal antichain below a in
Plhpaq.

pviiq Tn`1 “
Ť

tsucnT paq | a P Tnu.

Abusing notation, we will usually identify T with

pT, xTn | n ă ωy, xsucnT | n ă ωyq.

If b P sucnT paq then we also write a “ prednT pbq. If β ă γ then p P Pβ is a mixture
of T up to β iff for all α ă β, p æ α forces

pp.iq ppαq “ a0pαq if α ă lhpa0q and a0 æ α P Gα,

pp.iiq ppαq “ bpαq if there are a, b P T , n ă ω with b P sucnT paq, lhpaq ď α ă lhpbq
and b æ α P Gα,

pp.iiiq ppαq “ 1 9Qα
if there is a sequence xan | n ă ωy with an`1 P sucnT panq,

lhpanq ď α and an P Glhpanq for all n ă ω.

If ξ ď γ is a limit, and q is a sequence of length ξ (may or may not be in Pξ), q
is pT, ξq-nice if for all β ă ξ, q æ β P Pβ is a mixture of T up to β.

We refer to [Miy02] for basic results on nested antichains and mixtures. We
go on and define nice limits.

Definition 3.20 (Miyamoto, [Miy02]). Suppose P⃗ “ xPα, 9Qα | α ă γy is a
potential nice iteration of limit length γ. Let P̄ denote the inverse limit along
P⃗. The nice limit of P⃗ is defined as

nicelimpP⃗q “ tp P P̄ | DT a nested antichain of P⃗ and p is pT, γq-niceu.

nicelimpP⃗q inherits the order from P̄.

Finally, if P⃗ “ xPα, 9Qα | α ă γy is a potential nice iteration then

xPα, 9Qβ | α ď γ, β ă γy

is a nice iteration of length γ where Pγ “ nicelimpP⃗q.

The fundamental property of nice iterations is:
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Fact 3.21 (Miyamoto,[Miy02]). Suppose P “ xPα, 9Qβ | α ď γ, β ă γy is a nice
iteration and T is a nested antichain in P. Then there is a mixture of T .

Definition 3.22 (Miyamoto,[Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a
nice iteration. If S, T are nested antichains in P then S= T iff for any n ă ω
and a P Sn there is b P Tn`1 with

lhpbq ď lhpaq and a æ lhpbq ď b.

Fact 3.23 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a nice
iteration of limit length γ. Suppose that

piq T is a nested antichain in P,

piiq p is a mixture of T and s P P,

piiiq r P T1,

pivq s ď r"p æ rlhprq, γq and

pvq A Ď γ is cofinal.

Then there is a nested antichain S in P with

paq s is a mixture of S,

pbq If S0 “ tcu then lhprq ď lhpcq P A and c æ lhprq ď r and

pcq S= T .

The following describes the tool we use to construct conditions.

Definition 3.24 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a
nice iteration of limit length γ. A fusion structure in P is

T, xppa,nq, T pa,nq | n ă ω, a P Tny

where

piq T is a nested antichain in P

and for all n ă ω and a P Tn

piiq T pa,nq is a nested antichain in P,

piiiq ppa,nq P P is a mixture of T pa,nq,

pivq a ď ppa,nq æ lhpaq and if T
pa,nq

0 “ tcu then lhpaq “ lhpcq and

pvq for any b P sucnT paq, T
pb,n`1q= T pa,nq, thus ppb,n`1q ď ppa,nq.

If q P P is a mixture of T then q is called a fusion of the fusion structure.
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Fact 3.25 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a nice
iteration of limit length γ. If q P P is a fusion of a fusion structure

T, xppa,nq, T pa,nq | n ă ω, a P Tny

and G is P-generic with q P G then the following holds in V rGs: There is a
sequence xan | n ă ωy so that for all n ă ω

piq a0 P T0,

piiq an P Glhpanq,

piiiq an`1 P suc
n
T panq and

pivq ppan,nq P G.

We mention one more convenient fact:

Fact 3.26 (Miyamoto, [Miy03]). Suppose κ is an inaccessible cardinal, P “
xPα, 9Qβ | α ď κ, β ă κy is a nice iteration so that

piq |Pα| ă κ for all α ă κ and

piiq P preserves ω1.

Then P is κ-c.c..

Miyamoto proves this for so called simple iterations of semiproper forcings.
The proof works just as well for nice iterations of semiproper forcings and finally
the proof can be made to work with assuming only P preserves ω1 instead of P
being a semiproper iteration.

4 The Iteration Theorem

The full main theorem we are going to prove is the following.

Theorem 4.1. Suppose f witnesses ♢pBq and P “ xPα, 9Qβ | α ď γ, β ă γy is
a nice iteration of f -preserving forcings. Suppose that

pP.iq ,Pα`2
SRP for all α` 2 ď γ and

pP.iiq ,Pα
“ 9Qα preserves f -stationary sets from

Ť

βăα V r 9Gβs.

Then P preserves f .

Note that if B is the trivial forcing t1u and we take f to be the witness of
♢`pBq with fpαq “ t1u for all 0 ă α ă ω1, then we recover the special case
mentioned in the introduction.

So what is the basic idea? For the moment, let us assume that f is the
trivial witness of ♢pt1uq above for simplicity. As always, we want to imitate
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the argument of the mother of all iteration theorems, the iteration theorem for
proper forcings. Suppose we have a full support iteration

P “ xPn, 9Qm | n ď ω,m ă ωy

and for the moment assume only that

,Pn
“ 9Qn preserves ω1”.

We try to motivate some additional reasonable constraints imply P to be ω1-
preserving. For the moment, we try to consider Shelah’s argument as a game:
In the beginning there some countable X ă Hθ as well as p0 P X X P. The ar-
gument proceeds as follows: In round n, we have already constructed a pX,Pnq-
semigeneric condition qn P P æ n and have

qn , 9pn æ n P 9Gn X X̌r 9Gns.

Next, our adversary hits us with a dense subset D Ď P in X and we must find
9pn`1 P V

Pn and some pX,Pn`1q-semigeneric qn`1 with qn`1 æ n “ qn and5

qn`1 , 9pn`1 P Ď ^ pn`1 æ n` 1 P 9Gn`1 X X̌r 9Gn`1s.

Our job is to survive this game for ω-many steps. If we have a winning strategy
then we can find a pX,Pq-semigeneric condition, so in particular P preserves ω1.

Destroying stationarity makes it significantly more difficult to survive the
above game: Suppose for example that

p0p0q , Š P NSω1

for some S P X with δX P S. Then there is no hope of finding a pX,P1q-
semigeneric condition q with q ď p0 æ 1. Hence, we must already be careful
with what X we start the game. This leads us to the following definitions.

Definition 4.2. Suppose θ is sufficiently large and regular, X ă Hθ is count-
able. If I is an ideal on ω1, we say that X respects I if for all A P I X X we
have δX R A.

Note that all countable X ă Hθ respect NSω1
and countable Y ă Hθ with

f P Y respects NSf if and only if Y is f -slim.

Definition 4.3. Suppose P is a forcing and 9I P V P is a name for an ideal on
ω1. For p in P, we denote the partial evaluation of 9I by p by

9Ip :“ tS Ď ω1 | p , Š P 9Iu.

Back to the discussion, we need to start with an X so that X respects 9Ip0æ1

where 9I is a name for the nonstationary ideal. This gives us a shot at getting
past the first round. Luckily, there are enough of these X.

5Here, we consider 9pn also as a Pn`1-name.
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Definition 4.4. Let A be an uncountable set with ω1 Ď A and I a normal
uniform ideal on ω1. Then S Ď rAsω is projective I-positive if for any S P I`

the set
tX P S | δX P Su

is stationary in rAsω.

Proposition 4.5. Suppose θ is sufficiently large and regular. Let I be a normal
uniform ideal on ω1. Then

S “ tX P rHθs
ω | X ă Hθ respects Iu

is projective I-positive.

Proof. Let C be a club in rHθs
ω and assume that all elements of C are elementary

substructures of Hθ and contain I as an element. Let

X⃗ :“ xXα | α ă ω1y

be a continuous increasing chain of elements in C. Let X :“
Ť

αăω1
Xα and let

A⃗ :“ xAα | α ă ω1y

be an enumeration of X X I. Let C Ď ω1 be the set of α so that

pC.iq δXα “ α and

pC.iiq A⃗ æ α is an enumeration of Xα X I

and note that C is club. Let A “ ▽αăω1
Iα. As I is normal, A P I. Then C´A

is a complement of a set in I and for any α P C ´A we have

δXα “ α R Iβ

for all β ă α. Hence Xα P S X C.

Of course, the problem continues. What if we have found a suitable q1
and now we work in V rG1s with q1 P G1. At the very least, we need that
XrG1s respects 9Ip0ær1,2q, where 9I is now a P1,2-name for the nonstationary ideal.
Ensuring this is a matter of being able to pick the right q1 to begin with. This
motivates the following class of forcings.

Definition 4.6. We say that a forcing P is respectful if P preserves ω1 and the
following is true: Whenever

• θ is sufficiently large and regular,

• X ă Hθ is countable with P P X,

• 9I P X is a P-name for a normal uniform ideal and

• p P PXX
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then exactly one of the following holds:

pRes.iq Either there is some pX,Pq-semigeneric q ď p so that

q , “X̌r 9Gs respects 9I”

or

pRes.iiq X does not respect 9Ip.

Roughly, this condition states that we can find a P-generic filter G with
p P G so that X Ď XrGs respects 9IG as long as there is no obvious obstruction
to it.

Remark 4.7. If P is respectful and preserves stationary sets then P is semiproper.
However, the converse is not true in general. Similarly, a respectful f -stationary
set preserving forcing is f -semiproper, which follows from plugging in a name
for NSf as 9I in the definition of respectfulness.

We require6 now that

,Pn
“ 9Qn is respectful”

for all n ă ω. We then aim to make sure (assuming 9pn`1 is already defined) to
find qn`1 in round n so that in addition to the prior constraints,

qn`1 , “X̌r 9Gn`1s respects 9I”

where 9I is a Pn`1 name for the ideal of sets forced to be nonstationary by
9pn`1pn` 1q. Consider 9I as a Pn-name :I for a 9Qn-name. By respectfulness, this
reduces to avoiding an instance of the “bad case” pRes.iiq, namely we should
make sure that whenever Gn is Pn-generic with qn P Gn then

XrGns respects
´

:IGn

¯pn`1pn`1q

where pn`1 “ 9p
Gn`1

n`1 . he next key insight is that this reduces to

“XrGns respects J :“ tS Ď ω1 | pn`1pnq , Š P NSω1
u”

which we have (almost)7 already justified inductively, assuming 9Qn`1 only kills
new stationary sets: Our final requirement8 is that

,Pn`1
“ 9Qn`1 preserves stationary sets which are in V r 9Gns”

6This excludes the first counterexample due to Shelah, but not yet all the counterexamples
of the second kind.

7We made sure of this if pn`1 is replaced by pn in the definition of J , we ignore this small
issue for now.

8It is readily seen that this eliminates the counterexamples of the second kind.
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for all n ă ω. The point is that trivially
´

:IGn

¯pn`1pnq

only contains sets in

V rGns, so all such sets will be preserved by 9Qn`1. The sets that are killed are

then already killed in the extension by 9QGn
n .

Modulo some details we have shown the following.

Theorem 4.8. Suppose P “ xPn, 9Qm | n ď ω,m ă ωy is a full support iteration
so that

pP.iq ,Pn
9Qn is respectful and

pP.iiq ,Pn`1
9Qn`1 preserves stationary sets which are in V r 9Gns”

for all n ă ω. Then P does not collapse ω1.

Two issues arise when generalizing this to longer iterations. The first issue is
the old problem that new relevant indices may appear along the iteration in the
argument, which we deal with by using nice supports. The second problem is
that it seemingly no longer suffices that each iterand individually is respectful.
For longer iterations, say of length γ, the argument then requires that

,α “ 9Pα,β is respectful”

for sufficiently many α ă β ă γ. This is problematic as we will not prove an
iteration theorem of any kind for respectful forcings9. This is where we take out
the sledgehammer.

Definition 4.9. p;q holds if and only if all ω1-preserving forcings are respectful.

Lemma 4.10. SRP implies p;q.

Proof. Let P, θ, 9I, p be as Definition 4.6. It is easy to see that pRes.iq and
pRes.iiq cannot hold simultaneously. It is thus enough to prove that one of
them holds. Let λ be regular, 2|P| ă λ ă θ and λ P X and consider the set

S “ tY P rHλs
ω |Y ă Hλ ^␣pDq ď p q is

pY,Pq-semigeneric and q , “Y̌ r 9Gs respects 9I”qu.

By SRP, there is a continuous increasing elementary chain

Y⃗ “ xYα | α ă ω1y

so that

pY⃗ .iq P, p, 9I P Y0 and

pY⃗ .iiq for all α ă ω1, either Yα P S or there is no Yα Ď Z ă Hθ with Z P S.
9Indeed it seems that no useful iteration theorem for respectful forcings is provable in ZFC,

see Subsection ??.
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Let S “ tα ă ω1 | Yα P Su.

Claim 4.11. p , Š P 9I.

Proof. Let G be generic with p P G and let I “ 9IG. Assume toward a contradic-
tion that S is I-positive. Note that xYαrGs | α ă ω1y is a continuous increasing

sequence of elementary substructure of H
V rGs

θ . Hence there is a club C of α so
that for α P C

δYα “ δYαrGs “ α

and thus there is a pYα,Pq-semigeneric condition q ď p, q P G. Hence by
definition of S, for any α P S X C, we may find some Nα P I X YαrGs so that
δYα P Nα. By normality of I, there is some I-positive T Ď S X C and some N
so that N “ Nα for all α P T . But then for α P T , we have

α “ δY P N

so that T Ď N . But N P I, contradiction.

Thus if δX P S, then S witnesses pRes.iiq to hold. Otherwise, δX R S.

Note that δYδX “ δX as Y⃗ P X. We find that YδX Ď X X Hλ ă Hλ. Thus,
X XHλ R S, so that there must be some q ď p that is pX XHλ,Pq-semigeneric
and

q , “p ­X XHλqr 9Gs respects 9I”.

This q witnesses that pRes.iq holds.

We will get around this second issue by forcing SRP often along the iteration.
Remember that what we really care about is preserving a witness f of ♢pBq
along an iteration of f -preserving forcings, so fix such an f now. It will be quite
convenient to introduce some short hand notation.

Definition 4.12. Suppose P is a forcing and p P P. Then we let IPp denote 9Ip

where 9I is a P-name for NSf . That is

IPp :“ tS Ď ω1 | p , Š P NSfu.

Definition 4.13. Suppose f witnesses ♢pBq. An f -ideal is an ideal I on ω1 so
that

piq whenever S P I` and xDi | i ă ω1y is a sequence of dense subsets of B,
then

tα P S | @β ă α fpαq XDβ ‰ Hu P I
`

piiq and Sf
b P I

` for all b P B.

Recall that NSf is clearly an f -ideal and it is normal and uniform by Lemma
3.18.
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Proposition 4.14. Suppose P is a forcing that preserves f and p P P. Then
IPp is a normal uniform f -ideal.

We leave the proof to the reader. The next Lemma gives us a criterion that
guarantees the relevant witness f of ♢pBq to be preserved. We first introduce
the notion of a f -semigeneric condition.

Definition 4.15. Suppose f witnesses ♢pBq, P is a forcing, θ is sufficiently
large and X ă Hθ is a f -slim elementary substructure of Hθ with P P X. A
condition p P P is called pX,P, fq-semigeneric if p is pX,Pq-semigeneric and

p , X̌r 9Gs is f̌ -slim.

Lemma 4.16. Suppose f witnesses ♢pBq and P is a forcing with the following
property: For any sufficiently large regular θ and p P P there is a normal uniform
f -ideal I so that

tX P rHθs
ω | X ă Hθ ^ P, p P X ^ Dq ď p q is pX,P, fq-semigenericu

is projective I-positive. Then P preserves f .

Proof. Assume p P P, θ is sufficiently large and regular. Let b P B,

9⃗D “ x 9Dα | α ă ω1y

be a sequence of P-names for dense subsets of B and 9C a P-name for a club in
ω1. We will find q ď p so that

q , Dα P Sf̌
b X

9C@β ă α f̌pαq X 9Dβ ‰ H.

By our assumption, there is some normal uniform f -ideal I so that

tX P rHθs
ω | X ă Hθ ^ P, p P X ^ Dq ď p q is pX,P, fq-semigenericu

is projective I-positive. It follows that we can find some countable X ă Hθ so
that

pX.iq P, p, 9⃗D, 9C P X as well as

pX.iiq b P fpδXq

and some q ď p that is pX,P, fq-semigeneric. If G is then any P-generic with
q P G, we have

X Ď XrGs is f -slim

and hence δX P 9CG as well as

@β ă δX fpδXq X 9DG
β ‰ H.
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We also need to resolve a small issue that we glossed over in the sketch of a
proof of Theorem 4.8.

Lemma 4.17. Suppose f witnesses ♢pBq. Further assume that

• P is a respectful, f -preserving forcing and p P P,

• θ is sufficiently large and regular,

• X ă Hθ is countable, respects IPp and P, p P X and

• MX rfpδ
Xqs |ù “D is dense below π´1

X ppq in π´1
X pPq”.

Then there are Y, q with

piq X Ď Y ă Hθ is countable,

piiq q ď p,

piiiq Y respects IPq , in particular Y is f -slim and

pivq q P πY rµ
`
X,Y pDqs.

Proof. We may assume that X is an elementary substructure of

H :“ pHθ; P,⊴q

where ⊴ is a wellorder of Hθ. As P is respectful and X respects IPp , there is a
pX,Pq-semigeneric condition r ď p so that

r , “X̌r 9Gs respects NSf̌”

i.e. r is pX,P, fq-semigeneric. Let G be P-generic with r P G. Then XrGs is
f -slim. Let Z “ XrGs X V , note that µ`

X,Z exists by Proposition 3.16. Now
there is thus some q ď p, q P G with

q P πZrµ
`
X,ZpDqs.

Finally, note that q and Y :“ HullHpX Y tquq have the desired properties.

Proof of Theorem 4.1. Let P “ xPα, 9Qβ | α ď γ, β ă γy be an iteration of
f -preserving forcings which preserve old f -stationary sets and forces SRP at
successor steps. We may assume inductively that Pα preserves f for all α ă γ.
The successor step is trivial, so we may restrict to γ P Lim. Note that we may
further assume that p;q holds in V , otherwise we could work in V P1 . Let p P P
and let I :“ IQ0

pp0q
. I is a normal uniform f -ideal by Proposition 4.14. Now let θ

be sufficiently large and regular, X ă Hθ countable with

pX.iq P, p, f P X and

pX.iiq X respects I.
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By Proposition 4.5 and Lemma 4.16, it suffices to find q ď p that is pX,P, fq-
semigeneric. Note that X is f -slim as I is a f -ideal. Let

h : ω Ñ ω ˆ ω

be a surjection with i ď n whenever hpnq “ pi, jq.
Let δ denote δX . We will construct a fusion structure

T, xppa,nq, T pa,nq | a P Tn, n ă ωy

in P as well as names
B

9Xpa,nq, 9Zpa,nq
´

9D
pa,nq

j

¯

jăω
, 9Ipa,nq | a P Tn, n ă ω

F

so that for any n ă ω and a P Tn

pF.iq T0 “ t1u, p
p1,0q “ p, 9Xp1,0q “ X̌, 9Ip1,0q “ Ǐ,

pF.iiq T p1,0q P X is a nested antichain that p is a mixture of with T
p1,0q

0 “ t1u,

pF.iiiq a ,lhpaq
9Zpa,nq “ 9Xpa,nq X V ,

pF.ivq
´

9D
pa,nq

j

¯

jăω
is forced by a to be an enumeration of all dense subsets of

π´1
9Zpa,nq

pP̌q in

M 9Zpa,nq

”

}fpδq
ı

,

pF.vq a ď ppa,nq æ lhpaq,

pF.viq lhpaq is not a limit ordinal,

pF.viiq a ,lhpaq p̌
pa,nq, Ť pa,nq, 9Glhpaq P

9Xpa,nq,

pF.viiiq a ,lhpaq
9Ipa,nq “ I

9Qlhpaq

p̌pa,nqplhpaqq
and

pF.ixq a , “X̌ Ď 9Xpa,nq ă H
V r 9Glhpaqs

θ̌
is countable and respects 9Ipa,nq”.

Moreover, for any b P sucnT paq

pF.xq b æ lhpaq ,lhpaq “p̌
pb,n`1q, Ť pb,n`1q P 9Xpa,nq, in particular lhpb̌q,Plhpǎq,lhpb̌q P

9Xpa,nq”,

pF.xiq b ,lhpbq
9Xpa,nqr 9Glhpaq,lhpbqs Ď 9Xpb,n`1q and

pF.xiiq if hpnq “ pi, jq and c “ prediT pbq then

b ,lhpnq p̌
pb,n`1q P π 9Xpa,nqr 9µ`

c,ap
9D

pc,iq
j qs.
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Here, µ`
c,a denotes10

µ`
9Zpc,iq, 9Zpa,nq

: M 9Zpc,iqrf̌pδ̌qs ÑM 9Zpa,nqrf̌pδ̌qs.

We define all objects by induction on n ă ω.

T0 “ t1u, p
p1,0q, T p1,0q, 9Xp1,0q, 9Zp1,0q

´

9D
p1,0q

j

¯

jăω
, 9Ip1,0q

are given by pF.iq-pF.ivq and pF.viiiq. Suppose we have already defined

Tn,

B

ppa,nq, T pa,nq, 9Xpa,nq, 9Zpa,nq,
´

9D
pa,nq

j

¯

jăω
| a P Tn

F

and we will further construct

Tn`1,

B

ppb,n`1q, T pb,n`1q, 9Xpb,n`1q, 9Zpb,n`1q,
´

9D
pb,n`1q

j

¯

jăω
| b P Tn`1

F

.

Fix a P Tn. Let E be the set of all b so that

pE.iq b P Plhpbq and lhpbq ă γ,

pE.iiq lhpaq ď lhpbq and b æ lhpaq ď a,

and there are a nested antichain S in P, s P P and names 9X, 9I with

pE.iiiq S= T pa,nq,

pE.ivq s ď ppa,nq is a mixture of S,

pE.vq if hpnq “ pi, jq and c “ prediT paq then

b ,lhpbq š P π 9Zpa,nqr 9µ`
c,ap

9D
pc,iq
j qs,

pE.viq lhpbq is not a limit ordinal,

pE.viiq b æ lhpaq ,lhpaq š, Š P 9X,

pE.viiiq b ,lhpbq š æ lhpbq P 9Glhpbq,

pE.ixq b ,lhpbq
9Xpa,nq Ď 9Xpa,nqr 9Glhpaq,lhpbqs Ď 9X ă H

V r 9Glhpb̌qs

θ̌
,

pE.xq b ,lhpbq “ 9X is countable and respects 9I”,

pE.xiq b ,lhpbq
9I “ I

9Qlhpbq

šplhpbqq
and

pE.xiiq if S0 “ tc0u then lhpbq “ lhpc0q and b ď c0.

10There is some slight abuse of notation here in an effort to improve readability.
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Claim 4.18. E æ lhpaq :“ tb æ lhpaq | b P Eu is dense in Plhpaq.

Proof. Let a1 ď a and let G be Plhpaq-generic with a1 P G. By pF.vq, ppa,nq æ

lhpaq P G. Work in V rGs. Let hpnq “ pi, jq and c “ prediT paq. Let

Xpc,iq “

´

9Xpc,iq
¯Glhpcq

and Xpa,nq “

´

9Xpa,nq
¯G

as well as Zpc,iq “ Xpc,iq X V , Zpa,nq “ Xpa,nq X V . Find r P T
pa,nq

1 with
r æ lhpaq P G. As ppa,nq is a mixture of T pa,nq, we have

r ď ppa,nq æ lhprq.

Let r̂ “ r"ppa,nq æ rlhprq, γq. Note that r̂ P Xpa,nq, as

ppa,nq, T pa,nq, G P Xpa,nq

by pF.viiq. Moreover, r̂ æ lhpaq P G. Let Q :“ 9QG
lhpaq

and

D :“ µ`
c,app

9Di
jq

Glhpcqq PMZpa,nqrfpδqs ĎMXpa,nqrfpδqs.

Subclaim 4.19. There are s, Y with

piq Xpa,nq Ď Y ă H
V rGs

θ ,

piiq s ď ppa,nq,

piiiq s æ lhpaq P G,

pivq s P πY rµ
`

Xpa,nq,Y
pDqs and

pvq Y respects IQsplhpaqq
.

Proof. Let

D0 :“ tt P D | πXpa,nqptq ď ppa,nq ^ πXpa,nqptq æ lhpaq P Gu

and D1 be the projection of D0 onto π´1
Xpa,nqpQq. Observe that

MXpa,nqrfpδqs |ù “D1 is dense below π´1
Xpa,nqpp

pa,nqplhpaqq in π´1
Xpa,nqpQq”.

Applying Lemma 4.17 with (making use of the notation there)

• P “ 9Q,

• p “ ppa,nqplhpaqq,

• X “ Xpa,nq and

• D “ D0,
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we find some countable Y and some s0 with

piq Xpa,nq Ď Y ă H
V rGs

θ ,

piiq s0 ď ppa,nqplhpaqq,

piiiq s0 P πY rµ
`

Xpa,nq,Y
pD1qs and

pivq Y respects IQs0 .

By definition of D1, there is s ď ppa,nq with

ps.iq s æ lhpaq P G,

ps.iiq s P πY rµ
`

Xpa,nq,Y
pDqs and

ps.iiiq splhpaqq “ s0.

Y, s have the desired properties.

We can now apply Fact 3.23 in Y and get a nested antichain S P Xpa,nq with

pS.iq s is a mixture of S,

pS.iiq if S0 “ tdu then lhprq ď lhpdq, d æ lhprq ď r and lhpdq is not a limit ordinal
and

pS.iiiq S= T pa,nq.

Let 9X be a name for Y r 9Glhpaq,lhpdqs and 9I a name for I
9Qlhpdq

splhpdqq
.

Subclaim 4.20. In V rGs, we have

9Isælhpdq “ I
Plhpaq,lhpdq`1

sælhpdq`1 “ IQsplhpaqq
.

Proof. The first equality is simply by definition of 9I. The second equality follows
as we preserve old f -stationary sets along the iteration and since Plhpaq,lhpdq`1

preserves f by our inductive hypothesis.

It follows that
Y respects 9Isælhpdq.

As lhpaq is not a limit ordinal, p;q holds in V rGs, so that Plhpaq,lhpdq is respectful
by Lemma 4.10. Thus there is b P Plhpaq,lhpdq, b ď s æ lhpdq so that

b ,lhpbq “Y̌ Ď Y̌ r 9Gs respects 9I”.

Since b æ lhpaq P G, we may assume further that b æ lhpaq ď a1. s, S, 9X, 9I
witness b P E.
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To define Tn`1, fix a maximal antichain A Ď E æ lhpaq, and for any e P A
choose be P E with be æ lhpaq “ e. We set sucnT paq “ tbe | e P Au. For any

b P sucnT paq, let S, s,
9X, 9I witness b P E. We then let

• ppb,n`1q “ s, T pb,n`1q “ S, 9Xpb,n`1q “ 9X, 9Ipb,n`1q “ 9I,

• 9Zpb,n`1q be a name for 9X X V and

•
´

9D
pb,n`1q

j

¯

jăω
be a sequence of names that are forced by b to enumerate

all dense subsets of π´1
9Zpb,n`1q

pPq in M 9Zpb,n`1q

”

}fpδq
ı

.

This finishes the construction.

By Fact 3.23, there is a mixture q of T . Let G be P-generic with q P T . By
Fact 3.25, in V rGs there is a sequence xan | n ă ωy so that for all n ă ω

p⃗a.iq a0 “ q0,

p⃗a.iiq an`1 P suc
n
T panq and

p⃗a.iiiq ppan,nq P G.

For n ă ω, let αn “ lhpanq ă γ. For n ă ω we let

Xn :“
´

9Xpan,nq
¯Gαn

and also
Xω “

ď

năω

XnrGαn,γs.

Further, for n ď ω let

Zn :“ Xn X V and πn :“ πZn
.

We remark that
XnrGαn,γs Ď XmrGαm,γs ă H

V rGs

θ

follows inductively from pF.viiq and pF.ixq for n ď m ă ω so that Xω ă H
V rGs

θ .
We aim to prove that

X Ď Xω is f -slim.

In fact, we will show

pZω.iq X Ď Zω,

pZω.iiq Zω is f -slim and

pZω.iiiq π´1
ω rGs is generic over Mωrfpδqs,

which implies the above.

Claim 4.21. Zω “
Ť

năω Zn.
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Proof. “ Ě ” is trivial, so we show “ Ď ”. Let x P Zω and find i ă ω with
x P XirGαi,γs. Note that there is 9x P Zi a P-name for a set in V with x “ 9xG.
Let D P Mi be the dense set of conditions in π´1

n pPq deciding π´1
i p 9xq. There

must be some j ă ω so that

´

9D
pai,iq
j

¯G

“ D.

Now find n with hpnq “ pi, jq. We then have

ppan`1,n`1q P πnrµ
`
ai,an`1

pDqs

by pF.xiiq. We have that ppan`1,n`1q decides 9x to be some z P Xn, and as
ppan`1,n`1q P G,

x “ 9xG “ z P Xn X V “ Zn.

As X Ď Xn is f -slim by pF.ixq for n ă ω, pZω.iq and pZω.iiq follow at once.
It remains to show pZω.iiiq.
As Zω is f -slim and by Claim 4.21, we have that

xMωrfpδqs, µ
`
n,ω | n ă ωy “ lim

ÝÑ
xMnrfpδqs, µ

`
n,m | n ď m ă ωy

for some pµ`
n,ωqnăω. Let E P Mωrfpδqs be dense in π´1

ω pPq. Then for some

i, j ă ω, E “ µ`
i,ωpDq for

D :“
´

9D
pai,iq
j

¯G

.

Find n with hpnq “ pi, jq. By pF.xiiq,

ppan`1,n`1q P πnrµ
`
i,npDqs Ď πωrµ

`
i,ωpDqs “ πωrEs.

As ppan`1,n`1q P G, we have EXπ´1
ω rGs ‰ H, which is what we had to show.

5 f-Proper and f-Semiproper Forcings

Suppose f witnesses ♢pBq. We already used the term pX,P, fq-semigeneric
which suggests there should be a notion of f -semiproperness. Indeed there is
and it behaves roughly like semiproperness. In fact, there are several other
classes associated to f which mirror well-known forcing classes.

Definition 5.1. A forcing P is f -complete if for any sufficiently large regular
θ, for any f -slim X ă Hθ with P P X and any g Ď P̄ generic over MX rfpδ

Xqs,
there is a some p P P with

p , 9GX X̌ “ πX rǧs.
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Definition 5.2. A forcing P is f -proper if for any sufficiently large regular θ,
any f -slim X ă Hθ with P P X and any p P X X P, there is a pX,P, fq-generic
condition q ď p, that is a condition q with

q , 9GX X̌ is generic over X̌ ^ X̌r 9Gs is f̌ -slim”.

Definition 5.3. A forcing P is f -semiproper if for any sufficiently large regular
θ, any f -slim X ă Hθ with P P X and any p P X X P, there is a pX,P, fq-
semigeneric condition q ď p.

The following graphic collects all provable relations between the relevant
forcing classes.

Classical ♢-Forcing

complete(« σ-closed)

proper

semiproper

stationary set preserving

ω1-preserving

f -complete

f -proper

f -semiproper

f -stationary set preserving

f -preserving

We also get the expected iteration theorems.

Theorem 5.4. Any countable support iteration of f -complete (resp. f -proper)
forcings is f -complete (resp. f -proper).

Theorem 5.5. Any nice iteration of f -semiproper forcings is f -semiproper.

The proof is much easier than that of Theorem 4.1, so we omit it.
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