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Abstract

We prove an iteration theorem which guarantees for a wide class of nice
iterations of wi-preserving forcings that w1 is not collapse, at the price of
needing large cardinals to burn as fuel. More precisely, we show that a
nice iteration of wi-preserving forcings which force SRP at successor steps
and preserves old stationary sets does not collapse wi.

1 Introduction

The method of iterated forcing is a powerful yet flexible tool in establishing
independence results. Say, the goal is to produce a forcing extension of the
universe with a specific property. Frequently, it is the case that it is much easier
to find a forcing P, which solves this problem for “a single instance” or ”all
instances in V7, but may add new “unresolved instances” at the same time.
One can then hope to iterate P up to some closure point, usually a sufficiently
large regular cardinal k so that the whole iteration is k-c.c., so that in end all
instances have been dealt with and the full desired property holds. This can
only work if the iteration in question preserves the progress of earlier stages up
until the end. Theorems which guarantee such a preservation are often called
iteration theorems. If the property in question is one about H,,, then at the
very least it is required that w; is preserved or maybe the somewhat stronger
property that stationary sets are preserved. We give some examples.

1.1 Iterations of c.c.c. Forcings

The earliest iteration theorem is due to Solovay-Tennenbaum.

Theorem 1.1 (Solovay-Tennenbaum, [ST71]). Suppose <PQ,Q5 la<y,8<vy)
is a finite support iteration of c.c.c. forcings. Then P, is c.c.c..
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A Suslin tree is a tree of height w; with no uncountable chains and antichains.
Forcing with a Suslin tree T (with the reverse order) is a c.c.c. forcing and in
the forcing extension T is no longer Suslin. Not being a Suslin tree is a X (wy)-
property and so is upwards absolute to forcing extensions preserving wy. As
c.c.c. forcings preserve wi, iterating forcing with Suslin trees produces models
in which there are no Suslin tree and hence in which Suslin’s hypothesis holds.

Theorem 1.2 (Solovay-Tennenbaum, [ST71]). There is a c.c.c. forcing P so
that V¥ |= “Suslin’s hypothesis” .

1.2 Iterations of Proper Forcings

The class of forcings with the countable chain condition is rather small, so not
suitable in all cases. Shelah discovered the beautiful notion of proper forcing
which is large enough to include both c.c.c. and o-closed forcing, but nonetheless
all such forcings preserve ws.

Definition 1.3 (Shelah,[She98]). A forcing P is proper if for any large enough
regular 6 and any countable X < Hy with P € X, whenever p € P n X then
there is some ¢ < p with

qIF X A Ord = X[G] n Ord.

Shelah proved a famous iteration theorem for proper forcings. Though, as
finite support iterations of non-c.c.c. forcings usually collapse w1, the preferred
support in this instance is countable support.

Theorem 1.4 (Shelah,[She98]). Suppose (Po, Qs | o < 7, 8 < ) is a countable
support iteration of proper forcings. Then Py is proper.

An Aronszajn tree T is a tree of height w; with all countable levels and
no cofinal branch. For a tree T of height w; and A < wy, let T [ A denote
the tree with nodes of a level « of T' with a € A and the tree order inherited
from T. Two trees S,T of height w; are club-isomorphic iff there is a club
C C wy sothat S | C =T | C as partial orders. Given two Aronszajn trees
S, T, Abraham-Shelah discovered a proper forcing P(7', S) which forces S and
T to be club-isomorphic. Note that the property “S,T are club-isomorphic” is
31 (S, T, w;) and thus upwards-absolute to any wi-preserving forcing extension.

Theorem 1.5 (Abraham-Shelah, [AS85]). There is a proper forcing P so that
VvF E “Any two Aronszajn trees S, T are club-isomorphic”.

We remark that Suslin’s hypothesis is an immediate consequence of “any
two Aronszajn trees are club-isomorphic”. There provably is an Aronszajn tree
which is special, i.e. the union of countably many antichains. Such a tree cannot
be club-isomorphic to a Suslin tree.



1.3 Iterations of Semiproper Forcings

Later, Shelah proved another iteration theorem for the even larger class of
semiproper forcings.

Definition 1.6 (Shelah, [She98]). A forcing P is semiproper if for any large
enough regular 6 and any countable X < Hy with P € X, whenever pe P n X
then there is some g < p with

¢ X nw = X[G] N wr.

From now on, we will denpte X: < YAXnw=Ynw by XEY. So for
example above we have ¢ - X = X[G].

Theorem 1.7 (Shelah). Suppose (P, QB | & < v, 8 <) is a RCS-iteration of
semiproper forcings. Then P, is semiproper.

Once again, the notion of support had to be changed. In the argument of
Theorem 1.7 it is crucial that if a < and G, is P,-generic over V, then the
tail iteration (Py¢, Qg | £ < 7,5 < ) is still a RCS-iteration. This can fail for
countable support iterations as, unlike proper forcings, semiproper forcings can
turn regular cardinals into cardinals of countable cofinality. In fact, Theorem
1.7 fails if RCS-support is replaced with countable support.

Suppose Z is an ideal on wy. An Z-antichain is a set A S P(w1) — Z so that
SnTeZforany S #T e A The ideal 7 is saturated if for all Z-antichains A
we have |A|<w;.

Theorem 1.8 (Shelah, see [Schll] for a proof). Assume there is a Woodin
cardinal. Then there is a semiproper forcing P so that

VP = “NS,, is saturated’.

If A is a maximal NS, -antichain then the sealing forcing S4 is a natural
stationary-set-preserving forcing which turns A into a maximal NS, -antichain
of size <w; and the statement “A is a maximal antichain of size <w;” turns
out to be 31 (A,w1). Now, an instance of the sealing forcing is not semiproper
in general, but Shelah shows that when iterating up to a Woodin cardinal and
using a sealing forcing only when it is semiproper, it can be arranged that often
enough sealing forcings are semiproper that in the end, NS,,, is saturated.

1.4 Tterations of Stationary-Set-Preserving Forcing
So what are the limits of iteration theorems? We have

c.c.c = proper = semiproper = stationary set preserving.

and none of the implications can be reversed. However, while there are always
non-c.c.c. proper forcings and non-proper semiproper forcings, consistently the
class of semiproper forcings can agree with the class of stationary set preserving



forcing, so these two notions are quite close. Nonetheless, there is no analogue of
Theorem 1.7 for stationary set preserving forcings. Consistently, a counterex-
ample can be given along the lines of the discussion of Theorem 1.8. In the
argument, the Woodin cardinal is used solely to verify that instances of seal-
ing forcing are semiproper often enough, an inaccessible cardinal would suffice
otherwise. But a Woodin cardinal is indeed required for the conclusion.

Theorem 1.9 (Steel, Jensen-Steel [JS13]). Suppose that there is a normal sat-
urated ideal on wy. Then there is an inner model with a Woodin cardinal.

So suppose we work in an model without an inner model with a Woodin
cardinal, say V' = L, and there is an inaccessible cardinal. One could then try
to iterate instances of the Sealing forcing along a suitable bookkeeping up to
k. In light of Theorem 1.9, this cannot result in a forcing extension in which
NS, is saturated. It follows that the iteration collapses w; at some point, yet
instances of the sealing forcing are always stationary set preserving.

A much more serious example is due to Shelah.

Theorem 1.10 (Shelah [She98]). There is a full support iteration
=Py, Q| n < w,m < w)
of stationary set preserving forcings so that P, collapses wy .

In fact, in the above example it does not matter at all which kind of limit is
taken, though we want to mention that countable support, RCS and full support
iterations agree on length w iterations. The first forcing in Shelah’s example
is semiproper, but all subsequent forcings are not semiproper in the relevant
extension. Semiproper forcing is the correct regularity property for stationary
set preserving forcings in terms of iterations in the sense that

1. all semiproper forcings are stationary set preserving,
2. consistently, all stationary set preserving forcings are semiproper and

3. semiproper forcings can be iterated.

We will define the class of respectful forcing which, in a slightly weaker
sense, is a regularity property corresponding to the wider class of wi-preserving
forcings.

1.5 Iterations of w;-Preserving Forcings

When iterating wy-preserving forcing which kill stationary sets there is another
threat to preserving wi in the limit as illustrated in the following folklore ex-
ample: For S € w; stationary, the club shooting forcing CS(.S) is the canonical
forcing that shoots a club trough S. Conditions are closed countable sets ¢ € S
ordered by d <cg(g) ¢ iff d n (max(c) + 1) = c¢. If G is generic for CS(S) then
|JG is a club contained in S, so wy — S is nonstationary in V[G], but w; is not



collapsed, that is wY[G] = w). Now suppose {S,, | n < w) be a partition of w;

into stationary sets. Let PP be a length w iteration of the forcings CS(wy — Sp)
(it does not matter which limit we take at w). Then P must collapse w; as in
VE wY =, -, Sn is a countable union of nonstationary sets and hence must
be nonstationary itself. Clearly, this is only possible if w}" < wYP.

The issue here does not stem from a lack of regularity of the forcings we
used. In fact, for a stationary set S < wy, the club shooting CS(.S) is S-proper.
The problem is much more that at each step of the iteration, we come back to
V to kill an “old” stationary set. If we avoid the two presented issues of

n<w

1. using too many forcings lacking regularity properties and
2. killing old stationary sets

then we can prove an iteration theorem for w;-preserving forcings. Without
defining respectful forcings, a special case of our main result can be stated as
follows.

Theorem 1.11. Suppose <]P’a,Qg | @ < 7,8 < 7) is a nice iteration of wq-
preserving forcings so that

(1) if a+2 < then I-p,,, “Strong Reflection Principle” and

(i1) if a <y then Qa 1s forced to preserve old stationary sets, i.e.
VB <a Ie,,, NSu, A V[Gs] = NSVIC] A V]G],
Then P, preserves wy. Moreover, we have for all a +1 < vy

VB <a e, NS, nV[Gs] = NSYIG] A V@),

In fact we will prove something more general which allows, e.g. the preser-
vation of a Suslin tree on the side.

Here, the Strong Reflection Principle is the reflection principle isolated by
Todorcevic.

Definition 1.12 (Todorcevié¢, [Tod87]).

(i) For 6 an uncountable cardinal and S € [Hyg]* we define

St ={X e[Hy]”|VY € [Hy]*(XTY - Y ¢5)}.

(#4) The Strong Reflection Principle (SRP) holds if: Whenever § > wq is
regular, a € Hy and S < [Hp]* then S U S* contains a continuous in-
creasing wi-chain of countable elementary substructures of Hy containing
a, i.e. there is (X, | @ < wy) so that for all & < w;

()?z) X, < Hy is countable,



(X.ii) XaeSuUSt,
(X .iii) a € Xo,

(X.iv) X, € Xosq and

(X.v) if @ € Lim then X, = Up<a X5-

We note that SRP can always be forced assuming large cardinals.

Theorem 1.13 (Shelah). Suppose there is a supercompact cardinal. Then there
is a semiproper forcing P so that V¥ |= SRP.

As a consequence of this, assuming large cardinals, Theorem 1.11 can be
understood as a strategic iteration theorem. Consider the following two player
game IG, of length .

Plager I | Q0| || |..la] ..
Player 11 H ‘Ql‘ ‘(@3‘ ‘QMH‘

Player I plays at all even stages, including limit steps. Player I and I
cooperate in this way to produce an RCS-iteration (P,,Qg | o < 7,8 < v) of
forcings which do not kill old stationary sets. Player I1 wins iff P, preserves
wi.

Corollary 1.14. Suppose there is a proper class of supercompact cardinals.
Then for any vy, Player II has a winning strategy for the game I1G,.
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2 Notation

First, we fix some notation. We will extensively deal with countable elementary
substructures X < Hp for large regular . We will make frequent use of the
following notation:

Definition 2.1. Suppose X is any extensional set.
(i) Mx denotes the transitive isomorph of X.
(1i) wx: Mx — X denotes the inverse collapse.

(iii) 0% = w; n X.



In almost all cases, we will apply this definition to a countable elementary
substructure X < Hy for some uncountable cardinal 6. In some cases, the X

we care about lives in a generic extension of V', even though it is a substructure

of HY . In that case, 6% will always mean X nw/ .

We will also sometimes make use of the following convention in order to
“unclutter” arguments.

Convention 2.2. If X < Hy is an elementary substructure and some object a
has been defined before and a € X then we denote 73" (a) by a.

We will make use of this notation only if it is unambiguous.
Definition 2.3. If X,Y are sets then X = Y holds just in case
(1) X <Y and
(ii) 6% = §Y.
We use the following notions of clubs and stationarity on [Hy]“:
Definition 2.4. Suppose A is an uncountable set.
(1) [A]“ is the set of countable subsets of A.
(15) C < [A]¥ is a club in [A] if

a) for any X € [A]“ thereis a Y € C with X € Y and
b) if (Y, | n < w) is a S-increasing sequence of sets in C then | J,,_ Yn €
C.

(7i1) S < [A]¥ is stationary in [A]¥ if S " C # & for any club C in [A]“.
Next, we explain our notation for forcing iterations.

Definition 2.5. Suppose P = <]P’Q,Q5 | @ < 7,8 < ) is an iteration and
B < . We consider elements of P as functions of domain (or length) ~.

(i) If p € Pg then lh(p) = 6.
(i7) If G is P-generic then Gg denotes the restriction of G to Pg, i.e.
Gs={p!BlpeG}
Moreover, Gﬁ is the canonical P-name for Gg.

(113) If Gg is Pg-generic then Pg . denotes (by slight abuse of notation) the
remainder of the iteration, that is

Pgy={pePy|p! BeGpl

Pg.., denotes a name for Pg., in V.



w) If G is P-generic and a < 8 then G 3 denotes the projection of G onto
B
I a,fB-

There will be a number of instances were we need a structure to satsify a
sufficiently large fragment of ZFC. For completeness, we make this precise.

Definition 2.6. Sufficiently much of ZFC is the fragment ZFC™ + “w; exists”.
Here, ZFC™ is ZFC without the powerset axiom and with the collection scheme
instead of the replacement scheme.

3 O(B) and $*(B)

We will introduce the combinatorial principle which will parameterize the main
iteration theorem. These are generalizations of the principles {(w) and
O (W) isolated by Woodin [Wool0] in his study of Quax [Wo0010, Section
6.2]. Most results in this Section are essentially due to Woodin and proven in
[Wo010, Section 6.2].

Definition 3.1. Suppose B < w; is a forcing.

(1) We say that f guesses B-filters if f is a function
f! w1 — le
and for all a < wy, f(a) is a B N a-filter!.

(i4) Suppose 6 = wy is regular and X < Hy is an elementary substructure. We
say X is f-slim? if

(X.4) X is countable,

(X.ii) f,Be X and
(X.iii) f(6%) is B n 6% -generic over Mx.

Definition 3.2. Let B < w; be a forcing. {>(B) states that there is a function
f so that

(i) f guesses B-filters and
(i¢) for any b e B and regular 6 > wo
(X < Hp | X is f-slimabe f(6%)}
is stationary in [Hpl|®.

$T(B) is the strengthening of $(B) where (i4) is replaced by:

1We consider the empty set to be a filter.

2We use the adjective “slim” for the following reason: An f-slim X < Hy cannot be too
fat compared to its height below w1, i.e. 6%X. If X T Y < Hy and Y is f-slim then X is f-slim
as well, but the converse can fail.



(#4)* For any regular 6 > wo
{X < Hp | X is f-slim}
contains a club of [Hy]¥. Moreover, for any b€ B

{a <wi|be f(a)}
is stationary.
We say that f witnesses $(B), &1 (B) respectively.

Remark 3.3. Observe that if f witnesses {(B) and B is separative then B can
be “read off” from f: We have B = |J,_,, f(a) and for b,c € B, b <g c iff
whenever b € f(«) then ¢ € f(«) as well. Thus, it is usually not necessary to
mention B.

‘We introduce some convenient shorthand notation.

Definition 3.4. If B € w; is a forcing, f guesses B-filters and b € B then
Sf = {a<w |be fla)}.
If f is clear from context we will sometimes omit the superscript f.

Note that if f witnesses {(B), then S,{ is stationary for all b € B. This
is made explicit for $F(B). This is exactly the technical strengthening over
Woodin’s definition of {(w;), $T (wi®). Lemma 3.11 shows that this strength-
ening is natural. Moreover, this implies

OCBBC) = &(B) A O(C)

whenever B, C < w; are forcings and B @ C is the disjoint union of B and C
coded into a subset of wy. This becomes relevant in Subsection ?7. Nonetheless,
the basic theory of these principles is not changed by a lot.

Definition 3.5. If f witnesses {(B) and P is a forcing, we say that P preserves
[ if whenever G is P-generic then f witnesses ¢(B) in V[G].

We remark that if f witnesses {*(B) then “P preserves f” still only means
that f witnesses (B) in VF.

Next, we define a variant of stationary sets related to a witness of $(B).
Suppose 6 > ws is regular. Then S € w is stationary iff for any club C < [Hy]¥,
there is some X € C with §%X € S. f-stationarity results from restricting to f-
slim X < Hy only.

Definition 3.6. Suppose f guesses B-filters.

(1) A subset S € wy is f-stationary iff whenever 6 > wo is regular and C <
[Hp]* is club then there is some f-slim X € C with 6% € S.



(i) A forcing P preserves f-stationary sets iff any f-stationary set is still
f-stationary in VF.

We make use of f-stationarity only when f witnesses {(B). However, with
the above definition it makes sense to talk about f-stationarity in a forcing
extension before we know that f has been preserved. Note that all f-stationary
sets are stationary, but the converse might fail, see Proposition ?7. We will
later see that f-stationary sets are the correct replacement of stationary set in
our context. Most prominently this notion will be used in the definition of the
MM **-variant MM* " (f) we introduce in Subsection ??. It will be useful to
have an equivalent formulation of f-stationarity at hand.

Proposition 3.7. Suppose f guesses B-filters. The following are equivalent for
any set S S wy:

(1) S is f-stationary.
(13) Whenever (D, | a < w1) is a sequence of dense subsets of B, the set
{aeS|V8 <a f(ao) nDg # T}
1§ stationary.
Proposition 3.8. Suppose f guesses B-filters. The following are equivalent:
(1) f witnesses $(B).
(i%) Sbf is f-stationary for all b € B.
(#it) For any b€ B and sequence (D, | @ < w1y of dense subsets of B,
{oe 8|6 <a f(a)n Ds # )
18 stationary.
We mention a handy corollary.

Corollary 3.9. Suppose f witnesses $(B). Any forcing preserving f-stationary
sets preserves f.

Proposition 3.10. Suppose f guesses B-filters. The following are equivalent:
(i) f witnesses O (B).
(ii) For any b e B, Sg is stationary and all stationary sets are f-stationary.
(ii7) If D is dense in B then
{a<wi| fla)n D # J}

contains a club and for all be B, Sg is stationary.

10



(iv) All countable X < Hy with f € X and 0 = wy regular are f-slim and
moreover for allbe B, Sl{ is stationary.

We will now give a natural equivalent formulation of $+(B).
Witnesses of T (BB) are simply codes for regular embeddings® of B into NS:;1 .

Lemma 3.11. The following are equivalent:
(i) O*(B).
(13) There is a regular embedding n: B — (P(w1)/NS,,,)".
The argument above suggests the following definition.

Definition 3.12. Suppose f witnesses {(B). We define
1y B — (P(wr)/NSu,)*

by b — [Sg]Ns and call ; the embedding associated to f.

w1

We will now show that {>(B) is consistent for any forcing B < w, even
simultaneously so for all such B. We will deal with the consistency of $*(B) in
the next section.

Proposition 3.13. Assume . Then $(B) holds for any poset B < wy.
Corollary 3.14. Suppose B € wy is a forcing. Then {(B) holds in VAdd@1.1)

In a number of arguments, we will deal with f-slim X < Hy that become
thicker over time, i.e. at a later stage there will be some f-slim X =Y < Hy.

Definition 3.15. In the above case of X = Y, we denote the canonical elemen-
tary embedding from Mx to My by

pxy: Mx — My.
px,y is given by 7T;1 oTx.
Usually, both X and Y will be f-slim. It is then possible to lift px y.

Proposition 3.16. Suppose f guesses B-filters and X,Y < Hy are both f-slim
with X Y. Then the lift of pxy to

Py Mx[f(6%)] = My[f(67)]
exists.

Proof. As §% = §Y, the critical point of pxy is >6% (if it exists). As 7' (B)
is a forcing of size <w{w" = 0% and f(6%) is generic over both Mx and My,
the lift exists. O

3Regular embeddings, also known as complete embeddings, are embeddings between partial
orders which preserve maximal antichains.

11



We consider the above proposition simultaneously as a definition: From now
on u} y will refer to this lift if it exists.

Definition 3.17. Suppose f witnesses {(B). NSy is the ideal of f-nonstationary
sets, that is
NSy = {N Cwy | N is not f-stationary}.

Lemma 3.18. Suppose f witnesses $(B). NSy is a normal uniform ideal.

3.1 Miyamoto’s theory of nice iterations

For all our intents and purposes, it does not matter in applications how the limit
our iterations look like as long as we can prove a preservation theorem about it.

We give a brief introduction to Miyamoto’s theory of nice iterations. These
iterations are an alternative to RCS-itertaions when dealing with the problem
described above. In the proof of the iteration theorem for (f-)proper forcings,
one constructs a generic condition ¢ by induction as the limit of a sequence
{gn | n < w). In case of (f-)semiproper forcings, the length of the iteration
may have uncountable cofinality in V' but become w-cofinal along the way. In
this case, a sequence {g,, | n < w) with the desired properties cannot be in V.
The key insight to avoid this issue is that one should give up linearity of this
sequence and instead build a tree of conditions in the argument. Nice supports
follow the philosophy of form follows function, i.e. its definitions takes the shape
of the kind of arguments it is intended to be involved in. The conditions allowed
in a nice limit are represented by essentially the kind of trees that this inductive
nonlinear constructions we hinted at above produces.

Miyamoto works with a general notion of iteration. For our purposes, we
will simply define nice iterations by induction on the length. Successor steps
are defined as usual, that is if P, = (P, Qg | @ < 7,5 < ) is a nice iteration
of length v and Q7 is a P,-name for a forcing then (P,, Qg la<y+1,8<y)
is a nice iteration of length v + 1 where P, ; = P * Qv-

Definition 3.19 (Miyamoto, [Miy02]). Let P = (P,,Q, | a < ) be a potential
nice iteration, that is

(@z) P, is a nice iteration of length « for all o < 7,
(B.ii) Poy1 =Py # Qg for all o+ 1 < 4 and
(P.iii) Pg o =P, forall a < § < .
A nested antichain in P is of the form
(T{T), | n <w),{suct | n < w))

so that for all n < w the following hold*:

4Usually, we identify the nested antichain with T, its first component and write suc(a)
instead of sucl.(a) if n,T are clear from context.

12



(1) T=U,<o, Tn-
(i) To = {ao} for some ag € | J,, -, Pa-
(#ii) T, < o<~ Pa and such: T, — P(Tht1)-
(iv) For a €T, and b € suck(a), lh(a) < 1h(b) and b | lh(a) < a.
(v) For a € T), and distinct b, € suc(a), b | 1h(a) L " | lh(a).
)

(vi) For a € Ty, {b I Ih(a) | b € such(a)} is a maximal antichain below a in
Pih(a)-

(vid) Th41 = U{suck(a) | a € Ty }.
Abusing notation, we will usually identify T" with

(T, (T, | n < wy,{suct | n < w)).

If b € suc.(a) then we also write a = predy(b). If 5 < v then p € Pg is a mizture
of T up to B iff for all o < 3, p | « forces

(p1) p(a) = ap(a) if @ <lh(ag) and ag | @ € G,

(p.i7) p(a) = b(a) if there are a,b e T, n < w with b € suc’k(a), Ih(a) < a < 1h(d)
and b | a € G,

(p.iti) p(a) = 1y, if there is a sequence {(a, | n < w) with a,11 € sucy(an),
lh(a,) < a and a,, € Giy(q,,) for all n < w.

If £ < v is a limit, and ¢ is a sequence of length £ (may or may not be in P¢), ¢
is (T, &)-nice if for all § < &, ¢ | B € Pg is a mixture of T up to S.

We refer to [Miy02] for basic results on nested antichains and mixtures. We
go on and define nice limits.

Definition 3.20 (Miyamoto, [Miy02]). Suppose P = (Py,Qo | @ <) is a
potential nice iteration of limit length 7. Let P denote the inverse limit along
P. The nice limit of P is defined as

nicelim(P) = {p € P | 3T a nested antichain of P and p is (T, 7)-nice}.
nicelim(P) inherits the order from P.

Finally, if P = (P, Qa | & <) is a potential nice iteration then
P, Qs | a <v,B<7)
is a nice iteration of length v where P, = nicelim(]}_ﬁ).

The fundamental property of nice iterations is:

13



Fact 3.21 (Miyamoto,[Miy02]). Suppose P = (Po, Qs | a < 7,8 < 7) is a nice
iteration and T is a nested antichain in P. Then there is a mizture of T'.

Definition 3.22 (Miyamoto,[Miy02]). Let P = (P, Qs | a < 7,8 < 7) be a
nice iteration. If S,T are nested antichains in P then SZ T iff for any n < w
and a € S, there is b € T}, 11 with

Ih(b) < lh(a) and a | 1h(b) < b.

Fact 3.23 (Miyamoto, [Miy02]). Let P = <]P’Q,Q3 | o < 7,8 <) be a nice
iteration of limit length . Suppose that

(1) T is a nested antichain in P,

(ii) p is a mizture of T and s € P,

(iv) s < I [1h(r),v) and
(v

Then there is a nested antichain S in P with

)
)
(#ii) re Ty,
)
) A S is cofinal.

(a) s is a mizture of S,
(b) If So = {c¢} then lh(r) <1lh(c) € A and ¢ ! Ih(r) < r and
(¢c) SLT.
The following describes the tool we use to construct conditions.

Definition 3.24 (Miyamoto, [Miy02]). Let P = (Po, Qs | @ < 7,8 < 7) be a
nice iteration of limit length v. A fusion structure in P is

T,(p ™, T | p < w, aeT,)

where

(i) T is a nested antichain in P
and for all n < w and a € T,

(i) T(»™ is a nested antichain in PP,

(iii) p(*»™ € P is a mixture of T(®")

(iv) a < p@™ }1n(a) and if T,*™ = {¢} then Ih(a) = lh(c) and

(v) for any b e such(a), T®n+D £ T(@n)  thus pbn+l) < plan),

If ¢ € P is a mixture of T then q is called a fusion of the fusion structure.
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Fact 3.25 (Miyamoto, [Miy02]). Let P = (P,,Qp | a < 7,3 < ) be a nice
iteration of limit length . If g € P is a fusion of a fusion structure

T,(p' ™, T | n < w, aeT,)

and G is P-generic with ¢ € G then the following holds in V[G]: There is a
sequence {a, | n < w) so that for all n < w

(Z) ap € TQ,

(ZZ) an € Glh(a")z

(491) an+1 € such(ay) and
(iv)

‘We mention one more convenient fact:

p(a"’”) eq.

Fact 3.26 (Miyamoto, [Miy03]). Suppose k is an inaccessible cardinal, P =
(Pu,Qp | @ < K, B < K) is a nice iteration so that

(1) |Po| < & for all « < k and
(i) P preserves wy.
Then P is k-c.c..

Miyamoto proves this for so called simple iterations of semiproper forcings.
The proof works just as well for nice iterations of semiproper forcings and finally
the proof can be made to work with assuming only P preserves w; instead of P
being a semiproper iteration.

4 The Iteration Theorem

The full main theorem we are going to prove is the following.

Theorem 4.1. Suppose [ witnesses $(B) and P = <]P’Q,Q5 |a <y, 8<7)is
a nice iteration of f-preserving forcings. Suppose that

(P.3) IFp,., SRP for all a +2 < and
(P.ii) |p, “Qn preserves f-stationary sets from Us<a VI[Gs].
Then P preserves f.

Note that if B is the trivial forcing {1} and we take f to be the witness of
OT(B) with f(a) = {1} for all 0 < a < wy, then we recover the special case
mentioned in the introduction.

So what is the basic idea? For the moment, let us assume that f is the
trivial witness of {({1}) above for simplicity. As always, we want to imitate
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the argument of the mother of all iteration theorems, the iteration theorem for
proper forcings. Suppose we have a full support iteration

P:<Pnan | n<w,m<w>
and for the moment assume only that
Fp, “Qn preserves w;”.

We try to motivate some additional reasonable constraints imply P to be w;-
preserving. For the moment, we try to consider Shelah’s argument as a game:
In the beginning there some countable X < Hy as well as pg € X nP. The ar-
gument proceeds as follows: In round n, we have already constructed a (X, P, )-
semigeneric condition ¢, € P | n and have

Gn I+ Dn [neGnmX[Gn].

Next, our adversary hits us with a dense subset D < P in X and we must find
Pni1 € VE» and some (X, P, 1)-semigeneric g, +1 with ¢,+1 | n = ¢, and®

Gni1 I Pt € D Apnpr P+ 1€ Gpyr 0 X[Grga]-

Our job is to survive this game for w-many steps. If we have a winning strategy
then we can find a (X, P)-semigeneric condition, so in particular P preserves wy.

Destroying stationarity makes it significantly more difficult to survive the
above game: Suppose for example that

po(0) - S € NS,

for some S € X with 6% € S. Then there is no hope of finding a (X,P;)-
semigeneric condition ¢ with ¢ < pg | 1. Hence, we must already be careful
with what X we start the game. This leads us to the following definitions.

Definition 4.2. Suppose 6 is sufficiently large and regular, X < Hy is count-
able. If I is an ideal on wy, we say that X respects I if for all A e I n X we
have 6% ¢ A.

Note that all countable X < Hy respect NS,,, and countable Y < Hy with
f €Y respects NSy if and only if Y is f-slim.

Definition 4.3. Suppose P is a forcing and Ie VP_ is a name for an ideal on
wy. For p in P, we denote the partial evaluation of I by p by

P ={Scw|plFSel}.

Back to the discussion, we need to start with an X so that X respects ol
where I is a name for the nonstationary ideal. This gives us a shot at getting
past the first round. Luckily, there are enough of these X.

5Here, we consider py, also as a P, 1-name.
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Definition 4.4. Let A be an uncountable set with w; € A and I a normal
uniform ideal on w;. Then 8 < [A]¥ is projective I-positive if for any S € It
the set

(XeS|6¥es)

is stationary in [A]“.

Proposition 4.5. Suppose 0 is sufficiently large and reqular. Let I be a normal
uniform ideal on wi. Then

S ={X e [Hg]* | X < Hy respects I}
18 projective I-positive.

Proof. Let C be a club in [Hy]“ and assume that all elements of C are elementary
substructures of Hy and contain I as an element. Let

X =(Xy|a<w)

be a continuous increasing chain of elements in C. Let X = X, and let

a<wy
A=Ay | o <wp)

be an enumeration of X n I. Let C' € w; be the set of « so that

(C.i) 6%+ = o and

(C.ii) A} a is an enumeration of X4 N I

and note that C' is club. Let A = Vq<w,lo- As I isnormal, A€ I. Then C — A
is a complement of a set in I and for any o € C'— A we have

§Xe =Oé¢[lg
for all 8 < . Hence X, € S nC. O

Of course, the problem continues. What if we have found a suitable ¢;
and now we work in V[Gi] with ¢; € Gi. At the very least, we need that
X[G1] respects IP01112) "where I is now a P; o-name for the nonstationary ideal.
Ensuring this is a matter of being able to pick the right ¢; to begin with. This
motivates the following class of forcings.

Definition 4.6. We say that a forcing P is respectful if P preserves w; and the
following is true: Whenever

e 0 is sufficiently large and regular,
e X < Hy is countable with P € X,
e I € X is a P-name for a normal uniform ideal and

e pePn X
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then exactly one of the following holds:
(Res.i) Either there is some (X, P)-semigeneric ¢ < p so that
q IF “X[G] respects I”
or

(Res.ii) X does not respect I

Roughly, this condition states that we can find a P-generic filter G with
p € G so that X © X[G] respects I€ as long as there is no obvious obstruction
to it.

Remark 4.7. If P is respectful and preserves stationary sets then P is semiproper.
However, the converse is not true in general. Similarly, a respectful f-stationary
set preserving forcing is f-semiproper, which follows from plugging in a name
for NS¢ as I in the definition of respectfulness.

We require® now that
I=p, “Qn is respectful”

for all n < w. We then aim to make sure (assuming p, 1 is already defined) to
find ¢, 41 in round n so that in addition to the prior constraints,

Gni1 - “X[Gpy1] respects 17

where I is a P, +1 name for the ideal of sets forced to be nonstationary by
Pn+1(n+1). Consider I as a P,-name I for a Q,-name. By respectfulness, this
reduces to avoiding an instance of the “bad case” (Res.ii), namely we should
make sure that whenever G,, is P,,-generic with ¢, € G,, then

. Pnt1(n+1)
X|[G,] respects (IG") '

where p,11 = pfﬁl. he next key insight is that this reduces to
“X[G,,] respects J == {S € wy | pny1(n) - S € NS, }”

which we have (almost)” already justified inductively, assuming Qn+1 only kills
new stationary sets: Our final requirement?® is that

Py “Qu 41 preserves stationary sets which are in V[G,]”

6This excludes the first counterexample due to Shelah, but not yet all the counterexamples
of the second kind.

"We made sure of this if p,1 is replaced by p, in the definition of .J, we ignore this small
issue for now.

81t is readily seen that this eliminates the counterexamples of the second kind.
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)pn-%-l(n)

for all n < w. The point is that trivially (I Gn only contains sets in

V[G,], so all such sets will be preserved by Qn+1. The sets that are killed are
then already killed in the extension by Q%».
Modulo some details we have shown the following.

Theorem 4.8. Suppose P = (P,,,Q,, | n < w,m < w) is a full support iteration
so that

(P.i) Ip, Q, is respectful and
(P.id) Ip,,, Qui1 preserves stationary sets which are in V[G,]”
for allm < w. Then P does not collapse wy .

Two issues arise when generalizing this to longer iterations. The first issue is
the old problem that new relevant indices may appear along the iteration in the
argument, which we deal with by using nice supports. The second problem is
that it seemingly no longer suffices that each iterand individually is respectful.
For longer iterations, say of length -, the argument then requires that

IFo “]I.D(,ﬁ is respectful”

for sufficiently many o < < «. This is problematic as we will not prove an
iteration theorem of any kind for respectful forcings”. This is where we take out
the sledgehammer.

Definition 4.9. (1) holds if and only if all wy-preserving forcings are respectful.
Lemma 4.10. SRP implies (}).

Proof. Let P, 0, I, p be as Definition 4.6. It is easy to see that (Res.i) and
(Res.ii) cannot hold simultaneously. It is thus enough to prove that one of
them holds. Let A be regular, 2IFl < X < # and A € X and consider the set

S={Ye[H\]*|Y <Hxr—=(3g<pqis
(Y, P)-semigeneric and ¢ I- “Y[G] respects I7)}.

By SRP, there is a continuous increasing elementary chain
Y =Y, | a<w)
so that
(}_}z) P,p,I €Yy and

(?m) for all @ < wy, either Y, € S or there isno Y, & Z < Hy with Z € S.

9Indeed it seems that no useful iteration theorem for respectful forcings is provable in ZFC,
see Subsection ?77.
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Let S={a<w | Y, €S}
Claim 4.11. p - Se .

Proof. Let G be generic with p € G and let I = I¢. Assume toward a contradic-
tion that S is I-positive. Note that (Y, [G] | @ < w1) is a continuous increasing

G

sequence of elementary substructure of Hg/ 1. Hence there is a club C of a so

that for a« € C

oo = §¥elCl = o

and thus there is a (Y,,P)-semigeneric condition ¢ < p, ¢ € G. Hence by
definition of S, for any a € S n C, we may find some N, € I n Y,[G] so that
dY« € N,. By normality of I, there is some I-positive T < S n C and some N
so that N = N, for all & € T. But then for a € T', we have

a=0YeN
so that T N. But N € I, contradiction. O

Thus if §% € S, then S witnesses (Res.ii) to hold. Otherwise, 6% ¢ S.
Note that §Ysx = 6% as ¥ € X. We find that Ysx £ X n Hy < Hy). Thus,
X n Hy ¢ 8, so that there must be some g < p that is (X n Hy,P)-semigeneric
and .

q - “(X A Hy)[G] respects I”.

This ¢ witnesses that (Res.i) holds. O

We will get around this second issue by forcing SRP often along the iteration.
Remember that what we really care about is preserving a witness f of {(B)
along an iteration of f-preserving forcings, so fix such an f now. It will be quite
convenient to introduce some short hand notation.

Definition 4.12. Suppose P is a forcing and p € P. Then we let I[Hj denote 1P
where I is a P-name for NSy. That is

IE::{Sgw”pH—SeNSf}.

Definition 4.13. Suppose f witnesses $(B). An f-ideal is an ideal I on wy so
that

(1) whenever S € I'™ and {(D; | i < w1) is a sequence of dense subsets of B,
then
{aeS|VB<a fla)nDg#yel”
i) and S/ € I't for all b e B.
(i) b

Recall that NSy is clearly an f-ideal and it is normal and uniform by Lemma
3.18.
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Proposition 4.14. Suppose P is a forcing that preserves f and p € P. Then
IE is a normal uniform f-ideal.

We leave the proof to the reader. The next Lemma gives us a criterion that
guarantees the relevant witness f of $(B) to be preserved. We first introduce
the notion of a f-semigeneric condition.

Definition 4.15. Suppose f witnesses {(B), P is a forcing, 6 is sufficiently
large and X < Hy is a f-slim elementary substructure of Hy with P e X. A
condition p € P is called (X, P, f)-semigeneric if p is (X, P)-semigeneric and

p - X[G] is f-slim.

Lemma 4.16. Suppose f witnesses {(B) and P is a forcing with the following
property: For any sufficiently large regular 8 and p € P there is a normal uniform
f-ideal I so that

{Xe[Hp]” | X <Hg AP, pe X Andq <p qis (X,P, f)-semigeneric}
1s projective I-positive. Then P preserves f.
Proof. Assume p € P, 6 is sufficiently large and regular. Let b € B,
D={(Dy|a<uw)

be a sequence of P-names for dense subsets of B and C a P-name for a club in
wy. We will find ¢ < p so that

giFdaeSi nCYB <a fla)nDg # &.
By our assumption, there is some normal uniform f-ideal I so that
{Xe[Hp]” | X <Hyp AnP,pe X Andq <pqis (X,P, f)-semigeneric}

is projective I-positive. It follows that we can find some countable X < Hy so
that

(X.4) P,p, D,C e X as well as
(X.ii) be f(6%)

and some ¢ < p that is (X, P, f)-semigeneric. If G is then any P-generic with
q € G, we have
X € X[G] is f-slim

and hence 6% € CC as well as

VB < 6% f(6%) n DS # @.
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We also need to resolve a small issue that we glossed over in the sketch of a
proof of Theorem 4.8.

Lemma 4.17. Suppose f witnesses {(B). Further assume that
o P is a respectful, f-preserving forcing and p € P,
o 0 is sufficiently large and regular,
o X < Hy is countable, respects Ig and P,pe X and
o Mx[f(0%)] = “D is dense below 7" (p) in w3 (P)”.
Then there are Y, q with
(1) X &Y < Hy is countable,
(i) q <p,
(#i1) Y respects I}IP, in particular 'Y is f-slim and
(iv)

Proof. We may assume that X is an elementary substructure of

q€ WY[N;_(,Y(D)]'

H = (Hy;€,<)

where < is a wellorder of Hy. As P is respectful and X respects IE, there is a
(X, P)-semigeneric condition r < p so that

r - “X[G] respects NS;”

ie. ris (X, P, f)-semigeneric. Let G be P-generic with r € G. Then X[G] is
f-slim. Let Z = X[G] n V, note that M},z exists by Proposition 3.16. Now
there is thus some ¢ < p, ¢ € G with

q€ WZ[N;_(,Z(D)]'
Finally, note that ¢ and Y := HullH(X U {q}) have the desired properties. O

Proof of Theorem 4.1. Let P = <]P’OHQ5 | @« < 7,8 < 7) be an iteration of
f-preserving forcings which preserve old f-stationary sets and forces SRP at
successor steps. We may assume inductively that P, preserves f for all a < ~.
The successor step is trivial, so we may restrict to v € Lim. Note that we may
further assume that () holds in V, otherwise we could work in VF1. Let p e P
and let [ := Iﬁ%). I is a normal uniform f-ideal by Proposition 4.14. Now let 6
be sufficiently large and regular, X < Hy countable with

(X.4) Pp,fe X and
(X.i1) X respects I.
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By Proposition 4.5 and Lemma 4.16, it suffices to find ¢ < p that is (X, P, f)-
semigeneric. Note that X is f-slim as [ is a f-ideal. Let

h:w—>wxXw

be a surjection with ¢ < n whenever h(n) = (4, j).
Let & denote 6%. We will construct a fusion structure

T,(p' ™) 7@ | g e T, n <w)

in P as well as names
X(an) zlan) (D(-a’")> @M | geTyn<w
J J<w

so that for any n <w and a € T},

(F.i) To = {1}, p®® = p, XOO = X OO = ],

(F.i) T € X is a nested antichain that p is a mixture of with TO(LO) = {1},
(F.iii) a ) 2™ = X@) AV,
(F.v) (D](-a’n))j<w is forced by a to be an enumeration of all dense subsets of

nga,n) (IP)) in
My ) [ﬂg)]v

(Fw) a < p@™ | 1h(a),

(F.vi) lh(a) is not a limit ordinal,

(Fvii) a IF1h(a) ﬁ(am)’ T(a,n)7 Glh(a) € X(am)»

. Qin(a
(Fwiii) a lFp) 1@ = Ip&,(n))(ul(a)) and

(Fiz) a - “X € X" < HOY[G”‘(”)] is countable and respects I(*™)”.
Moreover, for any b € suct(a)

(F.z) b ! 1h(a) ki) wpbntl) plbntl) ¢ x(an) in particular lh(lv)),Plh(a)’lh(B) €
X(a,n)n’

(Faxd) b i) X @™ [Gigay m] E X O and
zii) if h(n) = (i,) and ¢ = pred’ then
(F.xii) if h(n) = (i,7) and ¢ = predy(b) th

b ”_lh(n) p(b7n+1) € T x(a,n) [Nza(‘D§c’Z))]
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Here, pu}, denotes'®
:U“g(c,i)’z'(a,n) My [JE(S)] — Mza,n) [JE((;)]
We define all objects by induction on n < w.
_ (1,0) 7(1,0) v (1,0) (1,0 ( : (_LO)) F(1,0)
TO {]l}ap 7T 7X 7Z D] j<o.)7]

are given by (F.i)-(F.iv) and (F.viii). Suppose we have already defined

T, <p(a,n)7T(a,n)7X(a,n)’ Zlam), (Dj(g,n))j< lae Tn>

and we will further construct
Tst, <p(b,n+1)7T(b,n+1)’X(b,n+1)’ Z'(b,n+1)’ (D§b7n+1)) ~ Ibe Tn+1>~
J<w

Fix a € T},,. Let E be the set of all b so that

(E.i) be Py and 1h(b) < v,
(E.ii) lh(a) < 1h(b) and b | lh(a) < a,

and there are a nested antichain S in P, s € P and names X , I with
(E.iii) S/ T(@m),
(E.iv) s < p'®™ is a mixture of S,

(E.v) if h(n) = (4,7) and ¢ = pred’s(a) then
b ) 8 € Team [ﬂ:a(bj(-c’i))L

(E.vi) 1h(b) is not a limit ordinal,
(E.vii) b} 1h(a) by 3,5 € X,

(E.viii) blFing) 3 1 1h(b) € Ging),

[Glh(é)]
)

. . . . . v
(E’L{E) b ”_lh(b) X (@) - X (an) [Glh(a),lh(b)] cE X< Hé
(E.z) bl “X is countable and respects I,

(B.i) bl I = I, and

(E.xii) if Sy = {cop} then Ih(b) = lh(cp) and b < ¢p.

10T here is some slight abuse of notation here in an effort to improve readability.
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Claim 4.18. E | lh(a) := {b | Ih(a) | b€ E} is dense in Py ).
Proof. Let a’ < a and let G be Py,(q)-generic with o’ € G. By (Flv), plan)
Ih(a) € G. Work in V[G]. Let h(n) = (i,5) and ¢ = pred’(a). Let

xlei) _ (X<c,v:>)c“‘“> and X(@n) _ (Xm,n))c"

as well as Z(¢) = X() AV, z@n) = x@n) V. Find r € T with
r 1 1h(a) € G. As p(®™ is a mixture of T(*™) we have
r < p(a’") P lh(r).
Let 7 = r—p(®™ } [Ih(r), ). Note that 7 € X (@™ as
plan) Tn) g e x(an)

by (F.vii). Moreover, 7 | lh(a) € G. Let Q := Qﬁ(a) and

D = p} (DH) € Myw@m[f(0)] € Myam[f(6)].
Subclaim 4.19. There are s, Y with
(i) Xem =y < )¢,
(ii) s <pl@m,
(ifi) s I h(a) € G,
)

(iv) semy|[ (D)] and

Fx (arm) Y
(v) Y respects I;QElh(a))'
Proof. Let

—{teD|mx@m(t) <P A Txwn(t) | lh(a) e G}
and D1 be the projection of Dy onto wx(a » (Q). Observe that

Mx@n[f(0)] = “D; is dense below 7TX(G (@™ (Ih(a)) in 7TX(Q »(Q)”.
Applying Lemma 4.17 with (making use of the notation there)

«P=0Q,

o p=p™(Ih(a)),

e X = X(@n) and

OD:DQ,
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we find some countable Y and some sg with
(i) Xem =y < HYE,
(i) so < p™ (Ih(a)),
(iii) 50 € Ty [0y y(D1)] amd
(iv) Y respects I2.
By definition of Dy, there is s < p(®™ with
(s.i) s | lh(a) € G,
(s.ii) s€ Wy[u;(ayn)’y(D)] and
(s.iit) s(lh(a)) = so.

Y, s have the desired properties.
O

We can now apply Fact 3.23 in Y and get a nested antichain S € X (®") with
(S.i) s is a mixture of S,

(S.40) if Sp = {d} then lh(r) < lh(d), d | Ih(r) < r and lh(d) is not a limit ordinal
and

(S.ii) S/ T(@m).

Ith(d)

Let X be a name for Y[Glh(a),lh(d)] and I a name for s(Ih(d))"

Subclaim 4.20. In V|[G], we have

fsth(d) _ 7Pm(a)m@+1 _ 7Q
I @ — Is[lh(d)Jrl = Is(lh(a))'

Proof. The first equality is simply by definition of /. The second equality follows
as we preserve old f-stationary sets along the iteration and since Pyy(4) 1n(d)+1
preserves f by our inductive hypothesis.

It follows that )
Y respects [°M4),

As Ih(a) is not a limit ordinal, (1) holds in V[G], so that Py (4 in(q) is respectful
by Lemma 4.10. Thus there is b € Py,(4) 1n(a), b < s | 1h(d) so that

blFme) “Y C Y[G] respects I7.

Since b | lh(a) € G, we may assume further that b  lh(a) < a’. s,5,X,1
witness b € F. O
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To define T),41, fix a maximal antichain A € E | lh(a), and for any e € A
choose b, € E with b, | lh(a) = e. We set such(a) = {b. | e € A}. For any
b e suck(a), let S, s, X, I witness b € E. We then let

. p(b,n+1) = s, T0n+1) S, X(b¢n+1) _ X, j(b,n+1) _ j’
e Z(:n+1) ho a name for X AV and

) (D](.b’"ﬂ)) ~ be a sequence of names that are forced by b to enumerate
J<w

all dense subsets of 7TZ7<1b‘n+1) (P) in M, n41) [f\(g)]

This finishes the construction.

By Fact 3.23, there is a mixture q of T'. Let G be P-generic with ¢ € T. By
Fact 3.25, in V[G] there is a sequence {a,, | n < w) so that for all n < w

(@.i) ao = qo,
(@.17) an41 € such(ay,) and
(@.iii) plenm™ e G.
For n < w, let a,, = lh(a,) <. For n < w we let

Gan

X, = (X(“" ’")>

and also

Xy = | XalGay ~]-

n<w

Further, for n < w let
Zp=X,nVand 1, =7z, .

We remark that
XalGay ) E Xil[Ga,, ] < HY'
follows inductively from (F.vii) and (F.iz) for n < m < w so that X, < HQ/[G].

We aim to prove that
X E X, is f-slim.

In fact, we will show
(Zoi) X C Z.,,
(Zy.i1) Z, is f-slim and
(Z,.iii) 7, [G] is generic over M,,[f(5)],
which implies the above.

Claim 4.21. Z, = | Z-

n<w
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Proof. “ 2 7 is trivial, so we show “ € 7. Let = € Z, and find i < w with

z € X;[Ga, ]- Note that there is @ € Z; a P-name for a set in V with z = 2.

Let D € M; be the dense set of conditions in 7, ' (P) deciding 7; ' (). There
must be some j < w so that

NG
S(as,i) _
(D) = .
Now find n with h(n) = (4,7). We then have

plm it e mfuf (D))

by (F.zii). We have that p(»+12+1) decides & to be some z € X,,, and as
p(an+1,n+1) €@,
r=i%=z2€eX,nV =12,

O

As X © X, is f-slim by (F.ix) for n < w, (Z,.1) and (Z,,.ii) follow at once.
It remains to show (Z,,.7i1).
As Z,, is f-slim and by Claim 4.21, we have that

(M [f(O)]s gy | < w) = B M [£(9)], piy | 0 < 2 < )

for some (p} ,)n<w. Let E € M,[f(6)] be dense in 7' (P). Then for some
i,j <w, E=uf, (D) for

-\ G
. . (a’iﬂ’)
D= (Dj )
Find n with h(n) = (i,7). By (F.@ii),
plansintl) ¢ o [MZH(D)] c 7, [/j,;:w (D)] = mu[E].

As planttntl) e G we have Enm ' [G] # &, which is what we had to show. [

5 f-Proper and f-Semiproper Forcings

Suppose f witnesses (B). We already used the term (X,P, f)-semigeneric
which suggests there should be a notion of f-semiproperness. Indeed there is
and it behaves roughly like semiproperness. In fact, there are several other
classes associated to f which mirror well-known forcing classes.

Definition 5.1. A forcing P is f-complete if for any sufficiently large regular
0, for any f-slim X < Hy with P € X and any g € P generic over Mx[f(6%)],
there is a some p € P with

pIFGn X =rx[g).
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Definition 5.2. A forcing P is f-proper if for any sufficiently large regular 6,
any f-slim X < Hy with P e X and any p € X n P, there is a (X, P, f)-generic
condition g < p, that is a condition ¢ with

qIF G n X is generic over X A X[G] is f-slim”.

Definition 5.3. A forcing P is f-semiproper if for any sufficiently large regular
0, any f-slim X < Hy with P € X and any p € X n P, there is a (X, P, f)-
semigeneric condition ¢ < p.

The following graphic collects all provable relations between the relevant
forcing classes.

stationary set preserving f-stationary set preserving

|
Classical ! {-Forcing
|
l
complete(~ o-closed) L f-complete
l
proper | f-proper
!
semiproper | f-semiproper
|
|
|
|
|
|
|

wi-preserving f-preserving
We also get the expected iteration theorems.

Theorem 5.4. Any countable support iteration of f-complete (resp. f-proper)
forcings is f-complete (resp. f-proper).

Theorem 5.5. Any nice iteration of f-semiproper forcings is f-semiproper.

The proof is much easier than that of Theorem 4.1, so we omit it.
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