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0 Abstract

Set-Theoretic Geology is the study of grounds, the base models of forcing ex-
tensions, and the generic multiverse and was initially founded by Hamkins
and Reitz in an effort to find regular structure under the generic “dust”
added by forcing. Although their hope was not quite fulfilled, this investig-
ation left open many interesting questions about the nature of forcing, until
the recent results of Usuba about the strong downwards directed grounds
hypothesis. For example the mantle, the intersection of all grounds, turned
out to be a model of ZFC and the largest forcing invariant definable class.

The first chapter of this thesis deals with basic theory of forcing and provides
a foundation for the rest of this thesis.

After that, we dive right into the theory of Set-Theoretic Geology. The main
theorem, with which we will start, could be described as the fundamental
theorem of this topic, the uniform definability of grounds. Moreover, we will
examine the implications of Usuba’s breakthrough. This serves as a good
motivation for chapter 3, where we will proof these results.

In the following chapter, we will discuss the interplay between the generic
multiverse, its mantle and large cardinals, including Usuba’s results on ex-
tendible and hyper-huge cardinals. In addition to this, we will investigate
how large cardinals at and below the level of a supercompact relate to the
mantle. The supercompacts will come out as the most flexible large car-
dinals, they can both be found in the mantle with no sign of them in the
entire generic multiverse and lose their supercompactness (even weak com-
pactness) by passing to the mantle. Also, we will find a connection between
the generic multiverse and the mantle regarding smaller large cardinals, that
will make the first situation impossible for them.

Chapter 6 serves as an addendum and deals with findings crucial for our
analysis in chapters 2 and 3. But since their nature is not inherently geolo-
gic and have been known for longer than this topic exists, we skip the proofs
in these chapters. Most prominently, one can find a discussion of the inner
model criterion, i.e. a first order sentence that checks whether or not a given
class is an inner model ZF'C, and a proof of Bukovsky’s Theorem in there.
We finish with a conclusion.
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1 Preliminaries on Forcing

In this section, we discuss basic theory on forcing which serves as a basis for
constructions later on in this thesis. The results in this chapter can be found
in most standard introductions to forcing, such as [Jec03] and [Kun83].

1.1 A-System Arguments

Definition 1.1.1. Given two ordinals x, A > 0, the forcing Add(k,\) con-
sists of functions p of size < k with dom(p) € k x A and ran(p) € 2, ordered
by reverse inclusion.

It is standard to show that if G is Add(k, \)-generic over V' then f =
UG : k x A > 2 is a function with f [ (k x {a}) ¢ V for all « < A. In
particular Add(k,\) adds A many new subsets of .

Lemma 1.1.2. (A-system lemma) Suppose k < X are cardinals such that
A is reqular and a<% < X for all a < \. If X is a set of size A such that
|x| < K for every x € X, then there is some Y < X of size A and a set r
with x "y =17 for allx # y €Y. In this situation, Y is called a A-system
with root r.

Proof. Since [|JX| < Y, cx 2] <Ak = A, we can assume that X < P())
and so we will identify x € X with its increasing enumeration {(z(a)la <
otp(zx)). For notational simplicity, we will allow us to switch between viewing
x € X as a function and a subset of A. By regularity of A, we can furthermore
impose without loss of generality that all x € X have the same ordertype
v. If @ < A then a” < A and hence X ¢ P(a). This implies that | JX
is unbounded in A and as A is regular and v < kK < A, there must be
some minimal § < « such that {z(8)|x € X} is unbounded in A. Let
p = sup | J{ran(z | f)|lr € X}. We must have p < X as a consequence of A
being regular. We construct a sequence (z,|a < A) by induction on a. If
x5 is already constructed for all 6 < ao < A then | J;_, 5 is bounded in A.
Hence there must be some z, € X with x,(8) > sup| s, x5. This ensures
that x4 nxs = (2o | B) N (xs | f) € p for all 6 < a (where we identify = [ S
with its range).

Now {zq N pla < A} € P(p) and thus has size at most 2° < X\. Hence there
must be some r S p and A S X of size A such that zo N p = r for all a € A.
Let Y = {zo|a € A}. Then for z # y bothin Y, we have x np=r=ynp
and x Ny S p and hence x Ny = r. O

Lemma 1.1.3. Let k be a regular cardinal and 6 any ordinal.
(i) If k=% = k then Add(k,0) is kT -cc.

(i1) If 2% = kT then Add(k,0) is kT -cc.



Proof. Suppose A € Add(k,0) and let X = {dom(p)|p € A}.

(4)

1.2

Assume A is of size k*. Apply the A-system lemma (1.1.2) to X with
A = kt. This yields B € A of size k™ and some r € k x 6 of size
less than x such that dom(p) N dom(q) = r for all p # ¢ € B. But as
k<F =k, 21"l <k < Kkt which implies that there must be some C € B
of size k™ with p | » = ¢ | r for all p,q € C. But in this case, p and ¢
must be compatible witnessed by p u q.

Here, assume that A is of size k™ and apply the A-system lemma to
X with A = k7. To do this we have to check that (k7)<" < kTT.
For any 6 < k, this simplifies to (k*)? = (2F)¢ = 2® = kT. Since
k=F < k" = k', we can coclude as above that there must be some
subset of A of cardinality x™1 that consists of pairwise compatible
conditions.

O

Counting Nice Names

Definition 1.2.1. A nice P-name for a subset of an ordinal « is a P-name
of the form @ =  Js_,{B} x Ag where Ag is an antichain of P for each S.

Lemma 1.2.2. (The counting nice names argument) Let P be a forcing and
G be P-generic.

(4)
(i)

If € P(a)VIC] then there is a nice name & with © = .

If A\, k are cardinals such that P has the k-cc then
YV < (B[N

Furthermore if X = (|[P|<) then (2M)VIE1 = (2M)V,

Proof. (i) Find a name # for x. For B < a, let Dg = {p € Plp I 3 € £}

(i)

and find an antichain Ag © Dg that is maximal in Dg. Let = =
U5<Q{B} x Ag. We have to show i% = x.

“c” . If Be i then Ag n G # &. Find p in this intersection. Then
pIF B € %, so we have § € x.

“D7” :Let fex Findpe GwithpIF S € 3 ie. p € Dg. Let
E ={q<plFae Ag g <a}. If ¢g<pthenstill ¢ge Dg. As Ag was
chosen maximal in Dg, there is a € Ag and r < a,q. Then r € E and
r < ¢ which shows that E' is dense below p. This implies G n Ag #
and so (B € £©.

The first part shows that the size of P(\)VI is bounded by the size
of the set of all nice P-names for subsets of A in V. A nice name is



basically a function that maps each 8 < « to an antichain in P. As
P has the k-cc, we can understand such a nice name as a function
f: A= Pr(P), where P.(P) is the set of all subsets of P of size < k.
As |P.(P)| = |P|=F, there are (|P|<")* many of these functions in V. If
now A > (|P|<*) then first of all (2*)V > & is still a cardinal in V[G].
We calculate:

()" < @YV < (=M < MY = (2)
O

Remark 1.2.3. In any case, P always has the |P|*-cc and thus the above
lemma shows that if G is P-generic, then the continuum function of V' and
V[G] coincide from 2/Pl onwards.

Similarly as for subsets of A, there are nice names for functions with
domain A and range in V. In fact, we will only need that there are small
names.

Proposition 1.2.4. Suppose that K is an infinite cardinal, P a forcing of
size k, G a P-generic filter and f : X — Ord a function in V|G]. Then there
is a P-name for f in'V of size k- A,

Proof. Find a P-name f for f so that:
1p I+ “f : X — Ord is a function”

For a < A, let D, be the (dense) set of conditions that decide f(c) and for
p € Dy let d(p) be the corresponding decision. Then

g= {(op (d,cﬁ]?)) ,p>|a< )\,peDa}

is another P-name for f, where op(&,y) is the canonical P-name for the
corresponding ordered pair. Furthermore, ¢ has size x - A. ]

1.3 Degrees of Closure

In this section we will introduce both a strengthening and a weakening of the
usual < A-closure conditions which prescribes that any decreasing sequence
{(pala < ) for v < A has a lower bound.

Definition 1.3.1. Let P be a forcing.

(i) A subset X of P is directed if for any p,q € X there is r € X with
<P, g

(17) P is < A-directed closed if any directed X < P of size < A has a lower
bound in P.



Directed closure is certainly a stronger condition than mere closure as
any decreasing sequence is directed. This concept is important with regard
to Laver indestructibility, which comes up in chapter 4. In the same context,
we will will force that a certain combinatorial property holds in the generic
extension. This forcing will in general not have the desired closure property,
but will be sufficiently strategically closed.

Definition 1.3.2. Let P be a forcing and « an ordinal.

(i) For v an ordinal, G(P, o) is the following two player game of perfect
information of length a: The goal is to construct a decreasing sequence
(pg|B < o) in P. The game starts with player I playing po = 1p. If
(ps|B < 7) has already been played for some v < « then it is player
I to play if v is odd and player I] to play if v is even. In any case,
a legal move is a p, which extends every pg for § < 7. If there is
no such legal move, player I wins the game (notice that this can only
happen at a limit stage «, where it is player I to play). Otherwise, if
the game reaches stage «, player II wins.

(1) A strategy in the game G(P,«) for a player is a complete plan of
action for every possible configuration where this player is asked to
make a move. More formally, a strategy for player I[ is a function
which maps every decreasing sequence (pg|3 < ) to a legal move p,
(if there is one) for v even, similarly for player I with v odd. If o7, oy
are strategies for players I and I respectively, then there is a unique
outcome O(or,0r1) = {pg|B < ) which is the result of always playing
according to the strategies. If player I has won, then v < « and the
sequence can not be extended further. Otherwise, v = a and player
11 has won. A strategy is a winning strategy if it wins against every
possible strategy of the opposing player.

(7i7) The forcing P is said to be < A-strategically closed if player I1 has a
winning strategy in the game G(P, A + 1). Notice that the last move
player II plays in this game extends a decreasing sequence of length
A. P is < A-strategically closed if player I1 has a winning strategy in
the game G(IP, A). Note that this is in general a stronger assumption
than being < a-strategically closed for all @ < A.

Remark 1.3.3. We have defined a strategy as a function that prescribes a
legal move at any possible state of the game. However, when we explicitly
define strategies, we will usually only prescribe an action at positions that
are important for the argument and neglect positions that are irrelevant.

Any < A-closed forcing is < A-strategically closed since any strategy for
player I7 is in fact a winning strategy in the game G(P, A+ 1). On the other
hand, every < A-strategically closed forcing does not add new sequences of



ordinals of length < A. This latter concept is known as < A-distributivity.
To be precise, a forcing is < A-distributive if the intersection of A-many
dense open subsets is again dense. This directly implies that P does not
add new ordinal sequences of length < A\ and the inverse implication is true
for all separative forcings. Since all forcings considered in this thesis will be
separative, we will use these two properties interchangeably.

Proposition 1.3.4. IfP is < \-strategically closed then it is < \-distributive.
Consequently, if P is < A-strategically closed then it is < \-distributive.

Proof. Assume (D, |a < \) is a sequence of dense open subsets of P. Let o7
be the strategy for player I which demands him to extend po, to a condition
P2a+1 € Do at stage 2a + 1. Let op; be a winning strategy for player I1.
These strategies build a sequence O(oy,077) = {pa|a < A) and by the choice

OfU[,p)\Eﬂa<)\Da. ]

Lemma 1.3.5. [Cuml10] If X is a cardinal and P,Q are forcings such that
P is A-cc and Q is < A-strategically closed, then:

Ip - “Q is < A-distributive”

Proof. Let G x H be P x Q generic over V. Assume f is a P x Q-name with
Ipxg IF “f : 4 — Ord is a function” for some v < . Define subsets of Q
for a < 7:

Do = {g€ Q3A € P max. AC such that Vp e A (p,q) || f(&)}

The D, are dense: Let ¢ € Q. Define a decreasing sequence {g,|av < 25)
in Q and a maximal AC {(p,|la < ) in P. Find ¢1 < ¢q and py € P such
that (po,q1) || f(&). g1 shall be the first move of player I. Let player IT
play according to a winning strategy in the game G(Q, \). If gop41,pp are
defined for all § < ¢ then first of all £ < A as {pg|B < &} is an antichain.
If this is a maximal antichain, stop the procedure and let § = £. Else, find
p incompatible with all pg and let ga¢ be the next move of player I that
extends all gg for 8 < 2. Now let (e, @2e+1) < (D, q2¢) with (pe, qaes1) ||
f(@).
By the A-cc of P, § must be less than A. We let player I play one last
move to find some g5 that lies below all gz for 8 < 26. Now {pg|f < 4} is
a maximal antichain and (pg, g25) || f(d) holds for all 8 < §. Thus ¢o5 € Dy,
and go5 < ¢. This implies that D, is dense and it is certainly open as if
q € D, witnessed by A € P then this A works for any ¢/ < q.
Finally, find ¢ € H n (), Do using the < A-distributivity of Q (which is a
consequence of < A-strategical closure). Let A, be a maximal antichain of
[P that witnesses ¢ € D,. We see that FEXH (q) is the unique z such that the
unique p € G n AS,, decides f(@) as 2. Hence f&*# is definable in V[G].
O



1.4 Elementary Embeddings and Extenders
We mostly follow [Kan09] and [Cum10] here.

Definition 1.4.1. Given two e-models (M, €) and (N,€), amap j: M —
N is an elementary embedding if for every e-formula ¢(zo,...,x,—1) and
parameters ag, . .., a,_1 in M, the following holds:

(M, €) = ¢lag, .-, an—1) < (N, €) = ¢(j(ao), - -, j(an-1))

Usually we just write M for (M,€) and N for (N, ). Moreover, the critical
point crit(j) of j is the least ordinal moved by j, if there is any.

Lemma 1.4.2. [Cum10] Suppose M is an inner model and j : V — M is
an elementary embedding, G is P-generic over V. and H is j{IP)-generic over
M. Suppose j|G] < H. Then j lifts to an elementary embedding

j*VIG] - M[H]
with 55 1V = j.
Proof. We have to extend j to evaluations of P-names. Thus we define
(&%) = j(2). Notice that since & is a P-name, j(&) is a j(P)-name.

Claim 1.4.3. jt is welldefined.

Proof. Suppose ¢ = ¢“. Find p € G with p - ¢ = ¢. By elementarity,
M E j(p) I+ j(2) = j(y). By our assumption, j(p) € H. Hence j(z) =
i@ O

jT really extends j as
i) = j@%) = j@" =) =i
and so it is only left to show that j© : V[G] — M[H] is elementary. Let ¢

be an e-formula. For simplicity, we assume that ¢ only has one free variable.
Let a = a© € V[G]. We have:

VIGl F ¢la) ©Ipe GV = p ke ¢(a)
=3ge H M = q I-jp) p(a) < M[H] = ¢(a)

The middle implication follows by elementarity as j[G] < H. Lastly, observe
that just this one direction is enough for elementarity. O

Next, we look into a way to approximate elementary embeddings by
much better controllable ones, that is embeddings which are induced by
ultrafilters. This has the advantage that we know exactly how the target
models look like. They will be quite thin after some point, which allows us
to lift these embeddings more easily.



Definition 1.4.4. Suppose M is an inner model and j : V' — M a nontrivial
elementary embedding with critical point x. Let 8 > x and ¢ minimal with
B < j(¢). p will be the variable that controls the degree of approximation.
In most cases, we will have 8 = j(k) and thus ( = k. For a € 5<%, let

By = {X < (Maej(X)}
and € = {Ey|a € f=¥}. Then & is the (k, B)-extender derived from j.

The standard arguments show that the F, are all ultrafilters and thus
induce an elementary embedding j, : V. — Ult(V,E,). One can check
that for every a € 5<%, j factors as k, o j, where k, : Ult(V,E,) — M is
an elementary embedding defined via k.([f|g,) = j7(f)(a). In particular,
Ult(V, E,) is wellfounded and so we will identify them with their transitive

collapse. Now suppose a € b € =¥, say b = {ap,...,n—1} and a =
{aig, ..., a4, ,} in increasing order respectively. Let m, @ 8% — [ be
given by

Wab({ﬁOy . Bn}) = {61'()’ ) Bim_l}

where the sets are again represented in increasing order. Then the map

Jab : ULV, Eq) = ULV, Ey), Jap([f1E.) = [f © Tab] B,

is an elementary embedding between the corresponding ultrapowers and
these maps cohere in the sense that j.; © jo = J5-

Definition 1.4.5. In this situation, we will write (Mg, (Jugla € f=%)) for
the direct limit of the directed system

ULV, Ea)la € 5=, (Jala S b€ B=))

and je : V. — Mg for the elementary embedding given by j.s © j, (for any
a€ f=v).

Since each Ult(V, E,) embeds into M via k,, and since these embeddings
cohere with the jup via jup © kg = kp, the universal property of the direct
limit yields an elementary embedding k : Mg — M with ko j, = k, for all
a € B~ and thus k o j¢ = j. In particular, M¢ is wellfounded and thus we
will always assume that Mg is transitive (and hence an inner model).

Fact 1.4.6. [Kan09, Lemma 26.1] The following hold:
(i) Me = {je(f)a)lae 5=, f: 6l -V}
(ii) If |M,|M < B then M, = (Mg), and ke(z) = x for all x € (Mg),.

(7i1) crit(je) = k and je(k) = .



Remark 1.4.7. With the above fact, we can conclude that if 3 is inaccess-
ible in M (as will be the case in any application in this thesis), the maps
jas are given by:

Jag([f1E.) = je(f)(a)

The reasoning being that k(«) = « for all a < 3 is a consequence of (i) by
our assumption on 3 and hence k(a) = a for all a € §<“. We compute:

k(Jag([f1E.)) =k © jag([f1E.) = ka([f]E.)
=j(f)(a) = k(je(£))(k(a)) = k(je (f)(a))

And so the assertion follows from the injectivity of k.

Without deriving such an extender from some embedding j, it is possible
to axiomatize how a system of ultrafilters (E,)qep<« shall behave in order
to make the above construction work nonetheless. This yields a first order
definition of an (k, §)-extender £ such that the (k, 5) extender derived from
the resulting embedding jg¢ is again £. This implies that a large cardinal
axiom which we will define later is first order definable. We state another
fact that we will use later on.

Fact 1.4.8. [Cum10, Proposition 9.4 1.] If € is a derived (k, 3)-extender
(again with B < j(k)) and we lift je to j& : V]G] —» M[H] as in Lemma
1.4.2 and ET is the (k,B)-extender derived from jZi, then je+ = j& and
Mg+ = M¢[H].

Lemma 1.4.9. Suppose je : V — Mg is a (k, 5)-extender embedding derived
from j with B < j(k). Suppose that P is < k-distributive. If G is P-generic
over V' then the upwards closure H of je|G] in je(P) is je(P)-generic over
Mg. Thus je lifts to an embedding j& : V[G] — Mg[H].

Proof. Suppose that D € jg(P), D € Mg is dense open. We have to show
that H n D # . Since jg¢ is a derived (k, 5)-extender embedding, we can
find a map f: k=¥ — V and a finite sequence a € =% such that je(f)(a) =
D. Now jg factors as jae © jo. Let g = f | 619, Then jue([g9]a) = je(f)(a)
and hence [g], is a dense open subset of j,(P) in Ult(V, E,) by elementarity
of jue. By Lo$’s Theorem:

{b e k1| f(b) = g(b) is a dense open subset of P} € E,

Thus we may assume without loss of generality that ran(f) only contains
dense open subsets of P. Since P is < k-distributive in V, [ ran(f) is still
dense open. Since G is P-generic over V, there is some p € G n [ ran(f).
Hence by elementarity, je(p) € je[G] n (\ran(js(f)) and in particular,
je(p) € je[Gl nje(f)(a) € H A D. O

10



Proposition 1.4.10. Suppose £ is a derived (k, B)-extender (say from j).
Again let ¢ be minimal with §() = B. If A = ¢ ,je[\] € Mg and M(B=¥) <
Mg then *Mg < Mg.

Proof. 1t is enough to show that every set x € M of size A is in M. Write
x = {je(fy)(ay)|y < A}. Let h: (=% — V such that

h{a) : A =V, h(a)(y) = f+(a)

for all a € (<. For n < w, let h,, = h | (" and similarly for g. For a given a,
[1q]E, 1s & function with domain j,[A] S dom([hx]E,), by Lds’s Theorem.
Furthermore, if |a| = |a,|, then [k ]&, (ju(7)) = [f4]E, since

{ee Bn()(7) = ()} = (¥ e E,

and thus

Jag([hn] £.)(Ge (7)) = Jag ([hn] £.) (Gag (ja(7)))
=Jag ([n]E.(Ga(7))) = Jae([f1]E.) = Je(f5)(a)

This shows:
Je(h)(ay) (e (1) = Jare([May || Ea,, (Ja, (7)) = Je(fy)(ay)

Let A = {(a,,j(7))ly < A}. After currying, we may write (with abuse of
notation):

x = je(h)[A]
Hence it is enough to show A € Mg and since je¢[\] € Mg we may only show
(ay)y<x € Mg, but this is given by one of our assumptions. d

1.5 Miscellaneous

In this section we present a few result that resisted to fit into a prior category.

Proposition 1.5.1. [Gol93] If k is reqular and x € H, then there is an
ordinal A < k and a sequence {xo|a < X) of sets in H,, with the following
properties:

(1) Ya < Xz S {28]8 < a}
(1i) oy ==z

Proof. Suppose the claim holds for all y € z. Enumerate x as z = {39|6 < v}
and find a witnessing sequences (y|a > X\°) for every 3°. Let A = 35, \°
be the ordinal sum and let {z,|a < A) be the concatenation of the sequences
(fla = A% for § < . Since & is regular and v < k, A < x. Finally, set
Ty = T. ]

11



Lemma 1.5.2. [Gol93] If k is regular, P is k-cc, P € H,, & is a P-name
and lp |+ 2 € Hy, then there is a P-name y € H, with 1p I+ = = y.

Proof. First of all, P does not collapse « by the r-cc. Find P-names S and A
such that for every generic G, S is a sequence of length A“ that witness the
statement of Proposition 1.5.1 for x. Since P is x-cc and k regular, we can
cover \ in V by a set of size < k and thus find some A < k with Ip IF A < .
Since we can always extend the sequence S in V[G] to a sequence of length
A with the same properties, we can assume that Ip |- A = A. Now, for each
o < A find a P-name 2, such that 1p forces z, to be the a-th point in the
sequence S. For every 3 < a < A, find a maximal antichain Ag, in

Dgo={pePlpl-ige i}
and by induction define

ya = {(y,@ap)|ﬁ <QaADpE Aﬁ,a}

It is left to show by induction that 3, € Hx and 1p I+ 4 = 9o. SO assume
this is true for all 3 < a. Since every yg and p € Ag, is in H, k is regular
and |Ag.| < Kk, we can conclude that g, € H,. Now suppose that G is
P-generic over V. We calculate:

98 = {518 <anGnAg, + T}

z{i‘g|ﬁ<aAGmA57a7&Q}
G

= {i5|8 < a rif €} =i

Here, the first equality holds by induction and the second by choice of Ag .
Finally, y = ¢, is as desired. O

Using the above result, one can prove the following by an induction over
the complexity of formulas. The essence of the next statement is that if p
forces a formula to hold in H,, then H, knows about this.

Fact 1.5.3. [LS16, Lemma 1.2.3] Suppose k is reqular and P € H,. Then

for p € P and any formula p(xq,...xn—1) and P-names Zg,...,Tn—1 with
p I+ x; € Hy, there are P-names 9o, ..., Yn, € Hy with p - 2; = y; fori <n
so that

pIF o(E0,. - s dn1)* & He = p - 0(J0, - -+, Y1)

Lemma 1.5.4. Suppose that k is a cardinal of uncountable cofinality and P
is a forcing of size < cof(k). Then all stationary subsets of k in V remain
stationary in V[G].

Proof. Suppose C' € V[G] is a club in &.
Claim 1.5.5. There is a club D < C in V.
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Proof. Let C be a P-name for C so that 1p I- “C € & is a club”. Let D
be the set of all &« < k such that 1p I+ & € C. Tt is clear that D is closed.
Given a < k we have to find some element of D above a. Construct an
increasing sequence {a, € kln < w) by induction. Let ap = a. Given ay,
we can find for every p € P some g < p and ;) > ay so that g, I+ Bg‘ eC.
Let an41 = sup{B,|p € P}. Since P has size < cof(k), ant1 < k.

Let ay = supp<w an < k. By construction, the set

Dn={qePlg-38 én < B < dny1 ABeC)
is dense for every n < w. Since C is forced to be closed, 1p I . € C. O
If D is as above and S € « stationary in V then CnS 2 DnS # ¢. O

Lemma 1.5.6. Suppose P is k-cc and Q is a P-name for a k-cc forcing for
K reqular. Then P = Q is k-cc.

Proof. 1t is enough to show that if & is a P = Q—name for an ordinal then
there is a set X of size < k with Ip.o IF & € X. We can naturally identify ¢
with a P-name for a Q—name &, so that whenever G = H is P = Q—generic then
aC*H = (G9)H | If G is P-generic then as Q = QF is k-cc, there is a cardinal
A < k and a function f : A — Ord so that 1g I- &% e ran f. Going back
to V, this shows that there are P-names ).\, f that are forced by 1p to have
the above properties in the extension. Now as P is x-cc, there is a set Z of
cardinals < k of size < k that covers \. Let 0 = sup Z which is less than &
by regularity of x. Again by the x-cc of P, we can find a set Xg of size < x
so that 1p |- B € dom f — f(B) € X for every 8 < 0. Now X = Up<o X5
is as desired. O
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2 Set-Theoretic Geology

Set-Theoretic Geology is motivated by a change of perspective regarding the
tool forcing. Usually, forcing is used to construct a model that satisfies some
specific properties. One starts with a model V' and produces a larger model
V|G] that contains some generic object G. That means that traditionally,
the perspective is directed upwards in this setting. Here, we direct our
attention downwards. We do not ask “Where are we going?”, but rather
“Where are we coming from?”. This view is already cemented in the most
basic definition in this context. We shift from looking at extensions to
focusing on grounds

Definition 2.0.1. If V = W|[(G] is a forcing extension of some inner model
W of ZFC, then W is called a ground of V.

We will mainly follow [FHR15] and [Rei06] in this chapter.

2.1 Definability of Grounds

As we want to analyze the structure of grounds, it is necessary for models of
Z FC to be able to talk about their grounds in the first place. The following
could thus be called the fundamental theorem of Set-Theoretic Geology.

Theorem 2.1.1. (Definability of Grounds Theorem) The grounds of V are
uniformly definable. This means that there is a first order formula ¢(z, 1)
with the following properties: For r € V set W, = {z|¢p(z,r)}.

(i) For any r, W, is a ground of V with r e W.
(1) If W is a ground of V then for somer eV, W = W,.

Remark 2.1.2. For the second condition to make sense, we implicitly sup-
pose that V is a countable set in some large background model. A different
approach would be to formulate this statement in the second order set theory
GBC.

To show that grounds are definable, it is essential to be able to uniquely
characterize a ground W and its initial segments via simple properties. In
the end, we want to be able to say that “W, is the unique subset of V,, in
which the bounded subsets of § are exactly r and which has certain properties
(that depend on ¢)” for arbitrarily large a and some (single) §. This allows
us to define W over its initial segments. Next we introduce these properties
which were first formulated by Hamkins in [Ham03] and have proven very
useful in Set-Theoretic Geology.

Definition 2.1.3. Assume M S N are transitive classes and ¢ is a regular
cardinal in N.

14



(i) M < N has the d-cover property if for every x € M, x € N of size < §
in N, there is a cover y € M of z, x € y, of size < § in M. We will
call such y a d-cover of x.

(17) Given z € M, x € N and a € M of size < 0 (in M), we call z na a
d-approximation of x in M. M < N has the J-approximation property
if every such x for which all §-approximations of z in M are members
of M, are itself in M, i.e. x € M.

Remark 2.1.4. The J-cover and approximation properties are respectively
equivalent to the d-cover and approximation properties restricted only to
sets of ordinals, given that both classes are transitive models of (a suitable
fragment of) ZFC. This is because if z € M, then x € M, for a = rk(z)".
Then one can find a bijection f : M, — &, f € M for some cardinal x and
apply the respective properties to f[z] € k. Reversing this construction
yields x € M.

The unique characterization of certain subsets of V,, only works in case
we have a sufficiently large fragment of ZFC present. This fragment was
isolated by Jonas Reitz in his dissertation [Rei06].

Definition 2.1.5. Let S5 = {€, 5} be the first order language consisting of
the usual binary relation symbol € and a constant symbol 6. ZFCys is the
Ss-theory consisting of the following axioms:

(i) the axioms of Zermelo set theory (extensionality, set existence, pairing,
separation, union, power set, infinity)

the well-ordering theorem
the statement “every set is coded as a set of ordinals”
“§ is a regular cardinal”

the d-replacement scheme: For a {€}-formula ¢(z,y, 20, ..., 2,—1) this
scheme contains the formula

V20, ..., 2n_1Vz € 83y ¢(x,y, Z) > Javb(b € a © Ic€ b ¢(c, b, 7))

Remark 2.1.6. (i) Usually, when working with a Ss-structure M, we
will write 6 for 6. If we have previously defined a regular cardinal ¢,

we will always assume that any Ss-structure appearing afterwards has
oM =5,

(74) Since not all versions of the axiom of choice are equivalent under just
Zermelo set theory, we chose the well-ordering theorem as a represent-
ative and for convenience.
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(797) Notice that the d-replacement scheme is just the standard replacement
scheme restricted to functions with domain 9.

The word “code” is used quite freely in set theory, so let us make sure
we specify exactly what is meant here.

Definition 2.1.7. Given a class M and © € M, we say that x is coded
as a set of ordinals in M if there is an ordinal o, R € « X « such that

(o, Ry = (te({z}), €).

Remark 2.1.8. (i) The above definition might seem strange as R is not a
set of ordinals. However, one can usually think of R as a set of ordinals
if one takes its pointwise image under an injection a x a — Ord. One
can even choose this injection uniformly, for example as (the inverse of )
the Godel pairing function. Nonetheless, the above definition manages
to refrain from making further assumptions on M.

(17) Under ZFC, every set is coded as a set of ordinals (de facto this is
equivalent to the axiom of choice under ZF'). Given a set x, find a
bijection f : a — tc({z}) for some ordinal a. We let

R={(8,7)eaxalf(B)e f(y)}
so that f: {a, R) — {tc({z}),€) is an isomorphism.

In the next argument, we want to be able to apply Mostowski’s theorem
in the context of ZFCjs, however we cannot do so in general as one needs
full replacement to do so. Observe however that ZFCy proves Mostowski’s
theorem for structures (A, E) of size < d. This is in fact all we need.

Lemma 2.1.9. Assume U is a transitive model of ZFCs and M,N < U
are transitive substructures that also satisfy ZFCs. Suppose the following:

(i) 07 is constant across M,N and U.

(1i) M, N < U both satisfy the §-cover and approximation properties
(iid) (92)M = (52
Then already M = N.

Proof. First of all, the d-cover property of M, N € U assures that the state-
ment “x has size < ¢” is absolute between these models. This is because
any bijection f : « — x for some o < § in U can be covered by A € M,
AC axzofsize k <6 in M. From A, M is able to construct a surjection
g:ax A — xfor some A < §, so x has size < § in M. The same works for V.
Furthermore, as 0" is evaluated equally in all three models, the statement
“r has size 0” is also absolute between all three of them. Statements about
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sizes will always be regarded from the perspective of U.
The proof will proceed through several steps.

Step 1: P(&)M = P(5)N.
Let x € P(6)M. Clearly x € U. By (iii), every d-approximation of 2 in N
is in N. As N € U has the d-approximation property, x € N and hence
P(M < P(§)N. Equality follows from the symmetry of the argument.

Step 2: M and N have the same sets of ordinals of size < §.
Assume x € M is a set of ordinals of size < §. I claim that = is contained
in some y € M n N of size 4. That means that there is some uniform cover
that is contained both in M and N. The construction will take place in
U and will make use of the well-ordering theorem by implicitly choosing
desired sets via a well-order on P(sup z)V. We define yX for o < § and
K = M, N by induction. Let y € K be a é-cover of z. If yf is defined for
all y < « and K = M, N, then let z, = (Uw<ay§”) v (Uv<ayév). First of
all, x, € U as U models Zermelo set theory and the d-replacement scheme.
Furthermore, z, has size < § as J is regular. Thus we can define yX € K to
be a d-cover of x,, for K = M, N.
Let y = U5 ygf = U,<s yév We use the d-approximation property of
M, N < U to show that y € M n N. Let K be either M or N. Let a € K of
size < 0. By regularity of §, there is some a < § such that y na U7<a yff
This implies that y na = y& +1 N a€ K. Since every d-approximation of y
isin K, ye K.
Without loss of generality, y only contains ordinals. Now find a well-order
< € M on a subset of § of ordertype otp(y). The Godel Pairing function
restricted to 6, G : § x § — 9, is contained in both M and N. By Step 1,
G|<] € N and thus < € N. < induces a homomorphism f : (y,e) — {4, <).
To be precise, f is the concatenation of the Mostowski collapse of (y,€)
and the inverse collapse of (9, <), which both exist in N as these structures
have size 6. In N, we can now reconstruct x from y € N, f € N and
flz] e P(6) < N. That f[x] is a set in M follows from the é-replacement
scheme as z is a set of size < §. We conclude x € N. By the symmetry of
this argument, M also contains all sets of ordinals of size < § of N.

Step 3: M and N contain the same sets of size < §.

If Ae M, then A is coded as a set of ordinals in M, i.e. there is o an ordinal
R < axa with (tc({A}),e) = (o, R). Via Godel pairing, we can understand
R as a set of ordinals. By Step 2, R € N. Applying the Mostowski collapse
to the structure (o, Ry in N yields a structure (B, €) that is transitive from
the perspective of N and is isomorphic to (o, R). As N is transitive, B
is really transitive. As M is transitive, tc({A}) is transitive as well. This
implies B = tc({A}). Using the transitivity of N once again we get A € N.
As usual the other direction follows from symmetry.

Step 4: M = N.
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Let A € M be any set. Step 2 shows that N contains all J-approximations of
Ain N. By the d-approximation property of N € U, x € N andso N € M.
Again by symmetry, the reverse inclusion follows.

O

The following definition is thus justified.

Definition 2.1.10. Suppose N is a model of ZFCs and M < N is a sub-
model of ZFCj so that 6T is the same in M, N and so that the d-cover and

approximation properties hold. Then we call M the (unique) r-substructure
of N where r = (<92)M,

Fortunately, the necessity of satisfying ZFCjs in the above lemma isn’t
too restrictive. The next proposition shows that V,, i ZFCjs for class many
« for any given interpretation of § as a regular cardinal.

Proposition 2.1.11. If ¢ is a regqular cardinal and k is a 3-fized point of
cofinality > & then V,, = ZFCs.

Proof. We must show that (i) — (v) of Definition 2.1.5 are satisfied in V.

(i) + (i1) As k is an infinite limit ordinal, V,; satisfies Zermelo set theory and
well-ordering theorem.

(#4i) By induction one sees that |V,4+4| = 3o for all ordinals a. Since  is
a J-fixed point, and of course w + k = k, we have |V;| = k. If z € V,,
then « € Vj for some 8 < k. As Vj is transitive, tc({z}) < V3. In
particular o = |te({z})| < |V3| < 3g < k and thus a € V,,. With this
we can see that after the construction of Remark 2.1.8, the code R for
x is in V. Thus every set in V, is coded as a set of ordinals in V.

(tv) 9§ is a regular cardinal in Vj; as it is in V.

(v) Here, we have to show that V,; is a model of the d-replacement scheme.
So let ¢(x,y, 20, - - -, 2n—1) be a e-formula that is functional on ¢ in Vi
for given parameters z' € V,,. This induces a function f : 3§ — V. As
cof(k) > 9, the function rk o f : § — k must be bounded by some £3.
But then ran(f) € Vg1 S Vi.

O]

Remark 2.1.12. Actually, we will need a little more. The above theorem
states that the structure (Vj,€,0) satisfies the system ZFCys from the per-
spective of the meta-theory. What we actually need is that V = “Vj |
"ZFCys"”. The brackets ", " indicate that this is the theory ZFCjs as form-
alized in V', opposed to the ZFCj of the meta-theory. This includes the
formalized single axioms of ZF Cjs, as well as the formalized axiom schemes
of separation "Sep' and J-replacement 'Reps'. The single axioms ¢ (for
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example the extensionality axiom) are unproblematic as V,; = ¢ is equival-
ent to V | “V, = "¢"”. However, the formalized schemes contain every
formalized instance of it for every formalized formula.This means we have
to show for example V' | “Vk € Fml V,, = "Sep'(k)” where Fml is the
set of formalized formulas and "Sep'(k) is the formalized separation scheme
with instance k € F'ml. F'ml includes all “standard formulas” of the form
‘@', but might contain nonstandard formulas that cannot be represented in
this from. Showing V' = “V, = "ZFC;" is however virtually the same as
the above proof. For formalized separation this amounts to showing that
{a € x|V, = k(a,z,7)} € Vj for a formalized formula &k and that is clear. In
the same way for formalized -replacement, any functional k € F'ml gener-
ates a function f as in the proof above.

The next definition is only for convenience for now, but becomes more
essential later on.

Definition 2.1.13. A ground W is called a d-ground if there is a forcing P
of size < § in W such that V is an extension of W via P.

Since we want to use Lemma 2.1.9 to define grounds, we need to show
that grounds satisfy the d-cover and approximation properties for some large
enough 4.

Proposition 2.1.14. [HJ10] Suppose ¢ is reqular and P = Q is a two step
iteration such that P has size < 0, is nontrivial and lp |- “Q s < 0-
strategically closed. Then for any generic G+ H, V € V|G = H| satisfies the
5" -cover and approximation properties.

Proof. V < V[G] has the §"-cover property: Assume z €V, x € V[G] is of
size < §. Let & be a P-name for x and f a P-name such that Ip I “f : 0 - &
is surjective” for some 6 < §. Let

y ={a|Ip e P, a<9p|l—f(d)=é}

be the set of possible elements of 2. For every p € P and a < 6 there is at
most one a with p I+ f(&) = G Hence y has size at most |P| - 0] < § and
1p - 4 < 4.

Since H does not add any new subsets of V' of size < §, V € V|G = H]|
satisfies the d "-cover property.

W < V has the §*-approximation property: First of all, enumerate P as
{pala < 6} (not necessarily injective). Suppose x € V[G = H] is not in
V. Thus we can find a P = Q—name Z for x such that 1]},,*@ -z ¢V, ie.
1]})*@ I+ x # Z for every z € V.

Claim 2.1.15. For any (p,q) € P«Q there is a set a = a(p, §) and a P-name
d = q(p,q) € dom(Q) such that:

19



(i) Ip -4 <q
(ii) There are p°,p' < p with (p°,¢') - a € i and (p*,¢') - a ¢ .

Proof. By our assumption on #, there must be some a such that (p,q) k
“4 € ©”. This means we can find (p%, ¢’) < (p,q) with (p°,¢°) I~ @ € & and
(p',¢') I+ @ ¢ &. Since P is nontrivial, we may choose p”, p* incompatible
with one another. We can extend these two conditions to a maximal anti-
chain A of P. We can now build a P-name ¢’ so that (¢')¢ = (¢*)“ whenever
p' is the unique element of G N A and (¢')¢ = ¢ if p' ¢ G n A for i < 2,
for any P-generic G. Without loss of generality, ¢’ € dom(Q). Then ¢’ is as
desired. O

Now let o7 be a P-name for the winning strategy witnessing the < 4-
strategic closure of Q in the extension by P.

Claim 2.1.16. There is a sequence {ju|a < §) in dom(Q) such that for all
a<d:

(1) Ip - 4o < gg for f < a

(t7) If o« = 2B + 1, there is a set ag and p}; < pg for i < 2 such that
(P}, 4a) I+ ag € & and (pj, da) I+ ap ¢ &

Proof. Assume a = 28 < §. By induction, we can assume that 1p forces
that the sequence constructed up to « is the outcome of a play in G (Q, &)
where player I played according to some strategy o and II according to
the strategy o restricted to this shorter game. Let ¢, € dom(@) be a name
for the next play according to oyr. If o < 9, we let c'r}"+2 be a P-name for the
strategy extending ¢ by playing ¢(ps, ¢) at stage a+1. Set ag = a(pg, ¢a)-
By the first claim, we have extended the sequence as desired. O

In the above argument, we may as well incorporate into the strategy of
player I to make sure that his first move is below a given ¢ € dom(@). This
shows that the endpoints of sequences with the above properties are forced to
be dense in Q, so that we can assume q'(;G € H. Let A = {ag|B < }. Suppose
zg = xnA€V. Then there is (p, §) < (Ip, gs) such that (p,q) I- Zg = Ani.
But then p = pg for some 3 < ¢ and thus for o = 28 + 1, pfg < pg for
i < 2and (p},q) < (P},da) - ap € & and (pg,q) < (P, da) I+ ap ¢ &, a
contradiction. Thus not every ¢ *-approximation of z is in V. O

Remark 2.1.17. Since the second step in the two step iteration may be
chosen trivial, the above proposition shows that whenever W is a §-ground,
then W € V has the d-cover and approximation properties.

Proposition 2.1.18. The statement ‘O is a strong limit cardinal of cofinal-
ity > k7 is downwards absolute to inner models.
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Proof. Let W be an inner model and suppose the statement is true in V.
Clearly cof()V = cof(#)V > k. Let’s show |[2% |V < 3V by induction on
. The base and limit cases are trivial. If |3 |V < ¥ then |3V|" <
(23)V < (23)V =2V, | . Clearly 3 > 6. On the other hand [2%|V <
JY < 6 and thus 2% < 0 for all @ < 0. But then 3}V = supa<p3Y < 6. O

With the last few lemmata and propositions we have collected all the
tools we need to show the definability of grounds.

Proof. (Theorem 2.1.1) We have already mentioned the general idea for this
proof. We can make this more precise now: Suppose 9 is a regular cardinal.
If W is a é-ground then W < V satisfies the d-cover and approximation
properties by Proposition 2.1.14 and the same is true for W, € V, for all
limit «. Define Cys as the class of all J-fixed points of cofinality > §. Pro-
position 2.1.11 states that V,, = ZFCs for all a € Cs and furthermore the
same is true for W, by Proposition 2.1.18. This already shows that every
ground W is definable from the parameter r = (<92)" as the union of the
unique r-substructures of the V,, for a € Cj.

For the uniform definability of grounds, we basically have to do this back-
wards. That means we start with r and have to reconstruct W. We define
W, via the following steps. The first order formula ¢(x,r) can be extracted
from this procedure.

Stage 1: Here, we try to recover § from r. If r is not a set of 0 — 1 se-
quences with ordinal domain, then this stage fails. Otherwise § =
sup{dom f|f € r}. This stage can also fail if § is not a regular car-
dinal.

Stage 2: For the mean time, we cache W, as the union over the unique
r-substructures of V,, for o € Cy. If any one of them does not exists,
this stage fails. Notice that for two sets m S n, it is possible to check
whether or not m is the r-substructure of n in one first order formula.

Stage 3: We perform the last sanity checks. Firstly, we check in one single
first order formula whether W, is an inner model. This can be done
via the inner model criterion (Theorem 6.2.4).
Next, if the last step succeeded, we check if W, is a ground of V. This
can be done by looking for a forcing P € W, and a G € V which is
P-generic over W, such that for all z € V there is # € W, with z = @,

This succeeds if and only if W, is a ground of V.

If all stages were successful, we let W, = W,. If any failed, we just take
W, =V.

The first part of this proof shows that if W is a d-ground, then W,. = W for
r = (<2)". On the other hand, if W, # V, then r must have passed stage
3 and thus is a ground. Clearly r € W, for any r. O
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2.2 The Ground Axiom

The uniform definability of grounds allows models of set theory to talk about
the structure of their grounds in a first order sense. This can be understood
as a dual to the forcing theorem, which allows models to talk about their
forcing extensions in a first order sense.

Definition 2.2.1. (The ground axiom) The ground axiom (GA) is the sen-
tence “Vr W, = V7.

The ground axiom states that there are no nontrivial grounds. This is of
course the most simple structure the grounds can have. The ground axiom
holds for example in Godels constructible universe L, which is a consequence
of L being the minimal inner model (and the absoluteness of L). The same
is true for other canonical inner models such as L[0%] since the existence of
0% is absolute between grounds and extensions. Clearly, any nontrivial set
forcing forces the negation of (GA). On the other hand, using class forcing
it is always possible to force the ground axiom, so (GA) is not reserved for
small inner models.

Theorem 2.2.2. There is a class forcing extension V|G| of V' which is a
model of (GA). Even more, for any given o we can arrange V[Glo = Vy.

The strategy for the above theorem is to iteratively code sets into the
GCH pattern.

Definition 2.2.3. We make precise what this means:

(1) A set of ordinals x € « is coded into the GC'H pattern if
I6Vy < « WMp+r+1 = Ngiyj2 > YET

In other words, to every 5, we can define the 0 — 1 sequence of length
a which corresponds to whether or not the GCH holds at Vg .
The above formula holds if and only if for some 5 this sequence is the
characteristic function of x in «.

(77) The Continuum Coding Axiom (CCA) states that all sets of ordinals
are coded into the continuum pattern.

Remark 2.2.4. If (CCA) holds, then in fact every set of ordinals  must be
coded into the GC'H pattern unboundedly often. This is because every set
of ordinals z is a proper initial segment of class many other sets of ordinals,
which all must be coded into the GCH pattern. We can choose these sets
incompatible with each other, so that the position 8 at which the coding
takes place must vary. Then z is coded at each of these class many positions.

If x € « is coded into the GC'H pattern, then x is definable from « and
the corresponding position 3, so the (CC'A) is essentially a strong form of
V = HOD. It is useful for us as it does entail the ground axiom.
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Lemma 2.2.5. (CCA) implies (GA).

Proof. Assume W is a ground of V. Then the continuum functions of W
and V coincide eventually by Lemma 1.2.2. If x € « is a set of ordinals in V'
then there are arbitrarily large £ so that x is coded into the GC'H pattern
of V at position g. If g is large enough, the GC'H pattern of W is the same
as in V. But then z is definable in W from 8 and « as

= {7 <% = Rap 0}

This means that W contains all sets of ordinals of V. As in Lemma 2.1.9
we can conclude that V€ W and hence W = V. O

For Theorem 2.2.2 it is now enough to show that one can extend every
model of ZFC to one in which (CCA) holds. To do this we have to code
every set of V into the GC'H pattern, as well as every new set we add in
this way. It is possible to manage this via iterative bookkeeping, however
it is more appealing to generically choose each bit of the encoding. The
following concept is the perfect fit for this job.

Definition 2.2.6. Given two forcings (Po, <o) and (P1, <;), the lottery sum
(Po @ Py, <) is defined as the coproduct of the two forcings together with a
new maximal element. To be more precise:

P(] @Pl = (]P)o X {0}) () (]P)l X {1}) () {@}
and (p,i) < (q,7) iff i = j and p <; ¢. & is the new maximal element.

Notice that if G is generic for Py @ Py, then it is essentially either a
generic for Py or for P;. If there are no other restrictions on GG, then one can
think of this situation as a random binary choice of G to be either generic
for the first forcing or the latter. Because of this, Po@®P; is called the lottery
sum.

We will say that G chose P; if the second coordinates of (non-maximal)
conditions in G are ¢. Similarly we say that p € Py @ Py lies in P; if its not
maximal and has second coordinate .

On the other hand, every generic for Py or P is easily transformed into a
generic for Py @ P;. It seems like one looses a bit of control when using the
lottery sum in a forcing construction, but it can be useful in iterations or
products if one does not want to make these binary choices by hand. One
can let these happen generically.

In the case of forcing (G A) we will use the class iteration with Easton support
P(r) = ((Pg|r < 0),(Qq|r < 0)) where Qy is a Pg-name for Add(01, 0@
{1} (as defined in the extension) if # is a cardinal and a name for the trivial
forcing otherwise. We will see that P(x) forces (CCA) given that GCH
holds in V' at and above k. The construction is a modification of [Rei06,
Theorem 10] by using lottery sums.
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Lemma 2.2.7. Let k be a cardinal such that GCH holds at and above k
and let G be P = P(k)-generic over V.

(4)
(12)
(iii)

(iv)

P preserves ZFC.
P preserves all cardinals.

In V[G], if the generic G chose the trivial dorcing at stage X > k
cardinal, then GCH holds at \*. Otherwise 22" = \T+.

Every bounded subset x of k is coded into the GCH pattern of V[G].

Proof. (i) In the language of [Rei06], P is a progressively closed iteration.

(i)

Thus Theorem 95, in the above source, yields that P preserves ZFC.
Note that we may consider V together with it’s definable classes as a
model of GBC, even with global choice after forcing to add a global
choice function without adding sets.

Alternatively, the proof of 2.3.8 (i) can be modified (and simplified)
to work here.

It is enough to show that every regular cardinal is preserved. We can
factor IP at stage A into P = IED>,\. The latter is forced to be < \T-
closed.

We will show by induction that Py has the A™-cc if X is regular and
the At *-cc if it is singular.

A = w: This case is trivial.

A = 6': By induction, P_y has the A\* = 67 "-cc. Furthermore, we
have that Add(0T,0%+T) is 671 = A*-cc by Lemma 1.1.3 (i) as
(67)? = 29 = #* and thus Qg<9 = Add(0F,0TTT) @ {1} is AT-cc
in V[G-g]. Now P_y = P_g * Qp is A*-cc by Lemma 1.5.6.

A € Lim(Card): As GCH holds above k, we have that

Pl < [1Qol < [[A=M =27

O<\ I<A

Hence P has the A™"-cc.

If X\ is regular then can use that P is Easton-supported. If A €
P_, is a set of size A" then there must be some Ay < A of
the same size and 6 < A such that dom(p) € 6 for all p € A,
since all conditions in Py have support bounded in A. But then
we can understand Ag as a subset of Py which has the 87 t-cc
by induction. But then Ay and in particular A cannot be an
antichain. Hence P_) has the A*-cc.
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(iii)

As P is < k-closed, it preserves all cardinals < k. Assume A > k is a
regular cardinal in V', but not in V[G]. This implies that there is some
6 < X regular and a cofinal function f € V[G], f: 0 — A\. We know
that Py has the §1-cc and that P»y = Pg;e is < f*-closed in V[G 4]
and thus it cannot have added f. We conclude f € V|G|, but this
means that Py has destroyed the regularity of A in contradiction to

its 1 < A-cc.

First assume that G chose the trivial forcing at stage A. Then we can
split G into Gy, a P.y-generic over V, and G-y, a P~y = Pg\“*{ﬂ})—
generic over V, such that V[G] = V[G<,][G=A]- We have that P~ is
Att-closed in V[G,]. Thus every sequence of ordinals of length A™ in
V[G] is already in V[G.y]. In particular P(AT)VIC] = p(A+)VIG<a],
Counting nice names for the forcing P, gives:

ate VG
(200) 71 2 (200) 190 < (oY < (Y =

On the other hand, suppose that G did not choose the trivial forcing
at stage A. Then G adds a generic g for Add(A*T,\***) and thus

(1) vie) +++ ] i
(2 > = A . For the other inequality, we can conclude as

above that P(A\H)VIC] = p(A+)VI¢<] and that GCH holds at At in
V[G<,]. By Lemma 1.1.3 (i7), Add(AT,ATTT) is ATt -cc in V[G-,].
Counting names again yields

(2()\+)>V[G] _ <2(A+))V[G</\] < ((|Add(/\+,)\+++)|)‘++))‘+)V[G<*]

< (()\+++)/\++)V[G<,\] — )\ttt

where the last equality holds as ATT* = A" in VIG<A]

i

Every p € P defines a “lottery” sequence I(p) : d(p) — 2 that describes
the outcome of the lottery for the condition p. We make this precise:
d(p) < dom(p) is the set of cardinals A\ € dom(p) so that either

p I AMF “p()) lies in the nontrivial part of Q,”

or
p [ Al “p(A) lies in the trivial part of Q"

In the former case, we define I(A\) = 0 and in the latter I(\) = 1.
Observe that if two conditions p,q are compatible then their lottery
sequences [(p), [{q) coincide on d(p)nd(q). In particular, the generic G
has its own lottery sequence [(G) = |, l(p) that corresponds to the
choices it has made along the iteration. Suppose = € p is a bounded
subset of x, i.e. p < k. Notice that V and V[G] have the same subsets
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of k as P is < k™ -closed, so that x € V. We have to show that z is
coded into the GC'H pattern of V[G], which will follow from a density
argument. Define a subclass D of P as:

D= {pe P8 Yy < a Ngp, € d(p) A (I(p)(Rpss) = 1 & 7 € 2))

If p € P is any condition, then we can find /3 so that dom(p) < Ng. As
[P is Easton supported and p < £ we can add conditions ¢(Rg;) to p
for v < p as we like and are guaranteed that the resulting ¢ is again
in P. In particular we can define ¢ in such a way that ¢ satisfies the
defining property of D with the § we have picked. This shows that
P is dense, so that the characteristic function of x in p appears as a
block in I(G). By part (iii), [(G) exactly describes the GCH pattern
of successor cardinals in V[G], that means x is coded into the GCH
pattern.

O

Proof. (Theorem 2.2.2) Let k = |V,|T. We can assume that GCH holds
in V at and above x as otherwise we would first extend via the canonical
Easton support product that forces this. Since this forcing is < x-closed, it
preserves V,. Now let G be P = P(k)-generic over V. First of all V[G] is
a model of ZFC with the same cardinals as V' by the above lemma. Since
[P also has enough closure, V[G], = V[G]. Now assume that x € X is a
set of ordinals in V[G]. Split G as Gy, a P-)-generic filter over V', and
Goy alPoy = Pg;*—generic filter over V[G<)]. As Ps) is < AT-closed, x is
already an element of V[G.,]. But now we have that P~ =~ P(\)VIG<xl,
Furthermore, the counting names arguments of part (ii7) in the above lemma
show that GC'H holds at and above A in V[G.,]. Part (iv) shows that x is
coded into the GC'H pattern of V[G]. O

2.3 The Mantle

A lot of the motivation of Set-Theoretic Geology comes from the hope to
find regular structure beneath the generic sets that are the result of forcing.
This takes the perspective that the general set theoretic universe is similar
to dry erosion-prone land that once was the home of a flourishing flora.
However by digging through the grounds, we should be able to uncover this
old and forgotten structure that has been buried by the accumulated dust
added by forcing.

It is not unreasonable to propose that such a structure should be digging-
minimal, i.e. should satisfy the ground axiom. However, we have seen
that one can turn the tables and add new generic sets to extend to such
a structure, rather than cleaning up and looking inwards. Since there are
extensions that satisfy the ground axiom and coincide with V' to an arbitrary
degree, ZFC + GA cannot have any >s-consequences that do not already
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follow from ZFC alone. One can come to this conclusion via the following
lemma, a proof can be found in the addendum.

Lemma 6.1.1. A formula ¢(x) is 247C if and only if
ZFC V2 (¢(z) @ Jaxe Vo AVy = "Y(x))
for some formula ¥ (x).

To round this up, the ground axiom does not fully capture what was
actually looked for. The downwards directed perspective motivates the next
definition, one that plays a central role in Set-Theoretic Geology and this
thesis.

Definition 2.3.1. The mantle M = (1), W, is the intersection of all grounds.

Is the mantle the promised land? Unfortunately, the first answer to this
question will be a hard no, in a way that is even somewhat worse than in the
case of the ground axiom. Also, if we take a quick glance at the canonical
inner models L and L[07] again, we see that since they satisfy (GA), they
are their own mantles (observe that trying to capture “V = M” resolves
in the ground axiom, so the two ideas are connected in this way). More
so, the mantle of every set forcing extension of L, L[0%] is again L, L[0%]
respectively. For L this is clear as it is the minimal inner model of ZFC' and
is always contained in every ground. For L[07], this holds as every ground
of every extension must also contain 0% since this set refuses to be added
by forcing. We will later see that this is no coincidence.

Theorem 2.3.2. [FHR15, Theorem 66] Any model V of ZFC has a class
forcing extension V[G] = ZFC such that MV = v,

This has the consequence that in general, the mantle does not have any
special properties. In particular, the mantle need not satisfy the ground
axiom, which might go a bit against the first unreflected intuition.

Let’s get back on track to the theorem above. Our construction will achieve
the ground axiom fails badly in the final model. More precisely, there will be
no bedroch. Ironically, the strategy is almost identical to forcing the ground
axiom. In fact if GCH holds, one can just take the product instead of an
iteration. We want to extend a model V using a class forcing to produce
a model V[G] with mantle V. Instead of coding iteratively all sets into
the GCH pattern that were added in a prior step as in Theorem 2.2.2, we
only code the sets of V' in the below construction. That is the reason we
use a class product instead of an iteration. A new obstacle is that we do
not want to start with a model of GCH or eventual GCH, so we have to
modify the forcing even more. In Theorem 2.2.2, we only had to force the
failure of GCH at certain stages. However in this situation the GC'H can
fail at a cardinal A already in V. That means that now we have to produce
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instances of GC'H and will use Add(A*", 1) instead of the trivial forcing in
the second component of the lottery sum to make this happen. We still have
one more problem to solve: Recall that a quiet but none the less important
part in the argument for forcing (GA) was that the forcing we used did not
collapse cardinals. This was necessary in order to ensure that the encoding
at each stage was effective. Since both Add(A*,\*T*1) and Add(A**,1) can
collapse cardinals without the assumption of GCH, we will code sets into
the GC H pattern relative to a rather spaced out class of cardinals that both
makes the construction easy and is robust in the sense that it will not be
changed by the forcing we use.

Definition 2.3.3. Suppose C is a class of cardinals and ((,|y € Ord) is the
increasing enumeration of C. We say that a set of ordinals z S « is coded
into the GCH pattern relative to C if

1Yy < a (GCH fails at ¢, & v € x)

Note that being coded into the GCH pattern according to Definition
2.2.3 is relative to the class of all successor cardinals. In this case, we choose
C = C, as the class of all strong limit cardinals above some cardinal « that
are not itself limits of such cardinals. Furthermore, having already the next
chapter in mind, we want to keep some flexibility in the forcing itself. Be-
cause of this, we will allow a sequence of forcings on that we only impose
mild restrictions to interfere.

Notice that @ is associative in the sense that (POQ)PR =~ PH(Q®R),
so we will omit the brackets.

As we deal with class forcing, we have to argue that ZF'C' is preserved.
Unfortunately we may not use the reasoning we have applied in Lemma 2.2.2
(7). There we used a quite general preservation theorem for class iterations.
Here we use a class product, for which Reitz has elaborated an analogous
result, but we will not have the necessary closure properties at hand.

Definition 2.3.4. A class forcing PP is pretame if for any sequence (D;li € I)
of dense subclasses of P and any p € P, there is ¢ < p and a sequence of
subsets (d; € D;|i € I) so that each d; is predense below q.

Remark 2.3.5. A sequence of classes (Cj|i € I) is to be understood as one
single definable class C' with the following property:

C={(z,i)liel nxel}
Fact 2.3.6. [Fri00] If a class forcing is pretame then it preserves ZF~.

The following is a modificaton of Theorem 66 in [FHR15] that further
encapsulates an additional sequence of forcings.
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Theorem 2.3.7. Assume (Qx|\ € Cy) is a sequence of forcings so that Q)
18 < A-strategically closed and has size less than the next cardinal above X
in C. Let P be the class product

[ ] Add(\T ATH) @ Add(AT, 1) @ Q,
MeCy

with set-sized support. If V[G] is a P-extension of V then V[G] does not con-
tain any new sequences of ordinals of length < r and MVIG) = V. Moreover,
if X\ € Ci, A is the next strong limit cardinal and gy is the generic for stage
A, then the cardinals in the interval [\, \) are the same in V[G] and V[g,].

Proof. Let us break up the necessary ingredients of the core argument into
several points.

Claim 2.3.8. Let A € C,. The following hold:
(i) P preserves ZFC.

(7i) The initial factor P-y has size < \.

(iv) If G chose Add(A\T,\TTT) at stage \ then GCH fails at \™ in V|G].

)
)
(7i1) The tail segment Py is < \-distributive.
)
(v) If G chose Add(\T",1) at stage \ then GCH holds at \™ in V[G].
)

(vi) The class C. is absolute between V and V|G].

Let us first assume that all of the above is true. Most importantly

V[G] = ZFC by (i). To show that V[G], = V, it is enough to prove that
V|G| contains no new sequences of ordinals of length < k. But this holds
by ().
Now we will see that every set in V' is coded into the GCH pattern of V[G]
relative to C,. We write {((,|ax € Ord) for the increasing enumeration of C.
Note that Cy is the same in V and V[G] by (vi). As in Lemma 2.2.7, every
p € P defines a lottery sequence I(p) : d(p) — 3 which describes the choices
p has made in the lottery sums. It is a little more direct to define this here:
We let d(p) < dom(p) be the subset where the decision has already fallen,
that is the set of all A for which p(\) is not the maximal element. Now for
A € d(p) we define:

0 if p(A\) lies in Add(AT, \T+T)
I(p)(A) =<1 if p(A) lies in Add(A\T1,1)
2 if p()) lies in Q)

In the same way as in the proof of Lemma 2.2.7 (iv), the generic filter
has its own lottery sequence I[(G) = |J,eq !(p) : Cx — 3. By (iv) and (v),
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the 0’s and 1’s in {(G) describe whether or not GCH holds in V[G] at the
respective successor cardinals, i.e. GCH holds at A™ in V[G] if [(G)(\) =1
and it fails if I[(G)(A) = 0. If I(G)(\) = 2, this will depend on V' and the
forcing Q,, but this will not be a problem. Let x € V be a subset of some
ordinal a. If the characteristic function of x appears as a block in [(G), this
would exactly mean that z is coded into the GCH pattern of V[G] relative
to C,. We will see that this is indeed the case. Define a subclass of IP:

Dy = {p e PABVY < & (g4 € d(p) A (I(P)((p1ry) = 1 & v € 2)
A((P)(Cp1y) =0 o v ¢ 2)}

If p € P then we can add conditions to p high enough above its support
to make sure the defining property of D, is satisfied for some 3, this is
okay since P has set-sized support. This shows that D, is dense and hence
Gn D, # . Thus x is coded into the GCH pattern of V[G] relative to C,.
This is very convenient to show that V' < MYIC]: As usual, we can conclude
that indeed every set of ordinals x € V is coded unboundedly often into
the GCH pattern of V[G] relative to C,. This implies that this also holds
for every ground W of V[G] as the continuum functions of V[G] and W

eventually coincide, and so the classes C}V and C,Z (€1 coincide eventually,
too. Hence x € W as it is definable in W. As every set in V' can be coded
as a set of ordinals in V, this implies V € W and as W was arbitrary,
vV e MVl

On the other hand, for every J-fixed point A > x we can factor P = P_y xPx
and the generic G = G\ x G accordingly. Now P, is < A-distributive by
(7i7) and as A is a J-fixed point, in particular V[G=]x = V). But V[Gz,\]
is also a ground of V[G] as V[Gx][G<A] = V]G] and hence ME\/[G] c V.
Next up, we have to show that given A € C. and A the next strong limit,
the cardinals of V[G] and V[g,] in the interval [\, \) coincide. It is enough
to show that if § € [\, ) is a cardinal in V[gy], then it is in V[G]. Notice
that we can factor G as Gy X gy x G=). Since P_) has size < A, § is
still a cardinal in V[gx][G<x]. We have seen that every initial segment of
P, is < A-strategically closed in V. By Lemma 1.3.5, every such initial
segment is still < A-distributive in V[gx][G<r]. Thus P-) does not add
any new sequences of length < X. This shows that ¢ is still a cardinal in
VIgllG]lG=a] = VIG].

It remains to prove the claim. The reasoning is quite similar to Lemma 2.2.7.
Critically, we have to replace arguments exploiting the iterative nature of
the forcing there with arguments that work for products.

Proof. (Claim 2.3.8)

(i) Let us show that P is pretame. Our argument will be a modification
of Lemma 2.23 in [Fri00]. Suppose (Dq|a < 0) is a sequence of dense
subclasses of P, § > k is a cardinal and p € P. Let A > ¢ so that
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p € Poy. By (i), we may enumerate Py as {po|a < p} for some
p < A. By increasing one or the other, we may assume § = p. It is not
necessary that the enumeration of P is injective. Notice that every
initial segment of P is < §-strategically closed, as each factor is. The
point is that we can build a winning strategy for player I1 by applying
winning strategies coordinate-wise. Since we have to apply a winning
strategy only in a large enough initial segment of P ), we may assume
that oy is a winning strategy for player IT in the game G(P>y,0 + 1)
(formulated in the canonical way for class forcings). Alternatively, we
could assume that global choice holds after forcing to add a global
choice function without adding new sets. In that case, we can build
the class winning strategy by choosing strategies for each factor. Let
h: 3 — d xJ be a bijection. Let o; be the following strategy for player
I'in G(P=y,d+1): Suppose we are at stage 26+ 1. Let h(5) = (5o, 51)-
If {gs|8 = 2 is the prior play, then let the next move be any g < ¢o
so that ¢ U pg, € P is a condition below some rg € Dg,, if possible.
Otherwise, play r93.

Let {gg|B < §) be the outcome after playing according to or and oyy.
Moreover, we can extract the sequence (r3|f < A) from the resulting
play. Note that by using an inductive argument, we can avoid the
use of global choice in the construction of ;. Let p. = p U g5 and
furthermore set

do = {ry|38 < 6 h(B) = (v,0)}

for every a < 4. It is left to show that d, is predense below p,.
Suppose ¢ < px and find a stronger condition ¢’ € D,. We can find
7 < 0 so that ¢' I A = p,. Find § < ¢ with h(3) = (v,a) and note
that ¢ < pagr1 U pPg <1y Edq.

Thus P is pretame and so preserves ZF~ by Fact 2.3.6. To show that
the powerset axiom holds in an extension V[G], suppose A\ > k is a
cardinal. We can factor P at stage AT into P = P_,+ x P+ (and the
generic accordingly) then P-+ is < AT-distributive and thus every
subset of A in V[G] is already contained in V[G<,+], which is a set
forcing extension. Hence

PN =PVl e ViG] e VG
which shows that IP preserves the power set axiom.

Find a so that A = (,. For any given 3, our assumption on the
size of Q¢, implies that the factor of P at stage (s has size some
03 < (g+1. If @ = o/ + 1 then we can conclude by induction that
P<xl = [P<c, |- 60 < A If v is a limit, we have

Pl < TT G < alemmoeade) = olswmicado) < ¢,

B<a
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(iid)

(vi)

where the last inequality holds since we have purposefully excluded
limits of strong limits in Cj.

It is enough to show that P is < x-distributive as P is essentially P
defined using the parameter \ instead of k. As any sequence of ordinals
is already contained in the induced extension V[G<,] of Py for some
large enough A, it is enough to show that P, is < k-distributive
for any a. Notice that the factor at stage A € C is < A-strategically
closed as each summand is in the lottery sum. Now the product P is
< rk-strategically closed, and thus < k-distributive, as can be seen by
applying winning strategies coordinate wise. In fact the whole product
P would satisfy the class equivalent of < k-strategical closure if there
were a class sequence of winning strategies.

Let A be the successor of X in C,; and let V[G=y] be the induced
extension of V by P=y. Using (iii), we get Add(AT, AT+7)VICn] =
Add(AT, A )V and since Gsy adds a Add(A+, \*T+)-generic filter
by assumption, we conclude that in V[G>)] GCH fails at AT. Now
P_, has size < A by (i7) and so the same is true in V[G].

The same argument as above works in this case, using that Add(A*+,1)
forces GCH at X. This is true as the new Cohen subset of A+ must
contain every subset of A* in V as a block and does itself not add any
new subsets of A\*.

Let A € Cy. By (iii), Ps )y is < A-distributive and thus does not destroy
any strong limit cardinal < \. Since P has size < A\ by (i7), A is still
a strong limit in V[Gx,][G<A] = V[G]. This shows that any cardinal
in CY is a strong limit in V[G]. On the other hand, “\ is a strong

limit cardinal” is downwards absolute. This is enough to conclude
cV = CZ[G]
M .

O
O

Theorem 2.3.2 follows by applying Theorem 2.3.7 with the trivial se-
quence Q) = {1}.
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The Structure of Grounds

Now that we have seen that all models of ZFC' are the mantle of another
model, one can ask if the other direction also holds: Is the mantle always a
model of ZFC? This is where we get some redemption for the disappointing
lack of special features of the mantle, as the answer turns out to be yes. The
mantle is always an inner model of ZFC'. Furthermore, this result is highly
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nontrivial and was only recently solved by Usuba ([Usul7]). The structure
of how the grounds align is a the key insight we need to show that the
mantle is a nice object. But before we dive into this, we will first investigate
a few other geologic questions that are connected to the above one. We have
seen that in the case of the constructible universe, L is the mantle of all its
extensions, but we needed a crucial property of L to see this. In general,
without further assumption on the universe, it is not clear whether V' is the
mantle of all its extensions if V' = GA. A priori, there might be grounds
of some extension V[G] not included in V' that descend indefinitely. We
capture this setting in a definition.

Definition 2.4.1. (i) A bedrock W is a local minimum of grounds, that
means it has no nontrivial grounds itself. In other words (G'A)" holds.

(74) A solid bedrock W is a global minimum of grounds, i.e. W = M.

The above situation put differently results in the question whether or

not all bedrocks are solid. It is not clear whether a ground U exists which
does not contain the bedrock.
A more ambitious question is to ask if the mantle is forcing invariant. This
would make the above situation where a bedrock W is non-solid impossible,
since in this case M"Y = W # MY. Let’s quickly introduce the generic
multiverse of a model of ZFC. Whenever we mention this, we picture V'
as a countable set in a large background model V. Then the generic mul-
tiverse is the closure of {V} under taking grounds and forcing extensions.
If the mantle were provably forcing invariant, this would clearly imply that
the mantle is constant across the whole generic multiverse, since any point
in there can be reached via a finite crisscross between grounds and exten-
sion. But how many steps do you need? Is there an upper bound? Observe
that the generic multiverse is two-dimensional: In general, one step is not
enough, as if P, Q are nontrivial forcing notions and G x H is generic for
their product, then V|G| and V[H] are in the same generic multiverse, but
are neither extension nor grounds of each other as V[G] & V[H] and vice
versa. But are two steps enough?

The answers to all of these questions are consequences of a hypothesis
that prescribes that the grounds are structured in the arguably simplest way
possible.

Definition 2.4.2. The strong Downwards Directed Grounds Hypothesis
(sDDG) is the assertion VX3r W, < (,.x W,. This states that for any
set-sized collection of grounds, the intersection contains another ground.

This hypothesis is now a theorem.

Theorem 2.4.3. [Usul7] (Usuba) The sDDG is a consequence of ZFC.
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Originally, there was also a weak Downwards Directed Grounds Hypo-
thesis that states that for any two grounds, their intersection contains a
grounds. However this has become obsolete with the above theorem.

First let’s show that the sD DG is both the link and the answer to all of the
above problems.

Corollary 2.4.4. (i) All bedrocks are solid.
(11) The mantle is forcing invariant.

(7i1) Two points M, N in the generic multiverse are at most two steps apart
from each other. More precisely, N is a ground extension of M, that
means it is a forcing extension of some ground of M.

Proof. (i) As we have already discussed, this follows from (i).

(ii) It is enough to show that MY = MW for every ground W of V. By
the product lemma, every ground of W is still a ground of V, so that
MY < MY. For the other direction, assume M is another ground of
V. Applying the sDDG yields a ground N € W, M. By the quotient
lemma (Corollary 6.3.10), N is again a ground of W.

(7i7) Assume N is a ground extension of M, i.e. W is a common ground
of M, N. It is enough to show that the same holds for all grounds
and extensions of V. It is clear for all extensions of N by the product
lemma. If N/ € N is a ground then apply the sDDG in N to find a
ground W' < W, N'.

M N
SR
w N’
Y&
W/

Then W’ is a ground of W by the quotient lemma and thus a ground
of M and so witnesses that N/ is a ground extension of M.
O

Remark 2.4.5. The order is important in part (i7i). It is possible that
N is not a ground of an extension of M, despite being in the same generic
multiverse. We will see an example for this situation later.

Moreover, (iii) allows us to state “everywhere in the generic multiverse ¢
holds” and “somewhere in the generic multiverse ¢ holds” as first order
e-formulas since we can express “in all ground extension ¢ holds” and “in
some ground extension ¢ holds” using the definability of grounds and the
forcing relation.
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We argue that the mantle is, from the perspective of forcing, a canonical
object. First let’s get back to the first question. Since this one was the
most prominent one and a strong driving force in research concerning Set-
Theoretic Geology, it deserves its own theorem.

Theorem 2.4.6. M = ZFC.

Proof. We apply the inner model criterion (Lemma 6.2.4). As the Godel
operations are all absolute between transitive models of ZFC and since all
grounds are closed under them, their intersection M is, too. Assume x € M
for some set x of V. Let a = rk(x). Since the mantle is forcing invariant,
we have that M n V,, = MW ~ W, is definable in every ground W and thus
xS MnV, e M. Hence M = ZF. For the axiom of choice, we need
the full strength of sDDG. Suppose x € M has no well-order in M. For
every well-order < of z in V, there must be a ground W,_ that does not
contain it. Let X = {r<| < is a well-order of z}. By the sDDG, there is a
ground W C ﬂRe x Wi, but then W does not contain a well-order of z, a
contradiction. O

Remark 2.4.7. Earlier we have argued that it is consistent that the mantle
does not satisfy the ground axiom. Now that we know that the mantle is
a model of ZFC, we can put this differently: It is possible that MM s M.
One could try to iterate this procedure, which first of all gives rise to the n-
mantle M", the result of taking mantles n times, but only for meta-theoretic
natural numbers n. The problem is that the uniform definability of grounds
does not give any ground to believe that the n-mantles should be uniformly
definable in n. That means that it is not at all clear whether or not (), M"
makes sense or is a definable class even when the natural numbers in the
object theory coincide with the meta natural numbers. However, in some
models of the second order set theory GBC, there might be a meaningful
way to define the a-mantle for any ordinal «, so that the limit mantles are
intersections of the previous mantles. It is conjectured in a strong way by
Fuchs, Hamkins and Reitz ([FHR15, Conjecture 74]) that every model of
ZFC is the a-mantle of an outer model of GBC. Furthermore they expect
that similar to the case of iterating HOD (compare [Zad83]), it is in general
not possible to define the a-mantle and more precisely that there is a model
of GBC' in which M" is a class for all n < w, but the w-mantle is not.

In addition to this, the mantle is not just forcing invariant as we have
seen in Corollary 2.4.4 (ii), it is the largest class with this property.

Lemma 2.4.8. If C is a class term such that ZFC +— “C is forcing invari-
ant” then ZFC - C € M.

Proof. Tt is enough to show that CV < MVY. If W is any ground then
applying the assumption in W yields that C" = CV. But then CV <
M, W, =M. O
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2.5 A Destructibility Result

We apply the Definability of Grounds Theorem to see that a certain class
of forcings destroys a correctness property. As a wide variety of large car-
dinals necessarily satisfy this correctness property, these large cardinals are
destroyed by this class of forcings. We follow [BHTU16].

Theorem 2.5.1. Suppose k is a strongly inaccessible cardinal and V,; < V),
for some A = n = k. If P is a nontrivial < k-strategically closed forcing,
P eV, and G is P-generic over V, then for all 0 =7, V|G|, « V|G]s.

We first prove an auxiliary result.

Lemma 2.5.2. If k is a strongly inaccessible cardinal, K < A and V,, <
Vi then both k and X\ are 3-fized points and fixed points of the increasing
enumeration of 3-fized points.

Proof. The claim holds for x as &k is strongly inaccessible. Furthermore,
Vi, = “for all a, J, exists” and so the same is true in V). As V) computes the
J-function correctly, this shows J, < A for all @ < A. Since the J-function
is continuous and strictly increasing, this implies that A is a J-fixed point.
The same argument works if we replace the J-function by the increasing
enumeration of J-fixed points. O

Proof. (Theorem 2.5.1) Assume towards a contradiction that V|[G]. < V[G]g
for some 6 > 7. By Lemma 2.5.2, A and 6 are 3-fixed points. Thus we can as-
sume, by increasing 7 if necessary, that 7 is a 3-fixed point itself. Moreover,
by passing to the x*-th J-fixed point above 7 if necessary, we can assume
that cof(n) > k. The above Lemma implies that n will still be less than A
and . Since P adds no new sequences of ordinals of length < k and since &
is a J-fixed point, it follows that V[G], = V,;,. We thus want to conclude a
contradiction from the following:

Vi VI[Gle
N I
Vi
Observe that V,, = ZFC and thus V) and V[G]y are models of ZFC| too.
Claim 2.5.3. The following hold:
(i) Vg EZFC
(i7) V[G]x = VA[G] and V[G]e = Vp|G].

Proof. (i) Clearly Vj is closed under the Godel operations and satisfies the
Ord-cover property with respect to V[GJg. This means we can apply
the inner model citerion (Theorem 6.2.4). Since furthermore the axiom
of choice holds in Vp, as it does so in V', we conclude Vp = ZFC.
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(i1) Let & be X or #. Notice that Ve = ZFC and so does V¢[G]. First
suppose x € V[G¢. If S o then there is a nice name & for a subset
of a with 2% = x. Since P € V,, € V, one can see that rk(i) < &.
Thus 2 € Vg[G]. Any general x € V[G]¢ can be coded as a set of
ordinals (compare Remark 2.1.8) and decoded correctly inside Ve¢|G].
The other inclusion follows from the simple observation that k(%) <
rk(z) for any P-name 2.

O

Thus, V|[G]¢ sees that it is generated by a P-generic filter G' over V¢ for

1%
E=M\0. Letr = (<|P|+2) . We want to apply Theorem 2.1.1 to be able to

define Vj inside of V[G]y. This only works if Vp is a ground of V[G]y, but
this is true by the above claim. Thus:

V[G]e =“for some parameter s and H some generic over Wy

for nontrivial forcing Q, the universe is Ws[H]”

By elementarity, the same is true in V, and thus Vi, = WY*[H] for some
parameter s, nontrivial forcing Q and Q-generic H. Let § = |Q|t. We can

Vic
assume that s = (<52) Wa" 1t follows from the two elementarity conditions
that:

(i) Vi = WYA[H]
(i) V[Glo = Wy 1% H]

VIG]x = VA[G] = WH][G] is an extension by a forcing of size < §
followed by a < {-strategically closed forcing. By Proposition 2.1.14, it
follows that WY < V[G]x has the d-cover and approximation properties.
Notice that W} has the correct 6+ since P is in fact < s-strategically closed.
The same holds true for Wy €10 V[G]y. By going down to n < A, 0 it
follows that:

(i) VIG], = WHI[G] ~ VG,
(i) VIG], = WV [H] A VG,

Let Wo = WY A V[G], and Wy = Wy % A V[G],. Thus Wy, Wy < V[G],
have the §-cover and approximation properties, the correct 7 and the same
set of bounded subsets of § (namely s) and are models of ZFCjs, by our

further assumptions on 7 and Proposition 2.1.18 as well as 2.1.11. By Lemma
2.1.9, Wy = Wh.

Claim 2.5.4.



Proof. The first equality is just (#4)". From ()’, we can conclude
WA H] n VIG], € WA H]IG] A VIG], = VIG],
so it is left to show that the inclusion
WYl [H] ~ VIGT, € WAH] A VG,

holds. So suppose ' is in the left hand side, where & € WSV [Glo 55 a Q-
name. Since 7 is a strong limit cardinal in V[G]y, we can find a regular
¢ < nwith i e H 2/ (€10 We can assume without loss of generality that
Lg I~ & € Hg holds in Wy 1)

vIG

]
that & € H" ) W A V(G = Wy = Wi. Thus ¢ ¢ WA[H]
and by absoluteness of the rank, 2/ is in the right hand side. O

. By Lemma 1.5.2, we can furthermore assume

This shows G € WYA[H] = Vy, contradicting the non-triviality of P. [J

Remark 2.5.5. The following assumptions can be weakened a bit, see
[BHTU16]. For example, a thorough analysis of the complexity of the key
formulas used in the above proof yields that it is enough to assume V,; <3 V),
to conclude V,; k2 Vy for all 8 > 7.

We will apply the above theorem later on in chapter 4. Arguably, this
is quite a heavy gun for that application and more simple arguments could
do the trick. However, there is a reason why this section is included in this
thesis. Any useful theory should influence another part of mathematics.
The result above is not a geologic one, but an insight into the nature of
large cardinals. Down the road, we will make use of a concept called Laver
indestructibility. It is possible that a supercompact cardinal is preserved by
any sufficiently closed forcing. Here, we can conclude that there is no ana-
logue of this for, say, extendible cardinals. This destructibility of extendible
cardinals is in line with Theorem 4.2.2, which will be presented right after
the proof of the sDDG. It states that an extendible cardinal is incompat-
ible with a bottomless, that is bedrock-free, universe. If there were a “Laver
indestructible extendible cardinal” than the forcing of Theorem 2.3.7 would
produce a universe with an extendible in which there is no bedrock.

38



3 The Downwards Directed Grounds Hypothesis

The result we present in this chapter is due to Usuba [Usul7]. However, the
proof has been improved by Hamkins and thus we follow his version that he
presented at the University of Bonn in January 2017 [Ham17a].

3.1 Combinatorial Prerequisites

For § < k, 0 a regular cardinal, we denote the set of ordinals below x of
cofinality 6 by Ef. We will need a variant of Fodor’s lemma for singular
ordinals.

Lemma 3.1.1. If § < cof(M\) is a regular cardinal and f : E? — A s
regressive, there a stationary subset S € Eg\ such that f[S] is bounded in X.

Proof. Let k = cof(\) and g : kK — A increasing, continuous and cofinal
with g(0) = 0. By continuity, g[Ef] € E}, so the following function is
well-defined: We let h : Ef — &, h(o) = maz{8 < k|g(B) < f o g(a)}.
The maximum always exists as ran(g) is a club in A and g(0) = 0. As f is
regressive and ¢ increasing, h must be regressive, too. By Fodor’s Lemma,
there is a stationary set T' € Ef and p < x such that h [ T" = p. I claim
that ¢g[T] is stationary in A. Let D be a club in A. Then D nran(g) is club
and since g is continuous and increasing, D’ = g '[D n ran(g)] is club in
k. Find a« € T n D'. Then g(a) € g[T| n D. Now since h is constant on T'
with value p, it must be that f[g[7T]] is bounded by g(p + 1). O

Lemma 3.1.2. Assume § < cof(\) is a regular cardinal and T is a tree of
height A with levels of size < §. Then T has a cofinal branch, but fewer than
0 many.

Proof. If a € E}, then let f(a) = sup{A(t, s)|t # s € To}. Since T, has size
< § = cof(a), we have f(a) < . Lemma 3.1.1 yields a stationary S < F}
and p < A such that f [ S is bounded by p. For every a € S choose one
to € Ty. Since S has size > 6 and T, has size < ¢, there has to be S, © §
unbounded and some t, € T, with ¢, <t t, for all a € Si. Now the sequence
(ta|o € Sy) must form a cofinal branch: Suppose oo < 8 € S,. If to L1 g,
then let tlB be the unique node on level o that extends to tg. As t'ﬂ # o
are both nodes on level a € S, we have that A(tj,t,) < f(@) < p. But this
contradicts . <t ta,tg.

If b, c are cofinal branches then b, ¢ differ at all large enough levels, in par-
ticular at all large enough levels in S. But then b and ¢ must have parted
ways already below level p. This yields an injection

{b = T|b is a cofinal branch} — T,

and thus there must be fewer than ¢ many. O
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Lemma 3.1.3. Suppose W is an inner model of V, § < cof(\)V a regular
cardinal in V and T a tree in W of height A and levels of size < § in W.
Then every cofinal branch be V of W is already in W.

Proof. Notice that if t € T is a node that can extend to arbitrary large levels,
then T 't ={se T|s <r t vt <t s} is also a tree of height A with levels
of size < § in W. If b € V is a cofinal branch that is not contained in W
then it differs from all < § many cofinal branches W knows about. Since
§ < cof(\)V we have

sup{A(b, c)|c € W cofinal branch in T} < A

and thus there is a node ¢ € b that is not contained in any cofinal branch
c € W. Nonetheless W sees that ¢t can extend to arbitrary large levels, so
our observation together with Lemma 3.1.2 implies that T | ¢ has a cofinal
branch in W. But T [ t € T, so this cofinal branch must be a cofinal branch
of T that contains the node ¢, a contradiction. ]

3.2 The Proof

Firstly, let us see that the naive approach is doomed. That would be to try
to prove that any intersection (), y W, is itself a ground. Indeed this would
not even work for just two grounds:

Lemma 3.2.1. [FHR15] If ZFC is consistent, it is consistent that the in-
tersection of two grounds does not satisfy ZFC and thus is not a ground.

Proof. For simplicity, start with a model V[c] of GCH that already is the
result of adding a Cohen real. Consider the finite support product P =
[T,-., Add(R,,, R, 2)V and notice that PP can be factored in V[c] as

[T AddR,Rpi2)” | x | [ Add(Rp,Rpi2)” | =P x Py
c(n)=0 c(n)=1

Observe that since V' and V|[c] have the same finite subsets of w, P is a
member of V' even though Py and P; are not. If G is P-generic over V|c|
then G factors accordingly into Gy x G;. This shows that V[c][G1] is a
ground of V[c][G]. Furthermore by the product lemma, V[G] is a ground of
Vc][G], too. Consider their intersection W = V[c][G1] n V[G] and assume
for a contradiction that W is a model of ZFC. In the present situation,
the counting names argument used in the proof of Claim 2.3.8 applies as
well and shows that in V[c][G1], GCH holds at R,, if and only if ¢(n) = 1
(actually one can understand c as a the lottery sequence of G1 in the context
of the forcing [],_(Add(R,, Ry12)Y @ {1})). In addition, we get that in
V[G], 2% = R,,5 for all n < w and that V,V[G], V[¢][G1] all have the
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same cardinals. As V € W < V|G|, W has exactly these cardinals as
well. The point is that as ¢ ¢ V[G], ¢ ¢ W, anyhow one can read c off
from the GCH pattern of W: If ¢(n) = 1, the n-th coordinate g, of G
(which is Add(R,,, R, +2)" -generic) is also part of G;. This means that in
W, 2% > X, 5. On the other hand if ¢(n) = 0, there must be a bijection
f:PR)WY — kin W for some cardinal x. But then f € V[c][G1] and since
PR < P(R,))VIEG] it must be that k = R,y 1.

O

The dual to the Downwards Directed Grounds Hypothesis would be the
Upwards Directed Extensions Hypothesis. It is not clear how one should
formulate this on a first order basis, except for countable substructures. In
any case, this hypothesis is false and thus we are unable to use the more
refined understanding of extensions to tackle the sDDG.

Lemma 3.2.2. [FHR15] It is consistent that there are two extensions that
have no common extensions.

Proof. Here, we have to take the perspective that V' is a transitive countable
model in a large background universe V. Let a = Ord”. We produce
two Cohen extensions of V. The main idea is that the two Cohen reals
together uncover the countability of the ordinals if put togehter, so they
cannot coexist in any model of ZFC with Ord = «.

In V, take a bijection f :w — « and code it as R € w x w so that

(w, B) = {te({f}), €

and let g : w x w — w be the Godel pairing function. Let h be the char-
acteristic function of g[R]. Any transitive model of ZFC that contains
h can reconstruct f as it contains g and thus knows about the countab-
ility of a. Let (Dp|n < w) be an enumeration of all dense open subsets
of Cohen forcing of V. We define Cohen reals ¢,d over V and sequences
(knln < w),{ly|n < w) simultaneously by induction.

For formal correctness, put /-1 = 0. First let ¢ | kg be any condition in
Dy with integer domain. Let c¢(ko) = h(0). If ¢ | (k, +1),d | l,—1 are
already defined, we store k,, in d by letting d | [l,—1,ln—1 + kn) = 0 and
d(lp—1 + kn) = 1. Then extend to a condition in D,, with integer domain [,,.
Ife | (kp+1),d |, are defined, then store l,, in ¢ by letting ¢ | [k, + 1, ky, +
1+1,) =0and c(k, +1+1,) = 1. Next extend to a condition with integer
domain ky, 11 in Dy 11 and let ¢(kp41) = h(n + 1).

Since ¢ | kp,d [ 1, € D,, ¢ and d are indeed Cohen reals over V. If both ¢
and d are present in a transitive model of ZF (| one can reverse the above
construction to recover the sequence {k,|n < w). The first bit can be read
off of d immediately, with this information one can find ly through ¢, which
in turn yields k1 as the length of the block of zeros in d starting at [y, and
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so on. But now h = co k. Hence V][c] and V[d] can have no common
extensions. O

Remark 3.2.3. Having no common extension is just a different way of
saying that one model is not a ground of an extension of the other. So the
lemma above gives the example promised in Remark 2.4.5.

Above, we have seen that the naive strategy cannot work out. In some
way, the sDDG suffers from a similar problem as the Goldbach conjecture.
Given an even natural number n > 2, there tend to be a lot of pairs of primes
whose sum is n. On the other hand, it seems like there is no best such pair,
distinguished from all other pairs uniformly in n. In our case, there tend to
be a lot of grounds contained in the intersection of two grounds Wy and Wj.
However, the canonical example for a good common ground would be the
intersection. This obstacle leads to a nonconstructive proof of the sDDG.
The final argument produces a common ground W,, but this procedure may
lead to almost any common ground, so W, is hardly distinguished from any
other one. Notably, we will need a general way to show that W, is a ground.

Definition 3.2.4. Suppose M < N are classes and k is a cardinal in N.
Then M € N has the k-global cover property if for any o and any function
f:a — M in N such that f(3) € M and |f(B)|Y < & for all B < a,
there is a function F : o — M such that for all 8 < «, |F(8)|™ < k and

f(B) = F(B).

Depending on taste, the k-global cover property seems to be a bit mis-
named. A better fitting name would be the k-uniform cover property, as it
just asserts that for set many instances of the k-cover property, there always
is a uniform way to cover. As it was originally defined with this name, we
will keep it. In any case, this is the correct criterion.

Theorem 6.3.1. (Bukovsky’s Theorem)[Buk73] Suppose W is an inner
model of V and k is a cardinal. Then W is a ground which extends to V
via a k-cc forcing if and only if W S V' has the k-global cover property.

In this chapter, we will only proof the easy direction.

Proof. “=7” Suppose W extends to V via a k-cc forcing P. Suppose that f is
a P-name so that for some o, 1 |- “f : & — V7 (notice that 1 I ran(f) € V.
makes sense, as V' is definable in the same manner in all its P extensions
from the same parameter). For each § < a, there is a maximal antichain
A, in the dense set of all p € P that decide f (&). Finally

F(B) = {z[3pe As p I f(B) = &)

is as desired. O
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A proof of the hard and interesting direction can be found in the ad-
dendum.

If we have a set of grounds W, for r € X present, we want to construct
a common inner model that has the x-global cover property relative to V fo
some large regular x. The construction will in some vague way resemble the
proof of the Definability of Grounds Theorem, as we want to approximate
this inner model from below. More precisely, we stratify the x-global cover
property and produce common inner models that come closer and closer to
the full property in this sense. Only the initial segments of these approxima-
tions are good approximations, and in the end if we do this in the right way,
enough of these initial segments will cohere to produce the desired common
ground.

Definition 3.2.5. If M < N are classes, k is a cardinal in N, 6 > &k
some ordinal, then M < N has the (k,#)-global cover property if for any
f:A—>P. (MY in N, there is F : § — P.(0)™ in M with f(a) S F(a) for
all a < 6.

Proposition 3.2.6. Suppose W is an inner model of V. Then W < V
has the k-global cover property if and only if it has the (k,0)-global cover
property for all 0 = k.

Proof. The forward direction is clear so assume that W < V has the (k, 0)-
global cover property for all § > k. Let f : a — V be a function in V' so
that f(8) € M and |f(B)|Y < & for all 3 < a. Find v > & large enough so
that ran(f) € W, and put § = |W, |'V. Now take g € W a bijection between
W, and 6. We can use g to translate f(3) as the subset g[f(«)] < 6. The
(K, 6)-global cover property yields a function F’ : § — P.(f) that covers
g[f()]. Translating back using g ! yields a s-global cover F € W of f. [

Recall that we want to show that initial segments of certain approx-
imations cohere. The way to go is Lemma 2.1.9, so we have to have the
k-approximation property present. Luckily, we get this for free.

Lemma 3.2.7. If W €V has the (k,0)-global cover property for reqular k
and strong limit 0 in V', then also the k™ -cover and approximation properties
hold for subsets of 0.

Proof. First let us show that W < V has the x*-cover property. Notice that
this is not a completely trivial consequence as we have to account for sets of
size k. So let x € V be a subset of 8 of size k. Pick an enumeration f : kK - x
and use the (x,6)-global cover property to find a function F : k — P, (6)"
in W such that for all & < &, f(o) € F(a). Then y = |J,_,. F(o) is a
kT-cover of .

Next onto the kT-approximation property for subsets of #: Suppose that
x C 0 is a set of size at most x in V so that all k™ W-approximations of

a<K
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are in W. By induction we can assume that the x™-approximation property
holds for all ordinals below 6, so that z na e W for all o < 6.

We build a tree T € W of height § and levels of size < & so that the
characteristic function x of x is a maximal branch. Since 6 is a strong limit in
both V and W, we have |<92|" = 6. Therefore we can use the (x, §)-global
cover property to find a function F : § — P.(<92)" so that x | a € F(a)
for all & < 6. Furthermore we can assume that F(a) € *2 for all o < 6
and that ¢t | 8 € F(B) for all t € F(«), f < a < 0, as we could otherwise
throw out undesired elements of F'(«). Now T is defined in the natural way
as | J,<p F(a), ordered by <p=Cc. Since F(«a) is nonempty for every «, T
has height 6. Clearly T, = F(«) and therefore has size < k. As promised,
X is (the union of) a cofinal branch of T.

Case 1,cof(0)V > k: In this case, Lemma 3.1.3 implies x € W and thus
zeW.

Case 2,cof(0)V < r: Notice that cof(0)"V < k as well, since we can k-
cover a cofinal subset C' € V of 0 of size x in W. Work in W. Find a
cofinal subset Cy € 0 of size < k. If C), is defined let

Cos1=Cnu [ {A® 9]t # 5 € Ta}

aeC),

Finally C. = ,,-, Cn- Cs has size < s and satisfies the following:

For a € C,,t # s€ T, thereis fe Cy,f <awitht I B#s 0 (%)

Now x | C4 is a kT -approximation of y in W and thus a member of
W. Let {(y4|ax < &) be the increasing enumeration of C,. I claim that
there is a unique function h : 0 — 2 in W so that

(Z) h f Yo € T'yo
(7i) h | ~a+1 is the unique node t € T
t(7a) = x(7a)
(¢43) for av € Lim, h., is the unique node in T, that extends all A | v3
for p <«

extending h | v, with

Ya+1

The closure property (x) of C. implies that T., contains exactly one
node, which must be x [ 7. If this is true up to and including «, then
(*) implies that every node t € T, , extending h | v, is uniquely
determined by #(7,), thus there is at most one valid continuation. By
induction, A | 7o = X [ Ya. Since X [ Yat1 € T,,,, there is such a
node with t(7,) = x(Va)- If « is a limit, then again by () there can be
at most one t € T,, extending [ J g<a I 7p and as before, ¢ = x [ 7a
does the trick. This shows that A = x is definable in W from x | C\
and T and hence z € W.
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O

In the following proposition and subsequent proof, k™ will always refer
to (k7)Y even if that is not (x+)W.

Proposition 3.2.8. Suppose k* and 6 > k are cardinals and W is an inner
model of ZFC. Assume that that for any f : 0 — 6 in V there is a map
F:0— P.(0) in W with f(a) € F(a) and |F(a)|V < & for all a < 6.
Then W <V has the (k*,6)-global cover property.

Proof. Suppose g : 6 — P,.+(0) is a function in V. Since k-0 = 0, we can
split @ into f-many blocks (Bg)a<s € W of size k and in V' define a function
f:0 — 0 with g(a) € f[Ba] for all @ < 0. Let F' € W be a cover of f as in
our assumption. In W, we can define G(a) = (Jgep, F(B) for a < 6. Then
G is a (kT, 6)-global over of g. O

Next up is the key construction.

Lemma 3.2.9. Assume W,., r € X is a collection of grounds that extend to
V wvia P.. Let k be a reqular cardinal larger then the size of X and P, for
all r € X. Then for all cardinals 0 > K, there is a set of ordinals A so that
L[A] € (,ex Wy and L[A] €V has the (k,0)-global cover property.

Proof. Notice that all W, € V have the full k-global cover property by the
easy direction of Bukovsky’s Theorem. Let 6 be a cardinal > k. We want
to code (k,0)-global covers for all f : § — P.(#) in a set of ordinals A. On
the other hand, we have to achieve L[A] € (),cx Wy, which is equivalent to
A€ (),ex Wr. Since A codes covers, we must find covers that are contained
in all W, simultaneously. This is the point where me make the jump from
Kk to k. Let A = |P.(0)]° = 2.

Claim 3.2.10. Let f : X = Px(A) be a function in V. Then there is a
(k*, X)-global cover F € (,cx Wr of f.

Proof. We construct (x, \)-covers (F7)"€X by induction on o < & so that

(1) FLeW,
(i7) F§ covers f for all me X

(#11) Yy <A Usexp<a F5(7) S Fa(7)

Fg is given by (ii). If Fj is constructed for all 3 < o and s € X, then
F e W, is a (k, A)-global cover of v +— fo(7) = Usex g<a F5(7)- Since
k = | X]| is regular in V| we have that ran(f,) € Px(\), so this is fine.

Take any r € X and let F': A = P+ (\), F(v) = Uy, F&(7) (this definition
is in fact independent of r € X as Fj(y) € F},, forall s,7 € X and o < k).

F is certainly a (kT, A)-cover of f by (i7), so it is left to show that F' € W,.
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This is not immediate as we do not know whether (F}|a < k) € W,. On
the other hand, we know that W, < V has the s-approximation property
as |P,| < k, which we will make use of. It is enough to show that F =
Uv<>\{7} x F(v) is in W,. Clearly F € W,. So suppose a n F is a k-
approximation of F'in W,.. Then dom(a n F) is a set of size < x. In the
same manner, the set (a n F)y, = {8 < M(v,8) € an F} has size < &
for all v € dom(a N F). Define F” from F’ as we have F from F. Given
v € dom(a N F), the regularity of x implies that (a n F), = (a n FQW)7 for
some o, < k. Again by regularity of k, e = sup{a|y € dom(a n F)} < K
and thusamF'zamF;x € W,. This shows F € W,. ]

We just have to pick the right f. We need one that encapsulates all
instances of (k,#)-global cover. So define f : A — P,(0) so that every
g: 0 — P.(0) appears as a block in f. This is possible if A is large enough.
Using the above claim, find a cover F': A\ - P,.+(A) for f that works for all
W, simultaneously. We can assume that ran(F) € P.+(0). Code F in the
usual way as a subset A of A. This implies A € [),cx Wr. It is left to show
that L[A] € V has the (7, 6)-global cover property. As A € L|A], we can
recover F'. Any instance g : § — P, (6) we have to check appears as a block in
f and thus the corresponding block in F' a (k¥ 6)-global cover of g in L|A].
It seems troublesome that clearly not all maps h: 8§ — P,+(\) appear in f,
however Proposition 3.2.8 gives that we have more than enough to conclude
that L[A] € V satisfies the full (k% #)-global cover property. O

We have acquired all tools we need to proof the strong Downwards Dir-
ected Grounds Hypothesis.

Proof. (Theorem 2.4.3) Suppose W,., r € X is a collection of grounds that
extend to V via P, respectively. Let s be a regular cardinal such that
k = |X|,|P,| for all » € X. For any J-fixed point 6 with cof(8) > ™7,
there is a set A € 2% such that L[Ag] S (),ex Wr and L[Ag] S V has the
(kT,0)-global cover property. Notice that this implies that L[Aglg S Vp
has the xT-global cover property. By Lemma 3.2.7, L[Ay] € V has the
kT T-cover and approximation properties for subsets of §. This shows that
L[Aplg € Vp has the kT -cover and approximation properties. Moreover,
L[Ay] € V has the k*TT-cover property for subsets of 6, too. Hence (k1)
is the same in L[Ay] and V. By Proposition 2.1.18 and Proposition 2.1.11,
L[Ag]g and Vy are models of ZFCy. Lemma 2.1.9 shows that L[Ag]y is the
unique (<”++2)L[A9]—substructure of Vy. We can conclude:

V = “for all 3-fixed points of cofinality > k there is r € <579 guch that
the unique r-substructure of Vj exists, is a subset of (").cx W, can
compute its Von-Neumann-hierachy and has the x*-global cover

property relative to Vjp”
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Here, we understand the ability of a structure M to compute the Von-
Neumann-hierachy as containing the set M n V,, for all « € M. As usual,
we abbreviate this as M,. By the pigeonhole principle, there is some r,
that works for a proper class C of these 0. Let W, be the union of the
corresponding r,-substructures W7 of Vj.

Claim 3.2.11. W, satisfies the following:
(i) Wi S (Nex Wr

(i1) (W9 cohere: If < @ are both in C then (W )g = WY
(791) Wi is an inner model of ZFC

(i

Proof. (i) By construction, W¢ < [, .y holds for all § € C.

)
)
)
v) Wi €V has the ™ -global cover property.

(#4) In this case (W?)y < Vp is another r,-substructure of V3. By Lemma
2.1.9, the assertion follows.

(1it1) We apply the inner model criterion (6.2.4). W, is closed under all
Godel operations, as each W7 is on its own. We have to show that
W, € V has the Ord-cover property. Suppose x € V is a subset of
W.. Let a = rk(x). If € C is larger than «, then the coherence (i)
implies that already € W¢. In particular z < (W?), € W? < W,.
By Theorem 6.2.4, W, is a model of ZF. The axiom of choice holds
in W, since it holds in each W respectively.

(iv) For every 0 € C' we have that W9 < Vjy has the xT-global cover prop-
erty. Thus Wi = Jpee WP S Upec Vo = V has the xkT-global cover

property.
O

By Bukovskys Theorem (6.3.1), (ii7) and (iv) imply that W, is a ground
of W. By (i), W, is as desired. O
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4 Large Cardinals in the Mantle

In this chapter, we investigate the relationship between large cardinals, the
mantle and, the generic multiverse.

4.1 Preliminary Considerations

We say that ¢(z) is a large cardinal axiom if p(k) can only hold for uncount-
able cardinals. First of all, one can observe that no large cardinal axiom is
necessarily (upwards) absolute between the mantle M and V. Any cardinal
k is countable in some generic extension V|G| and V|G| has the same mantle
as V by Corollary 2.4.4 (i7). Nonetheless, downwards absoluteness from V'
to M is still a reasonable property and in fact we will see an example of
nontrivial downwards absoluteness. Regarding the other direction, we will
replace the notion of upwards absoluteness with a criterion that is independ-
ent of the basepoint V in the generic multiverse. To be precise we will ask
the question, whether or not x having a certain property ¢ in M implies
that the same is true in dense many grounds, i.e. for every ground W there
is a deeper ground W’ € W in which ¢(x) holds. Observe that this is first
order definable by the Definability of Grounds Theorem (2.1.1).

Proposition 4.1.1. Given a set-theoretic formula ¢ with parameters in the
mantle, the evaluation of the statement “p holds in dense many grounds” is
constant across the generic multiverse.

Proof. Suppose W is a ground of V. First assume that V = “¢ holds in
dense many grounds”. Notice that any ground of W is a ground of V, too.
Thus the statement is true in W. Now suppose that W = “p holds in
dense many grounds”. Let M be any ground of V. By the sDDG, there
is a deeper ground W' € M, W. Our assumption on W gives that there is
W"” < W’ that satisfies ¢. But then, from the perspective of V', this is a
deeper ground than M. O

Let us start our analysis with results due to Usuba that show that the
existence of very large cardinals has a huge impact on the Set-Theoretic
Geology of V. In the end, this will yield the promised nontrivial downwards
absoluteness of some very large cardinal.

4.2 Extendibles

Definition 4.2.1. A cardinal x is extendible iff for every A there is an
elementary embedding j : V) — Vg for some & with crit(j) = x and A < j(x).

The main result of this section is that the existence of an extendible
implies the bedrock axiom.
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Theorem 4.2.2. (Usuba)[Usul8] If there is an extendible cardinal k, then
the mantle is a ground.

Our strategy is to show that the mantle is the intersection of all grounds
which are a k-small forcing away.

Definition 4.2.3. The k-mantle M | & is the intersection of all k-grounds.
Showing Ml = M | k is enough.

Proposition 4.2.4. [Usul8] For any k there is a ground W contained in
M | k. In particular, if Ml = M | k then the mantle is a ground.

Proof. Let X = P(="2). By the sDDG, there is a ground W contained in
(Vyex Wr. If N is a < k-ground then N € V has the x-approximation and
cover properties, thus there is some r € X with N = W,. O

Let us assume there is an extendible cardinal . First of all, this implies
that there are class many (strongly) inaccessibles. This is because (strong)
inaccessibility of a cardinal A is decided in V), and the extendibility of
r implies the existence of elementary embeddings j : V41 — V()41 with
arbitrarily large target j(k). Since k is (strongly) inaccessible, every such
j(k) must be (strongly) inaccessible. We will use that almost all (strongly)
inaccessible cardinals above x compute the k-mantle correctly:

Lemma 4.2.5. Suppose & is a cardinal.

(i) Let W be a k-ground. If X\ > k is strongly inaccessible then Wy is a
k-ground of V and thus (M | k)" € (M | k)y.

(11) The above inclusion can only be strict in set-many cases, i.e. there
is an « = Kk such that for all X > kK strongly inaccessible, we have

(M K)" = (M ] &)y

Proof. (i) Let P € W be of size < k and let G be P-generic over W
such that W[G] = V. There is a forcing isomorphic to P in W, (for
example take a bijection from P to its cardinality and consider the
induced forcing), so without loss of generality P has this property.
Exactly as in Claim 2.5.3, we can show that W[G]x = W)[G] using
the strong inaccessibility of A.

(77) Assume for a contradiction that the class C' of strong inaccessibles
A >k with (M | k)" # (M | )y is unbounded. Lemma 2.1.9 shows
that for any A € C' there is some r € <#2 and P, G € V,; such that the
unique r-substructure of V) exists, is in fact a ground of V), extends
to V) via the P-generic filter G and is a proper subset of (M | K)j.
There are only set-many possibilities for such a triple, but class-many
A, hence there is one such triple (r, P, G) that works for class many .
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Let W2 be the unique r-substructure of Vi for A € C' and W, be the
union over these. Exactly as in Claim 3.2.11 (i¢) and (7i7), we see that
W, is an inner model of ZFC' and that (W,), = W* for A € C. From
WA[G] = V), for A € C we can conclude that W,[G] = V. But then
W, is a k-ground of V that is not contained in M | x, a contradiction.

O

We need a tool to characterize the pointwise image j[\] for a given ele-
mentary embedding j. This argument is implicit in [Usul7], but apparently
goes back to Solovay.

Proposition 4.2.6. Suppose N € M are transitive models of ZFC and A
is of uncountable cofinality in M. Assume X < § and j : Mg — Ng is an

elementary embedding such that j[\] € M. Let S = (Su|a < \) € Mg be a
sequence of disjoint stationary subsets of EX\ from the perspective of M. Let
d = sup j[A]. Then we have that

JIA] = {a < 8|Sa N § is stationary in 6}
where §(S) = (Salar < j(A)).

The general idea here is that in fact o € 5[] iff S, meets j[\] and that
in this context j[A] has enough properties of a club so that “meeting j[A]|”
can be replaced with stationarity.

Proof. Work in M. For the sake of this proof we will call a D € § an w-club
if it is unbounded and contains all its limit points in E°. Notice that the
standard argument for proving that the intersection of two clubs is a club
shows the same statement for w-clubs (always given that the underlying
ordinal has uncountable cofinality). j[A] is an w-club in 0: Clearly it is
unbounded and if ¥ = {v,|n < w) € M is an increasing sequence in A then,
since j(w) = w, we have j(¥) = {(j(ym)|n < w) and thus by elementarity
j(supn<w 'Yn) = 3@pn<w ](’Y’rz)

Let us show that Sj(q) N d is stationary in § in M. Now if D € M is a club in
J, then j[A\] n D is an w-club in M. Notice that j[\] € M implies that j | A,
and so also its inverse, is a member of M since this is just the monotone
enumeration. Asj [ A: A — § is increasing, has unbounded range and, as we
have seen, is continuous at limit ordinals of cofinality w, C' = j~1[j[\] n D]
is an w-club in A in M. Now S, meets the club lim(C), but as S, only
consists of ordinals of cofinality w, S, N C = So N lim(C) # &. Now if
B € Sa N C then of course j(B) € j(Sa) N j[C] < S’j(a) N D.
Now let us assume that S, N § is stationary. By elementarity, S, consists
only of ordinals of cofinality w. As above this implies that S, meets J[A], so
find some S with j(3) € S,. By elementarity, there is some @ with 8 € S.
Now since S is a sequence of disjoint sets

M¢ |= “a is the unique v with 3 € S”

50



and thus by elementarity
Ne = “j(@) is the unique v with j(3) € S
which implies a = j(@) € j[A]. O

Remark 4.2.7. We made a slight mistake above. If £ = A + 1 then S ¢
dom(j) as this sequence has rank A+ 3. However, we can code S as a subset
of A that is in dom(j) and reformulate statements about S as statements
about its code.

Proof. (Theorem 4.2.2) Let W be any ground. We have to show that M |
Kk € W. It is enough to show (M | )y € W for all large enough inaccessible
A. Let A > & be strongly inaccessible such that W is a A-ground. The crucial
idea is that W might not be a x-ground, but using the extendibility of &
we can make W a j(k)-ground. Find € > X\ strongly inaccessible such that
Vp computes the r-mantle correctly according to Lemma 4.2.5 (7). We can
also assume that the same holds for all larger strongly inaccessibles. Now
let j : Vygy1 — Vj(g)41 be an elementary embedding with crit(j) = x and
j(k) > A. Notice that j(6) is inaccessible, too. We have that

Vor1 = Ve ze (M} k)Y < (“zis in all x-grounds”)"?
and by elementarity
Viy+1 FE Vo xe j(M | ®)V?) > (“z is in all j(k)-grounds”)"s®
and hence

F(M 1 KR)g) = (M 1 £)'?) = (M 1 j(k))"5® = (M ] j(k))j0) S Wy (*)

where the first and last equality holds by our assumption on 6 and the
inclusion holds since W) is a A < j(x)-ground of Vj(y) by Lemma 4.2.5 (7).
For the final argument, we will need that j[A] € W. To see this, we will
apply Proposition 4.2.6. So let § = {(Salae < Xy € W be a sequence of
pairwise disjoint stationary subsets of (E2)" from the perspective of W.
Now V is an extension of W by a forcing of size < A\. Lemma 1.5.4 shows
that stationarity in A is absolute between V and W. In particular in V,
S is still a sequence of pairwise disjoint stationary subsets of A which only
contain ordinals of cofinality w. Let j(S) = (Sa|a < j(A)). We have:

j[M] = {a < 8|S, N d is stationary in 0}V

If 5 (§) e W, then by absoluteness of stationarity above \ between V and
W, we could define j[A] inside W. Indeed, we have j(S) € j(Wy) < j((M |
1)V0) € W) by (*). Hence j[A] € W which is what we wanted.

We will now show that (M | k), € W for a < A by induction on a.
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a=r M| kK)=(M] k"), =35(M} k)). S W, where the second
equality holds since j has critical point x and the last inclusion holds
by (#).

a~a+1: Assume (M | k) € W,. Let X € (M | k),. We have to show
X € W. The idea is to code the set X and use (x) and j[A] € W. First
find a bijection f:p > (M | kK)o in W € M | k. By (%), j(f) € W.
jlp] is an initial segment of j[A] € W as p < A by strong inaccessibility
of A and thus j[p] € W. With this we can conclude

JIM T K)ol = 5(F)lilell € W

and hence:

JIX] = 3(X) G (HLIM T k)a]]l € W
Now 51 1 j[(M | k)a] is just the Mostowski collapse and hence in W.
Thus X = j~![j[X]] € W which we wanted to show.

a € Lim: This case is clear by continuity of the Von-Neumann-hierarchy.

O

4.3 Hyper-Huge Cardinals

Usuba has given a strengthening of the notion of a 1-superhuge cardinal from
which one can conclude even more than from an extendible. All the follow-
ing large cardinal axioms can be defined in first order logic via demanding
the existence of certain ultrafilters (for huge cardinals consult [Kan09], for
hyperhuges [Usul7]).

Definition 4.3.1. Let s be a cardinal.

(i) k is called n-huge for n < w if there is some inner model M and an
elementary embedding j : V' — M with c¢rit(j) = x and so that M is
closed under j"(k)-sequences.

(74) k is called n-superhuge if additionally such an embedding can be found
with j(k) > X for arbitrarily large .

(7i7) K is hyper-huge if for every A there is a nontrivial elementary em-
bedding j : V — M into some transitive inner model M such that
crit(j) = K, j(k) > X and 7O M < M.

Remark 4.3.2. Notice that all hyper-huge cardinals are extendible. If
A > k is a Jfixed point and j : V — M is an elementary embedding
with erit(j) = xk and JMM < M then Vi € M so that j restricts to an
elementary embedding V) — Vj(y) with critical point «. In particular, there
are unboundedly many strongly inaccessible cardinals above a hyper-huge
cardinal.
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Corollary 4.3.3. The existence of a hyper-huge cardinal implies the bedrock
azriom.

More interestingly, the reflective properties of a hyper-huge cardinal are
powerful enough to, in a sense, pull down the statement “j(W) is a j(k)-
ground” to conclude that W is a x-ground. Of course we will make that
precise.

Theorem 4.3.4. (Usuba)[Usul7] If there is a hyper-huge cardinal k, then
every ground is a K-ground.

Remark 4.3.5. Usuba’s result regarding extendible cardinals is more recent
than the above one and appeared during the time this thesis was written. By
that time, this thesis was already focused on hyper-huge cardinals and thus
we stay true to that and even present (a modification of) the original proof.
The above theorem follows much easier (compared to the proof below) and
for smaller large cardinals with a lot less consistency strength than a hyper-
huge: It can be shown that a hyper-huge is a limit of extendible cardinals.
Suppose k is the second extendible cardinal (or any large enough cardinal
above the first one). Now if A is the least extendible, then M = M | A.
Since there can be at most A-many A-grounds, the proof of the sD DG shows
that M € V' has the A"-global covering property. The proof of Bukovsky’s
Theorem shows that M extends to V' via a forcing of size well below the next
inaccessible above A. In particular, M is a k-ground. The “hyper-huge” in
any result of this section can be safely replaced by, for example, 1-superhuge.

Proof. Let W be any ground and find a forcing P € W and a P-generic filter
G over W such that W|[G] = V. Pick a strongly inaccessible cardinal A > k
large enough so that P € V). Using the hyper-hugeness of x, we can find
some inner model M and a nontrivial elementary embedding j : V. — M
with crit(j) = &, j(k) > X and "VM < M. Let (W) = U corgi(Wa)-
Using the definability of grounds, we can find r so that W = W}V,

Claim 4.3.6. j(W) = W,.

Proof. We show that j(W) = |Jji[W] = Uj[W)] = W]%): If x € j(W)
then we can find some « such that z € j(W);) = j(Wa) € j[W]. In the
same way, if x € Wj]\({n) then there is o with z € Mj(,) mW]%) =j(VoanWY) e
JWY]. O

In particular, (W) is a model of ZFC' as it satisfies the inner model
criterion inside M and the axiom of choice.

Claim 4.3.7. W, € j(W)) € M;() = Vo

Proof. We show one inclusion at a time.
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Wiy € J(W)y): Since A is strongly inaccessible in V, so is j(A) in M. Now

M is closed under j(\)-sequences and thus j(A) is (strongly) inaccess-
ible in V, too. This shows that Wj(,) is a model of ZF'C and so is
JW)jion = 3(W). By coding sets as sets of ordinals, it is enough to
show that any set of ordinals x € W,y is a member of j(W)). Note
that z is a bounded subset of j(A). Let § = (Su|a < j(A)) € W be

a sequence of disjoint stationary subsets of EY, N as computed in W.
Let 0 = sup j[j(\)]. Proposition 4.2.6 yields

Jli (V)] = {o < 6|Sa N 6 is stationary in 6}
where j(S) = (Sa]a < j(A)). I claim that

{a < 8|S, N § is stationary in 6}V

={a < (5|5’a M J is stationary in 5}j(W)

As j(S) € j(W) it is enough to show that stationarity in 4 is abso-
lute between V and j(W). As M is closed under j(\)-sequences and
cof(8) = j()), this is absolute between V and M. We see by element-
arity that

M | “j(W) = W,y is a j(A)-ground”

and hence stationarity in 0 is absolute between M and j(W) by Lemma
1.5.4.

This shows that j[j(\)] € j(W). If z is a set of ordinals in W),y then
€ Wiy 0 Ord = j(A) and jla] = j(x) ~ jL(0] € j(W). Now j 1 |
Jl7(N)] is the Mostowski collapse of j[j(\)] and thus in j(WW). Thus
v = j ' jlzl] € (W) and as rh(z) < §N), = € J(W)j0) = J(W).

J(Wx) € Mj(»: This inclusion holds since j(Wy) € j(Va) = Mj(y).

Mjny = Vs M is closed under all j(A)-sequences. j()) is strongly in-
accessible so in particular a J-fixed point. Thus Vioy € M follows
directly by induction.

O

Lemma 4.2.5 (i) shows that Wj) is a A-ground of V(). Using the
quotient lemma (Corollary 6.3.10), we can conclude that j(W))isa A < j(k)-
ground of j(Vy) = Mj). By elementarity, W) is a k-ground of V). Thus
there is a forcing Q of size < k in W) and H a Q-generic filter over W)
with Wy[H] = V). It is now enough to show that W[H]| = V. As the
subsets of Q are the same in W) and W, H is Q-generic over W. Moreover,
G e V), =W,[H] < W[H]. This shows V = W[G] < W[H] < V and hence
WI[H] =V.

O
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If we combine this with the following result, we see that hyper-huge
cardinals are downwards absolute to the mantle.

Proposition 4.3.8. If k is a cardinal and W a k-ground of V then k is
hyper-huge if and only if it is in W.

In the “downwards” direction, we will make use of the following result
of Hamkins:

Fact 4.3.9. [Ham03, Corollary 6] Suppose § is a reqular cardinal and W is
an inner model of ZFC' so that W €V has the d-approzimation and cover
properties. If M is an inner model of V. with °M < M and j : V. — M an
elementary embedding with § < crit(j) then j[W] € W, M nW is an inner
model of W and

ITW W ->MnW

1s an elementary embedding.

Proof. (Proposition 4.3.8) First suppose k is hyper-huge in V. Let A > &
and j : V — M an elementary embedding with critical point k, j(k) > A
and /MM < M. By Proposition 2.1.14, W € V has the k-approximation
and cover properties. The above fact yields that N is an inner model of
W and £k : W — N is an elementary embedding where £ = j [ W and
N = M ~nW. We still have k(k) > A and ‘M N € N (from the perspective
of W). Thus « is hyper-huge in .

Now assume that « is hyper-huge in W. Let A > k and find j : W —» M
an elementary embedding with crit(j) = &, j(k) > A where M is an inner
model of W with /™A < M. Find a forcing P € W, and a P-generic G
so that W[G] = V. Since the critical point of j is k, j(P) = P and thus
Jj[G] = G. We can apply Lemma 1.4.2 to lift j to an embedding

j+:V—>M[G]

with 55 I W = j. In particular, j* (k) = j(k) > X and j©(\) = j(A). Since
W is definable in V and G € V, M[G] is an inner model of V. It is left to
show that 7V M[G] € M[G]. As usual, it is enough to verify this closure
condition for sequences of ordinals. So let f : j(A\) — Ord be a function
in V. By Proposition 1.2.4, there is a P-name f for f of size j(\). The
closure of M implies that f € M and hence f = f¢e M [G] follows from the
absoluteness of interpretation of names. This shows that x is hyper-huge in
V.

O]

Lemma 4.3.10. Hyper-huge cardinals are downwards absolute to the mantle.
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Proof. If k is a hyper-huge cardinal then by Corollary 4.3.3 there is a bed-
rock. Thus the mantle is a ground. Furthermore by Theorem 4.3.4, V is a
generic extension of M by a forcing of size < k. By Proposition 4.3.8, « is
hyper-huge in M.

O

All in all, if x is hyper-huge in V' we can characterize exactly where in
the generic multiverse x has the same property.

Corollary 4.3.11. If « is hyper-huge and W is a point in the generic mul-
tiverse of V' then k is hyper-huge in W if and only if W is an extension of
M by a forcing of size < k.

Proof. Find a forcing P € M of minimal size so that M extends to W via P.
We already now that  is hyper-huge in M. If |[P|™ < k then & is hyper-huge
in W by Proposition 4.3.8. Otherwise,

W = “M is not a k-ground”

and thus by Theorem 4.3.4, s is not hyper-huge in W. 0
Using the qoutient lemma, we can put this differently:

Corollary 4.3.12. It is not possible to add hyper-huge cardinals via set
forcing.

Proof. Suppose k is hyper-huge in an extension V|[G]. By Theorem 4.3.4,
M is a k-ground of V[G]. Since M € V < V[G], V is a k-ground of V[G]
by Corollary 6.3.10 and thus & is hyper-huge in V' by Proposition 4.3.8. [

In contrast to this, it is possible to add a hyper-huge cardinal via class
forcing (relative to some larger cardinal axiom). For this let P be the canon-
ical Easton supported class iteration that forces GC' H, namely the iteration
((Py|a € Ord),{(Qqlo € Ordy) where Q, is a Py-name for the Add(a*, 1)
forcing as defined in the extension if « is an infinite cardinal and for the
trivial forcing else. We will prove the following theorem in the addendum.

Theorem 6.5.1.[Tsa16] After forcing with P, any (n + 1)-superhuge car-
dinal remains n-superhuge.

Since a 2-superhuge cardinal is hyper-huge, any 3-superhuge cardinal
remains hyper-huge after forcing with P.

Corollary 4.3.13. If ZFC plus the existence of a 3-superhuge cardinal is
consistent, then it is consistent that some class forcing adds a hyper-huge
cardinal.
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Proof. Let k be 3-superhuge in V' and force with the canonical Easton sup-
ported class iteration P for GCH. Thus in the extension V[G], k is still
hyper-huge. However, we can factor P as P, = P., into the initial itera-
tion up to stage k and the tail iteration. If G« is the induced generic for
P<, then k is not hyper-huge in V[G<,]: Let g be the induced generic for
Add(kT, l)V[G<"~]. We can understand g as a subset of k™. Note that every
bounded subset of ¢ is in V[G,]. That shows that V[G.] € V[G«x] does
not have the x'-approximation property. Proposition 2.1.14 implies that
V|G <k] cannot be a k-ground of V|[G«,| and so M cannot be a xk-ground by
the quotient lemma (6.3.10). Thus by Theorem 4.3.4, x is not hyper-huge
in V|[G<,]. However, the tail iteration Pg,f" forces x to be hyper-huge. [

We can also kill off as many hyper-huge cardinals as we want. We will
later see the analogous result for supercompacts.

Lemma 4.3.14. If ZFC+ “there are class many hyper-huge cardinals” is
consistent, then so is ZFC+ “there are class many hyper-huge cardinals in
M, but none in the entire generic multiverse”.

Proof. Start with a model V of ZFC+ “there are class many hyper-huge
cardinals” and add a Cohen real to obtain V[c]. By Lemma 4.3.8 all hyper-
huge cardinals remain so in V[c]. Now obtain any model W of ZFC such
that M"Y = V]c| by applying Theorem 2.3.2. Since V[c| has a nontrivial
ground, V[c] cannot be a ground of W. Hence, there cannot be a bedrock.
By Corollary 4.3.3, there cannot be a hyper-huge anywhere in the generic
multiverse of W since the statement “there is a bedrock” is constant across
the generic multiverse. O

4.4 AZFC_Definable Large Cardinals Axioms

We determine when AZ% ¢ statements holds in the mantle. This directly

gives a criterion when A% C_definable large cardinal axioms hold in the
mantle. We say that some property holds for dense-many grounds if for any
ground W, there is a deeper ground W’ € W with this property. As grounds
are uniformly definable, this is first order expressible if the property is.

Lemma 4.4.1. For any AZ¥C-formula ¢(z) and any a € M the following
are equivalent:

(1) M= p(a)
(1) The grounds W of V. with W = p(a) are dense.

Yo-formulas are exactly the locally verifable statements. Dually, Ils-
formulas are exactly the locally falsifiable statmenets. So AQZF C_formulas
are both and in this sense local. We will exploit that the mantle locally
coincides with dense many grounds.
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Proposition 4.4.2. For any ordinal «, the grounds W of V' for which
W, = M, are dense.

Proof. Let W be any ground of V' and work in W. For every z € W,\M,,
find some ground N? such that x ¢ N*. By the sDDG, there is a ground
N which is contained in all N* for x as above. We have

M, € N, € NS € W,\{z}
for every x € W,\M,, and thus N, = M,,. O

Corollary 4.4.3. If o(x) is a Xa-formula and a € M such that M = ¢(a)
then the grounds W of V' for which W k= ¢(a) are dense.

Proof. Using Lemma 6.1.1, find a formula v (x) such that
ZFC - Vz (o(x) & Ja x e Vo A b(z)V™)

holds. Find a with M, = v¢(a). By Proposition 4.4.2, the grounds W of V'
with W, = M, are dense. Every such ground W satisfies W |= 1(a)"> and
thus W = ¢(a). O

The converse holds for IIs-formulas.

Proposition 4.4.4. If o(z) is a Ia-formula and a € M such that the
grounds W of V' for which W |= ¢(a) holds are dense then M = ¢(a).

Proof. Assume that M = —¢(a). As —¢(x) is X, an application of Corol-
lary 4.4.3 yields that W = —¢(a) for dense many grounds. As above, let
1(x) be a formula that witnesses Lemma 6.1.1 for the formula —¢(x). Find
a with M, = 9¥(a). There must be a ground W of V' with W, = M, by
Proposition 4.4.2. Any deeper ground W' € W satisfies W/, = M, and thus
W' = =p(a), contradicting the assumption. O

Lemma 4.4.1 now follows immediately from Corollary 4.4.3 and Propos-
ition 4.4.4.

Corollary 4.4.5. Suppose vk < ~. If X is any of the properties weakly
inaccessible, strongly inaccessible, Mahlo, weakly compact, measurable or -
supercompact, then M = “k is X7 if and only if the grounds W for which
Wk “kis X7 are dense.

ZFC
AQ

Proof. All these properties are in k (and 7).

O]

However, the property of supercompactness is not locally verifiable (only
locally falsifiable) in contrast to the above properties. We will see later
that the Ilp-statement “k is supercompact” does not in general satisfy the
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conclusion of Corollay 4.4.3. Certainly, it is easy to build large cardinal
axioms that are not A2ZF C but still satisfy Lemma 4.4.1. For example “x
is supercompact in all grounds” would do the trick. Anyhow, there are
natural global large cardinal axioms that still satisfy Lemma 4.4.1. But
before we get to this, let us first observe that the AZFC statement “0%
exists” behaves really nice regarding the mantle. By the way, that this is
AQZF ¢ can be observed by noting that the existence of 0% is equivalent to
N, being regular in L ([Jec03, p. 329]). Furthermore, the existence of 0%
cannot be changed via forcing (compare [Jec03, Exercise 18.2]). Together
with our characterization of AQZ FC_formulas in the mantle, this yields:

Proposition 4.4.6. The following are equivalent:
(i) 0% exists somewhere in the generic multiverse of M.

(i1) 07 exists in M.

)
)
(iii) 07 exists in dense many grounds.
(iv) 0% exists in V.

)

(v) 07 exists somewhere in the generic multiverse of V.

In that sense, the existence of 0% transcends through the multiverses of
M and V. Let’s get back to the example of a natural global large cardinal

notion that does still satisfy our AZF C_characterization.
Definition 4.4.7. Let x be a cardinal.

(i) We say that M is a k-model if M is transitive, of size k, kK € M and
M E ZFC-.

(11) For A > k, K is called A-unfoldable if for any x-model M there is an
elementary embedding j : M — N with crit(j) = k and j(k) > A for
some transitive V.

(7i1) We say that k is unfoldable if x is A-unfoldable for all A > k.

Remark 4.4.8. It was carefully not specified whether or not unfoldability
is Yo-definable. The author is in fact not sure whether this is true or not.
There stronger Yo-large cardinals axioms that imply unfoldability. One
example is measurability. Suppose k is measurable and A = k. By iterating
a nonprincipal < k-complete ultrafilter on x (compare [Jec03, Chapter 19]),
we can construct an elementary embedding V' — M with critical point x and
j(k) > A. If N is a k-model, then j(N) is transitive and j [ N : N — j(N)
an elementary embedding. Thus x is unfoldable. The same is true for
Ramsey cardinals. However , for example in L, the unfoldable cardinals
will not exhibit these stronger properties. On the other hand, Lemma 6.1.1
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gives a strategy with which one might try to proof that unfoldability is not
Yo-definable: Start with k unfoldable and for any given o > k, find a model
with the same sets of rank < « in which & is not unfoldable. This is not
possible via forcing as x will be unfoldable in any forcing extension with the
same H,+ (as all k-models are in there). Thus we would probably need to
employ techniques of inner model theory.

Unfoldability is a strengthening of weak compactness, in a way similar
to how supercompactness is a strengthening of measurability.

Lemma 4.4.9. k is unfoldable in M if and only if k is unfoldable in dense
many grounds.

We first need an auxiliary result.

Proposition 4.4.10. If M is a k-model and A = k a cardinal such that
there is an elementary embedding j : M — N with crit(j) = k and j(k) > A
and N transitive, then there is such an embedding for some N' in H+.

Proof. Let § be large enough such that M, N € H;. Find an elementary
substructure K < Hs with N,j € K, tc({M}),A +1 S K of size \. Let K
be the Mostowski collapse of K and 7 the corresponding collapse map. Let
o(z,y, z,u,v) be the statement

“y, z are transitive and = : y — z is an elementary

embedding with crit(x) = v and x(u) > v”

As ¢ is X, we have Hs = ¢(j, M, N, k,\). By elementarity and applying
the isomorphism 7, we conclude K = ¢(n(j), 7(M),n(N),n(x), 7()\)). By
choice of K we have that m(M) = M,n(k) = k and 7(A) = \. As ¢ is
absolute between V and K, we have that 7(j) : M — 7(NN) is an elementary
embedding with crit(7(j)) = & and 7(j)(x) > A. Since K is transitive and
of size \, we get that 7(N) € K S H,+. O

Proof. (Lemma 4.4.9) Assume k is unfoldable in M. As usual, it is enough
to show that x is unfoldable in all grounds W with Wy, 1 = Mi1. So
suppose M is a k-model in W and A = k. Since we can code M as a subset
of k in an absolute way (compare Remark 2.1.8), and since W and M have
the same subsets of «, we can conclude that M € M and M has size x in M.
Now the embedding that witnesses the unfoldability of x in M with instance
M, X works in W, too.

For the other direction, observe that being unfoldable is locally falsifiable by
Proposition 4.4.10, as A-unfoldability can be falsified in Hy+ € V,+. Thus
“k is unfoldable” is a IIy-property by (the dual of) Lemma 6.1.1 and hence
this direction follows from Proposition 4.4.4. O
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On the other hand, it is possible to give an upper bound on the reflective
strength a large cardinal axiom that satisfies the conclusion of Lemma 4.4.1
can possibly have.

Lemma 4.4.11. Suppose ¢(x) is a large cardinal axiom such that ZFC +
GCH plus the existence of a cardinal k with ¢(k) is consistent. If such a
cardinal provably reflects the failure of GCH, i.e.

ZFC Yk (p(k) A =GCH) — I\ < k 20 > At
then p(x) does not in general satisfy the conclusion of Proposition 4.4.4.

Proof. Suppose V is a model of ZFC + GCH and a cardinal x satisfies
¢(k) in V. Force with the iteration P constructed in Theorem 2.3.7 where
the additional sequence of forcings is chosen trivial and so that P is < |V,]|-
distributive. The extension V[G] satisfies MV = V and V[G]. = Vi and
thus GCH holds in V[G] below . The latter is true for any ground W of
V[G]. On the other hand, GCH fails unboundedly often in V[G] and thus
in any ground of V[G], too. As k reflects the failure of GC'H whenever ¢(k)
holds, we can conclude that W }= —p(k) for every ground W of V[G]. But
then, there is in fact no ground in which (k) holds true. O

Remark 4.4.12. Even though this gives an upper bound on the reflect-
ive strength AQZF C_definable large cardinal axioms exhibit, these can still
have exorbitant consistency strength. For example, one of the large cardinal
axioms with the highest consistency strength that is not known to be incon-
sistent is the existence of a nontrivial elementary embedding j : V) — V).
If we phrase this as an axiom in terms of A instead of the critical point of 7,
the existence of such an embedding is decided in Vj,; and thus is AF¥C.

4.5 Supercompact Cardinals

Supercompacts are an example a large cardinal axiom that is consistent with
GCH and reflects the failure of GCH.

Proposition 4.5.1. A supercompact cardinal reflects the failure of GCH.

Proof. Assume GCH fails at A > . By supercompactness, find some inner
modell M and an elementary embedding j : V. — M with crit(j) = &,
j(k) > At and XM < M. Then (AT)M = Xt and P(\)M = P()). Since
there is no surjection from A" to P(\) in V, there is no such map in M
and thus M = “GCH fails at \” and thus M =“GCH fails below j(k)”. By
elementarity, V = “GCH fails below x”. O

It is a standard result that supercomact cardinals are preserved by the
canonical Easton supported iteration which forces GCH. In particular, the
existence of a supercompact cardinal + GCH is relative consistent to the
existence of a supercompact.
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Corollary 4.5.2. If ZFC'+ “there is a supercompact cardinal” is consistent,
then so is ZFC+ “there is a cardinal k which is supercompact in M, but in
no ground”.

Remark 4.5.3. By Lemma 4.4.3, the analogue of the above result for any
Yo-definable large cardinal axiom is impossible. As supercompactness is a
IIs-property, this is best possible complexity-wise.

It is easy to see that the same proof shows that the above corollary is
true for set-many supercompacts instead of only one. A natural question is
now, whether or not we can do this for class many supercompacts to get an
analog of Lemma 4.3.14 and the answer is yes, we can. The main result we
will prove in the rest of this subsection is thus the following.

Theorem 4.5.4. If ZFC + “there are class many supercompacts” is consist-
ent then so is ZFC + “there are class many supercompacts in the mantle, but
none in the entire generic multiverse”.

The main idea relies on a combinatorial principle we will define next.

Definition 4.5.5. If )\ is an uncountable cardinal, then ) denotes the
statement that there is a sequence (Cy|ac € Limn ™) such that the following
holds for all a € Lim n A™:

(i) Cy is a club in «.
(i7) otp(Cy) < A
(¢49) If B < v is a limit point of Cy, then Cg = Cy N .
Our result will rely heavily on the failure of [\ above a supercompact.

Proposition 4.5.6. If k is supercompact, then [y fails for any cardinal
A= K.

Our strategy will thus be to start with a model with class many su-
percompacts and force it to be the mantle, while simultaneously force [y
unboundedly often. Let us first proof the above Proposition.

Definition 4.5.7. Given a cardinal A and a sequence C = (Cylar < AT
such that C, is a club in «, an w-thread through C' is an unbounded set
D € At such that for all @ € EA™ ~ lim(D) we have D n a = C,,.

Proposition 4.5.8. [SRK78] There are no w-threads through [Jx-sequences.

Proof. Suppose D € A" is an w-thread through a [J)-sequence C= (Cyhla <
A1), Since AT is regular and D unbounded in A7, there is some 3 < At such
that otp(D n ) = A. Furthermore, we can find some § < a € E;}Jr nlim(D).
But then A < otp(D n a) = C,, contradicting that Cisa [y-sequence. [
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Proof. (Proposition 4.5.6) Let A > k be a cardinal. Let j : V — M be a
nontrivial elementary embedding witnessing the A*-supercompactness of k.
Suppose for a contradiction that C = (Cyla < A*) is a [Jy-sequence in V.
Then j(C) = (Cala < j(AT)) is a [Jj(n)-sequence in M. Since M is closed
under A*-sequences, we have that j|[A\T] € M. From j(AT) > j(k) > AT and
the regularity of j(A1) in M, it follows that 6 = sup j[AT] < j(AT). Thus
we can define D = j~Cjs].

Claim 4.5.9. D is unbounded in ™.

Proof. First notice that j[A] contains all its limit points of cofinality w:
If {ap|n < w) is an increasing sequence in AT with limit o, < AT then,
as w does not get moved by j, j({an|n < w)) = {J(ay)|n < w). Thus by
elementarity, sup{(j(ay)|n < w) = j(a.) € j[AT].

We have A = j[AT] nd € M. Clearly, A is unbounded in ¢ and cof(d) =
AT > w. To show that D € A" is unbounded, let o« < A*. In M, construct
a sequence {f,|n < w) such that for all n < w:

(1) j(a) < Bo
) B < Bn+1

(ZZZ) BQn e A
)

(iv ﬁszrl € é&

(i

This is possible as both A and Cj are unbounded in é. Since both A~ and Cj
contain its limit points of cofinality w, . = sup{(B,|n <w) € A n Cs. Now
77Y(Bs) € D is larger than a. O

Claim 4.5.10. D is an w-thread through C.

Proof. We already now that D is unbounded in A™. Suppose ~ is the su-
premum of an increasing sequence {y,|n < w) in D. The argument in the
above claim shows that j(7) = supp<wi(n) < 0. As j(m) € Cs for every
n < w, we can conclude that j(v) € lim(Cs). But then C5 n j(v) = éj('y)
and thus:

Dy =j5"Cs nj[v]] =57 [Cs 0 j(N)] =57 [Cip)] = C

Here, the last equality holds as § € C. is equivalent to j() € Cj(,y), a
consequence of the elementarity of j. O

This is a contradiction to Proposition 4.5.8. 0

We now have to find a forcing that forces .
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Definition 4.5.11. For A\ an uncountable cardinal let ]P’? be the following
partial order: It consists of conditions which are basically initial segments
of a [Jy-sequence. To be more precise, we will have p € IP’? iff

p={Clla <6, aeLim)

where 0, € Lim n AT and (i) — (ii7) hold from the definition above for all
a € Lim n d,. We also accept the empty sequence as the maximal element.
Let p< qiff 07 <éP and p [ d4 = ¢.

Lemma 4.5.12. [CFMO01] Let \ be an uncountable cardinal. The forcing
IP’E has the following properties:

(i) it adds a [0\ sequence
(i1) it has size at most 2)
To prove this we will show that IP’? is < A-strategically closed.
Proposition 4.5.13. [CFMO01] Let X be an uncountable cardinal.
(i) PJ is < A-strategically closed.

(i) If p e IP’? and 6, < § < AT then p can be extended to a ¢ < p with
d < 9y

Proof. (i) In the following we will write d5 instead of d,, in all instances.
Consider the following strategy for player I1:

e At an even successor stage v = v/ +1 just extend p,, nontrivially,
for example by p, where p, | (64 + 1) = py, and p, (65 +w) =
{0y + nln < w}.

o At alimit v, let 6, = supg<y d3 < AT. We define p, by p, | 6, =
Up—, s and p,(8) = Cb7 = {818 < 7}.

It is left to show that this is a winning strategy, i.e. that the above
play at limit ~ is always legal if we have played according to this
strategy at prior stages. First of all, ¢, is strictly larger than all prior
dg by the choice of play at even successor stages, so p, is functional.
Next we see that by induction, C’gj is closed by our prior choices of

0 for limit B < . Clearly, otp(ng) < v < A Furthermore, if §, is

a limit point of Cf;: then by our choice of play at stage p, we have
P~y _ ,Pp __ _ Py

Cap = C'ép = {05|8 < p} = C’(SV N dp.

(i7) For 6 < A* let A(y) be the statement “ if p € P{' and 6, < § <~y then
p can be extended to a g < p with § < d,”.
Let (va]a < AT) be the increasing enumeration of Lim n AT. We show
A(7Ya) by induction on «.
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o = 0: Trivial.

a~a+1l:If pe ]P’E with 0, < 7a+1 then first extend to go with
dgo = Vo using A(7,). We can then extend ¢g as in the successor
case of (i) to a ¢ with d; = Vo +w = Ya+1-

a € Lim: Assume p € ]P’? has §, < vo. Let p = cof (7o) < A and find
an increasing sequence ({g|8 < p) in Lim N vy, cofinal in 7. Let
o1 be the following strategy for player I in the game G (]P’E, A+1):
As a first move play p. At a later odd stage 5+ 1 with 8 < p
extend pg to any condition pgyq with d,,,, = {g which is possible
by A(&g). If B = p, just copy the last move, pg+1 = pg.
Let o7 be the winning strategy from (7). Then

O(or,011) = {pplB < N)

is a decreasing sequence of conditions of length A\ + 1 since player
11 must have won. Let ¢ = py. By the choice of play of player I,
we have ¢ < p1 = p and 0q = supg<x Op, = sups<p £ = Ya-

O

Proof. (Lemma 4.5.12)

(i) Let G be P{J generic over V. First of all by (ii), (\H)VIEl = (AH)V.
Since two conditions p, g are compatible if and only if p < q or ¢ < p,
C = JG is functional. Indeed, it is a sequence of length A*: For
§ € Lim n At define Ds = {p € P{|§ < &,}. By Proposition 4.5.13
(i), Djs is dense and thus G n D # . This shows that C is of length
AT. Any initial segment of c belongs to a condition in IP’? and thus
satisfies properties (i) — (i) of definition 4.5.5, hence C itself satisfies

these properties.

(11) We have that
PP < > [[2 <At 2t =2

S<At a<é

We now have all the ingredients we need.

Lemma 4.5.14. There is a class extension V[G] with MVIC] =V such that
there are no supercompacts anywhere in the generic multiverse of V|[G].

Proof. Finally, the extra work we have put into Theorem 2.3.7 will pay off.
Let P be the forcing constructed in that theorem with x = w; and additional
sequence Q) = IP';. We write C = Cy, (in the notation of that theorem). By
Lemma 4.5.12 and Proposition 4.5.13, the sequence (Qx|\ € C) meets the
requirements. Let V[G] be a corresponding extension. Since IP’EJr does not
collapse A and A*, Theorem 2.3.7 yields the following:
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(i) MVICl = v
(i) Whenever P{ has been chosen, A and (AT)" are still cardinals in V[G].

Since IP’E has been chosen at unboundedly many stages A € C, we see
together with (i7) that [Jy holds at any of these cardinals. Suppose W' is
another universe in the generic multiverse of V[G]. By Corollary 2.4.4 (ii7),
there is a common ground W of V[G] and W’'. Find some large enough
cardinal d so that W is a d-ground of W’ and of V[G]. Then W < V[G]
has the d-approximation property by Proposition 2.1.14. If A is any cardinal
above ¢ in C such that G chose IP’E at stage A, then every initial segment of the
added [Jy-sequence is an element of V' and thus of W. The §-approximation
property of W € V[G] yields that the whole sequence is in W. As A\, AT
are cardinals in W, [y holds in W. Moreover, A is still a cardinal in W’
and has the same successor there and thus [ is true in W' as well. Thus
[» holds unboundedly often in W’. By Fact 4.5.6, there cannot be any
supercompacts in W', O

Theorem 4.5.4 follows.

This means that, by digging through to the mantle, it is possible to uncover
new supercompacts, even class many, that crumbled so badly under the
accumulated dust of forcing that they are not resurrectible via set forcing.

4.6 Counterexamples to Downwards Absoluteness

We have answered the questions which large cardinals are upwards absolute
from M to V in our revised sense in a lot of instances. Moreover, we have
seen that some very large cardinals are in fact downwards absolute to the
mantle. What about smaller large cardinals? Certainly, all II; definable
large cardinal axioms such as weakly/strongly inaccessible and Mahlo are
trivially downwards absolute to the mantle. Next, we will see that a lot
of large cardinal notions are not downwards absolute to the mantle. More
precisely, no large cardinal axiom ¢(x) that is implied by supercompact-
ness and itself implies weak compactness can be downwards absolute to the
mantle. This means that there is some kind of sweet spot where the large
cardinal axiom is strong enough to not be trivially downwards absolute, but
not too strong to cause such drastic consequences for the generic multiverse
that imply downwards absoluteness.

Theorem 4.6.1. Weakly compact, measurable, unfoldable, v-supercompact,
supercompact and any other large cardinals whose defining property is im-
plied by supercompactness and itself implies weak compactness, are in general
not downwards absolute between V and M.

The proof will be a modification of Kunens observation in [Kun78] that
these large cardinals can be consistently added by forcing.
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Fact 4.6.2. [Kun78] Given a weakly compact cardinal k, there is a forcing
Q that adds a Suslin tree T, so that the two step iteration Q = T is forcing
equivalent to Add(k,1).

In addition to this, a main ingredient is a tool to make supercompact
cardinals indestructible by a large class of forcings.

Definition 4.6.3. A supercompact cardinal k is Laver indestructible if & is
supercompact in any extension by a < k-closed forcing.

We prove in the addendum (Theorem 6.4.1) that any supercompact car-
dinal can be forced to be Laver indestructible.

Proof. (Theorem 4.6.1) Start with a model V' in which x is supercompact
and Laver-indestructible. Now find Q+7T" as given by Fact 4.6.2. Let V[T be
a Q-generic extension of V. T is a Suslin tree, so in particular an Aronszajn
tree and hence the tree property fails at x so that x is not even weakly
compact in V[T]. We want this model to be our mantle, so let P be the
forcing from Theorem 2.3.7 (with trivial additional sequence) starting at
k as defined in V[T], but first we force with with T, the evaluation of T
in V[T, to get an extension V|T|[h] = V|g], where g is Add(k, 1)-generic
over V. Since Add(k,1) is < k-directed-closed,  is again supercompact in
V0g]. As V[T is a ground of V|g], this class product is definable in V[g| by
the definability of grounds. For any « > k, we can factor the generic G as
Gca X Gzq, where G-, is the induced generic for the initial factor of P up
to stage a. Note that P is even < k" -closed and so does not add any new
subsets to T, so that h is still generic over V[T][G<4]. The product lemma
implies that then

VIT][G<allh] = VITTM[G <al = VIg][G<al

for any a.

Claim 4.6.4.

VITIIGIR] = | VITIG<allh] = | VIglG<al = VIglIG]

azk azk

Proof. We only have to show that the first and last equalities hold. For the
last equality, this is simply true since any = € V[g][G] has a P-name & in
Vg], but tc({Z}) can only contain conditions up to some large stage o so
that z = ¢ = i%<c € V[g][G <a]-

The argument for the first equality is similar: Any x € V[T'|[G]|R] is of the
form 3" for some T-name @ € V[T][G]. Thus @ € V[T][G <4] for some large
enough a and hence = € V[T|[G<u][R]. O
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We get the following commutative diagram, where arrows represent in-
clusions:

T

viT)i6] X viglla)
e o e
v —2 v T vy

Note that vertical arrows are class forcing extensions, while horizontal arrows
refer to set forcing extensions. We will establish that x is supercompact in
the right column, but fails to be weakly compact in the middle column. I
claim that in this universe, x is supercompact, but not weakly compact in
its mantle. First, note that since the mantle is constant across the generic
multiverse, MV = MVITIE] = V[T, where the second equality holds
by Theorem 2.3.7. Thus & is not weakly compact in MY 9G],

Observe that V, V[T] and V[g] all have the same < k-sequences of ordinals
as Add(k, 1) is < k-closed and V[T is an intermediate model. This implies
that P and each of its factors is < k-directed closed in V[g], since it is in
V[T]. In V]g], & is still Laver-indestructible, as the two-step iteration of
< k-directed closed forcings is < k-directed closed. We want to apply this
to P, but we cannot directly do so, as Laver-indestructibility only takes set
forcings into consideration. Let v = k. We show that k is «-supercompact
in V[g][G]. This property only depends on the Von-Neumann-hierarchy up

to v+ 2. Find a P-name z for Vv‘i[g][G]. Let « be large enough so that «

is an P_,-name. As iCe = 3G = Vw‘i[g][G], the Von-Neumann-hierarchies
of V]g||G<a] and V|[g]|G] coincide up to v + 2. By the prior observation,
P, is < k-directed closed in V[g] and hence by, Laver-indestructibility, »
is supercompact in V[g][G<.], so in particular y-supercompact. But this
means that x must be y-supercompact in V[g][G], too. This concludes the

proof. O

In the above proof, we still have that x is not weakly compact in some
ground of V[g][G], namely V[T][G], (and in fact in every deeper ground,
too) since T is still an Aronszajn tree there (note that P does not add subsets
of T). Since being weakly compact is a AZ¥C-statement, Lemma 4.4.1 shows
that this must necessarily be the case whenever k is weakly compact, but
not weakly compact in M.

Remark 4.6.5. The above construction implicitly shows that in contrast
to extendible cardinals, the existence of supercompact cardinals does not
imply the bedrock axiom.

We give another example of a large cardinal axiom that is not downwards
absolute to the mantle.
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Definition 4.6.6. A cardinal k is superstrong if there is an inner model
M and an elementary embedding j : V — M with critical point £ and

Viw) € M-

Superstrong cardinals are measurable and thus weakly compact. How-
ever, even though the existence of a supercompact cardinal implies the ex-
istence of a superstrong cardinal, a supercompact cardinal need not be su-
perstrong itself. Indeed, adding a k-Cohen subset to a Laver indestructible
supercompact cardinal x will preserve it’s supercompactness, but Theorem
2.5.1 shows that x cannot be superstrong in the extension. Therefore The-
orem 4.6.1 does not apply in this case.

Theorem 4.6.7. Superstrong cardinals are in general not downwards abso-
lute to the mandle.

The general strategy to construct a model in which & is superstrong, but
in which the superstrongness of x fails in M, is to apply Theorem 2.5.1 to
kill the superstrongness, make the resulting model the mantel and then to
restore the superstrongness. To apply Theorem 2.5.1, we need the following
auxiliary result to meet the necessary assumptions.

Proposition 4.6.8. If k is superstrong and j : V. — M an embedding
witnessing this, then Vi < Vj(.).

Proof. Let p(xq,...x,—1) be a e-formula and let ag, ... a,—1 be parameters
in V,. Since k is the critical point of j, the a; are not moved by j. Assume
Vi E v(ao,...an—1). Then

V E=Vi E "plag,...an—1)

and hence by elementarity,

M = Mj. E "vlao, ... an—1)"

from which we can conclude, by transitivity of M, that

Vit = Mjwy = elao, - an-1)
O

We will force with a product forcing that preserves superstrongness, but
has a factor that destroys it.

Definition 4.6.9. Given a superstrong cardinal x, we call j : V. — M
a superstrong extender embedding if it is the embedding induced by the
(K, k(r))-extender of an embedding witnessing that « is superstrong. Note
that Fact 1.4.6 implies that Vj(,) & M so that j is superstrong as well.

69



Lemma 4.6.10. Suppose k is superstrong and j : V — M is a superstrong
extender embedding. Then after forcing with the Easton supported product
forcing
Q= [] Add(A\*,1)
A<j(K)
the embedding j lifts to an embedding 77+ : V]G] - M[H| witnessing that
K 1s superstrong in V[G].

Proof. Factor the generic as G, X G»,. Notice that since P is Easton
supported and since k is inaccessible, every p € Q, has bounded domain
and thus is a member of V. Furthermore

M

j(@<n) = H Add(A+’ 1) =Q

A<j(x)

where the last equality holds since V() € M. Clearly, G is j(Q<,)-generic
over M and j[G.,] = G<x € G. Thus we can lift j to:

JtV[Gk] = M[G]

Observe that Q= fails to be < xT-closed in V|G|, but is still < x*-
distributive by Lemma 1.3.5. But now, as j is a derived extender embedding,
so is 7T by Fact 1.4.8 and thus the upwards closure H of j[Gx,] in j(Qx=)
is generic over M[G] by Lemma 1.4.9. Hence we can lift j© to

JTTVIG] > M[G][H]

and it is left to verify V[G];(x) S M[G][H]. But as in Claim 2.5.3, we find
that V[G]j() = Vj(w)[G] and this is certainly a subset of M[G] = M[G][H].
O

Proof. (Theorem 4.6.7) Start with a model V' in which some cardinal x is
superstrong and find j : V — M a superstrong extender embedding for
k. Let g be Add(k™,1)-generic over V. It follows from Theorem 2.5.1 and
Proposition 4.6.8 that « is not superstrong in V|[g]. Let G be P-generic over
V]g]. Now, in V][g], define P to be the forcing from Theorem 2.3.7 with
trivial additional sequence, starting high enough to be [V'[g];(,)|-closed. Let
G be P-generic over V[g]. We find that MV9IC = V[g], where & is not
superstrong. Now let Q be the forcing from above as defined in V', and let
(@ be the modification of Q where the factor at stage x is trivial. Notice
that Add(kt,1) x Q0=~Q (in fact we could just use Q instead of Q) Let
h be Q-generic over V[g][G]. Exactly as in Claim 4.6.4, it follows that
V[9]llG][k] = V]g][h][G]. By the above lemma, & is superstrong in V[g][h]
and so in V|g|[R][G], too, since their Von-Neumann-hierachy coincides up
to rank j(k) by closure of P. Again by Corollary 2.4.4 (i), MVIlMIG] =
MVYIIEl = vg]. N
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In the above construction, it was significantly easier to make the step up
to the class forcing extension that has the right mantle, compared to The-
orem 4.6.1. The reason for this is that being superstrong is a o-property,
while being supercompact is not, and thus we were able to choose the class
forcing closed enough to not interfere with the destruction and resurrection
of this large cardinal property. In this way we can generalize. Lets say that
a large cardinal property (k) is always destructible and resurrectible by set
forcing if ZF'C proves that if p(x) holds, then there is a two step iteration
P+ Q such that 1p IFp —@(&), but Lp ¢ IFp.o ©(F).

Corollary 4.6.11. Suppose p(k) is a Yo large cardinal property that is
always destructible and resurrectible by set forcing. If ZFC + 3k p(k) is
consistent, then so is ZFC + 3k (k) A —p(k)M.

Anyhow, the example in the case of superstrongness was included in

this thesis as the destruction and resurrection of this property, as we have
seen, is a nice application of Theorem 2.5.1, which itself is proven using
Set-Theoretic Geology.
The same reasoning applies to worldly cardinals, that are cardinals x for
which Vi, | ZFC, even though this is not definable as an e-formula ¢(k), as
in many cases V' will not be able to put everything together to see V' =V, =
"ZFC". In his blog post titled “Worldly cardinals are not always downwards
absolute” [Ham17b], Hamkins shows that singular worldly cardinals can
always be destroyed and further resurrected via set forcing. Since x being
worldy only depends on Vj, this property is 35 in a meta-theoretic sense:
Whenever V€ W is an outer model with the same sets of rank < &, & is
worldly in W. Thus we can apply the same reasoning to find a model V' in
which some k is worldly, but fails to be so in M.
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5 Conclusion and Questions

As we have already discussed, Set-Theoretic Geology was not successful at
its original task. Theorem 2.3.2 shows that in general, the mantle has no
interesting properties. If that were the case, this would have, for example,
opened up the possibility of achieving lower bounds in consistency strength,
by trying to show that certain cardinals are large in a ground or in M. The
current reach of inner model theory is below a supercompact cardinal and
thus the expected equiconsistency of PFA and the existence of a super-
compact is still open. On the other hand, the mantle can satisfy any large
cardinal axiom that is consistent with ZFC. A naive approach would have
been to try and reverse the usual forcing construction which gives PFA
from a supercompact. There, a supercompact k is collapsed to Ny. Naively,
one could hope that in general under PF A, Ny is supercompact in M, or at
least in some ground. However, PF' A is indestructible under < No-directed
closed forcing ([Lar00]) and thus using Theorem 2.3.7, one can show that
PF A is consistent together with the ground axiom.

However, certain canonical inner models do have non-trivial grounds, in con-
trast to L or L[0%]. The mantle of these models will again admit a regular
structure. For a starting point, consult [FS16].

Moreover, Set-Theoretic Geology has proven to be an interesting topic with
an outreach beyond its own scope. In section 2.5, we have applied the uni-
form definability of grounds to see that a lot of large cardinals are always
destructible by quite mild forcings. To be precise, this is true for all large
cardinals k for which V is provably a (3s-)elementary substructure of a
higher initial segment of the universe. As a consequence, the analogue of
Laver indestructibility is impossible for all of these large cardinals. These are
already non-geologic statements. Thus Set-Theoretic Geology fulfills the ar-
guably most important property of an interesting theory, it has implications
that are not subject of their own nature.

In the present thesis, there was an emphasis on the interplay between
large cardinals, the mantle and the generic multiverse discussed in chapter
4. We begun with results due to Usuba, the existence of an extendible
implies the bedrock axiom. Even more is true for a hyper-huge (or some
smaller large cardinal, compare Remark 4.3.5). If « is such a cardinal, M is
a k-ground. Whether the same is true for extendibles was already asked by
Usuba in [Usuls].

Question 5.0.1. Is the existence of an extendible cardinal x already enough
to conclude that the mantle is a k-ground?

Similar questions can be postulated for other consequences we have found
to be true for hyper-huges.

Question 5.0.2. Are extendible cardinals downwards absolute to M?
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If the prior question can be answered positively then the latter can be
shown to be true by similar methods as in the case of a hyper-huge. We
have seen that if x is extendible then the mantle is the intersection of all
k-grounds. If A > k is another extendible cardinal, it follows (compare Re-
mark 4.3.5) that M is a A\-ground. It can be shown, similar to Proposition
4.3.8, that A must be extendible in M. Thus all, but maybe the least, ex-
tendibles are extendible in M. It seems plausible that the least extendible
is downwards absolute to M as well.

Subsequently, we investigated large cardinals at and below the level of a
supercompact. Once again, supercompacts have proven to be very flexible.
They inhabit a sweet spot where they are too weak to have drastic effects
on the generic multiverse, but are strong (and/or complex) enough to not
fall prey to Lemma 4.4.1, a significant restriction on possible configurations
in the generic multiverse for AZ¥ C_definable large cardinal axioms. To go
further into this, similar to hyper-huge cardinals, it is possible by Theorem
4.5.4 to uncover a class of supercompacts while there are none in the entire
generic multiverse of V. The same is impossible for the ¥a-definable large
cardinal axioms by the Yo-direction of Lemma 4.4.1, e.g. if k is measurable
in M then it is in dense-many grounds.

We have seen in Theorem 4.6.1 that the large cardinal hierachy starts to
gain a bit of flexibility in our context at about the level of a weakly com-
pact (below that, a lot of large cardinals are trivially downwards absolute).
Between that and a supercompact (in the sense of direct implication), down-
wards absoluteness to M fails. The proof cannot be directly modified for
class many supercompacts.

Question 5.0.3. Is it possible that there is a class of supercompact car-
dinals, all of which are not supercompact (or not even weakly compact) in
M?

Central to our proof was the Laver indestructibility. A proof of this
generalized statement may involve a global version of Laver indestructibility.
We have seen that superstrong cardinals can fail to be superstrong in M as
well. It could not be determined in this thesis whether superstrong cardinals
satisfy the Ilo-direction of Lemma 4.4.1.

Question 5.0.4. Is it possible that there is a cardinal x superstrong in
dense-many grounds, but not in M?

By Lemma 4.4.2; it can be seen that if there is such an example, then
the minimal target j(x) of a superstrong embedding with critical point
must get arbitrarily large by passing to deeper and deeper grounds. A
construction answering this question positively would thus likely start with
an assumption of higher consistency strength than merely one superstrong
cardinal. Possibly, one could start with a superstrong cardinal that has
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arbitrarily large targets of the superstrong embedding, i.e. j(k) can be
made larger than any given A. Next one could destroy the superstrongness
of k, which is quite easy thanks to Theorem 2.5.1, and make this model
the mantle. While simultaneously forcing that model to be the mantle,
one has to revive k with target j(k) > A one by one. How the last part
could be done is unclear. It seems difficult to revive the “larger instances”
of superstrongness while avoiding the “smaller” ones. Variations of this
questions can be investigated for other ¥s-definable large cardinals such as
huge cardinals.
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6 Addendum

In the main part of this thesis, there was a clear focus on Set-Theoretic
Geology. In order to avoid distractions, we skipped the proofs of a few
necessary results. However, as the goal of this thesis is to be as complete as
possible, we make up for this here.

6.1 A Characterization of Y7“ Formulas

In Chapters 2 and 4, we used that the satisfaction of ©47C-formulas is
locally verifiable.

Lemma 6.1.1. [Rei06, implicit in Corollary 14] A formula ¢(x) is X5FC
if and only if

ZFC Yz (p(x) o daxze Vy A Vy E"YP(x)")
for some formula ¥ (x).

Proposition 6.1.2. If k is an uncountable cardinal then H, <1 V, that is
all X1 -formulas with parameters in H, are absolute between H, and V.

Proof. Let ©(yo,...yn—1) = Fx0(x,y0,...Yn—1), where 0 is Xy. We may
assume that n = 1. If a € H,, and ¢(a) is true in Hy then it is certainly true
in V, so assume z is such that V' | 6(z,a). Find A > k with x € H) so that
H) E 0(x,a). Let M < H) be an elementary substructure of size < xk with
x € M and tc({a}) € M. Let N be the transitive collapse and 7 : M — N
the corresponding collapse map. Then N = 0(w(x), 7(a)) and by our choice
of M, m(a) = a. Furthermore, as N is transitive and of size < k, N € H.
Finally, because 6 is ¥, we can conclude that H, = 0(7(x),a). O

Proposition 6.1.3. If p(x) is Yo then
ZFC Vz (p(z) < 3k € Card\w) = € Hy A p(x)H")

Proof. Write p(z) = 3yVz 0(x,y, z). If ¢(a) holds in V then we can find an
uncountable cardinal k with a € Hy, so that H, = ¢(a).

On the other hand, assume that for some uncountable cardinal x and a € H,,
we have H,, = ¢(a). Find b € Hy, so that H,, =Vz 6(a,b,z). As H, <1 V,
we now know that V' |=Vz 6(a, b, z) and thus ¢(a) holds in V. O

Proof. (Lemma 6.1.1) “=” Without loss of generality, we can suppose that
o(z) is already . Let 9(z) = Ik € Card\wi A x € H, A p(x)H*. Since
any V, is correct about its uncountable cardinals and whenever « € V,, is an
uncountable cardinal we have HY> = H,, we can conclude with Proposition
6.1.3 that ¢(z) is as desired.

“<” The formalized predicate “A = k” is ¥ in A and k. The term V, is
IT; (in ) and hence “Ja z € Vy, A Vo = "P(2)"” is Xa. O
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6.2 The Inner Model Criterion

In the Definability of Grounds Theorem, it is essential to be able to check
whether certain definable subclasses of V' are models of ZFC or not in a
single first order e-formula. We will show here that this is possible. We also
used this quite simple criterion in a few other places to easily verify that a
given transitive class models ZFC. We follow [Jec03, pp. 177-183]

Definition 6.2.1. A transitive subclass M € V is an inner model of ZF(C)
if M = ZF(C) and contains all ordinals.

Theorem 6.2.2. [Jec03, Theorem 13.9] (The Inner Model Criterion) Sup-
pose M is a definable subclass of V' from a parameter r. Then there is a
first order formula v (r) with the property that M is an inner model of ZF

if and only if V = (r).

The formula ) will state (apart from the obvious part “M is transitive
and contains all ordinals”) that M is closed under certain very basic oper-
ations and satisfies a cover property with respect to V. We now introduce
these operations.

Definition 6.2.3. The Godel operations (G;);<10 are defined as follows:

Go((l?,y) = {xay} Gl(x7y) =T Xy

Ga(z,y) = {(w,v)luevey nuex} Gslx,y) =z\y

Ga(z,y) =200y Gs(z) = Jz

Ge(z) = dom(x) Gr(x) = {(u,v)|(v,u) € x}
Gs(z) = {(u, v, w)|(u, w,v) € x} Go(z) = {(u, v, w)|(v,w,u) € }

One necessary ingredient we need is that closure under the Godel op-
erations is (under a very weak fragment of ZF') equivalent to satisfying
separation for Ag-formulas.

Lemma 6.2.4. If ¢(vg,...,vp—1) is a Ag-formula then there is a composi-
tion G of Gaodel operations such that

G(z0,. .. xn-1) = {(uo, ..., un—1) € | [@ild(uo, ..., un1)}

<n

Proof. We proof the statement by induction over the complexity of ¢. We
can suppose that ¢ is build up by only using the logical connectives —, A
and Jv; € vj. We can do without v; = v; as we can replace this by

(Vzxewv; xevj) A (Vyev; yeu)
and then substitute the restricted V quantifiers by —, 3 as usual.

¢ =v;ev: If i = j, ¢ can never be satisfied and we let G(x) = G3(z,z).
First, we assume n = 2. If i = 0,5 = 1, then let G = G5. Otherwise,
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ifi=1,7=0,set G=G70Gs.

If n > 2, there are two cases. If 7,j # n — 1, then by induction there is
such a composition H for ¢(vy, . ..,v,—2). In this case G(zg,...,Tp_1) =
G1(H(xo, ..., %n—2),xn—1) works. Hence supposei = n—1orj = n—1.
If i,57 # n — 2 then by induction we can find a composition H for
d(voy -+, U3, Up—1,Vp—2) and so G = Gg o H suffices. We are left
with the casesi =n—-2,5=n—-1landit=n—1,5 = n — 2. In the
former case, let H be the following composition of G; and Gb:

H(zo,...,zpn-1) = Go(Tp_1,Tpn—2) X ( H :1:2>

<n—2

Then G = Gg o H is as desired since

((up—2, un—1), (ug, - . - Un—3)) = (Up—2, Up—1, (Ug, - - ., Up—_3))

and

(w0, - -+ s Un—3), Un—2,Un—1) = (U0, - - -, Un—3, Un—2, Un—1)
The latter case follows from the former by applying Gg.

¢ = —0: Here, we let G(xo,...,xn—1) = G3(] |,~,, ©i» H(x0, ... 2pn_1)) where
H is the composition of Godel operations corresponding to 6. Notice
that | [,_,, @i is the result of successive nesting of G;.
¢ =6y A 01 : Find compositions Hy and H; corresponding to 6y and 6; re-
spectively. The following works out:
G(xo,...xp—1) = Ga(Ho(zo, ..., Tn-1), H1(z0, ..., Tn_1))

¢ = v, € v; O(vo,...vy): Let H(xg,...,x,) be a composition correspond-
ing to

O(vo, ... Un) AUy €y

We now have the following:
{(uo,...,un1) € H%’W(Uo, cesUn1)}

<n

= {(ug,...,Un—1) € H:}:iHv € u; O(ug, ..., Up—1,v)}

<n

= dom(H (0, - - ., &n—1,| 1)) = Gs(H(wo, ..., 2n1, G5(2:)))

O]

Next, we define the correct cover property. The nomenclature we use
is in line with the d-cover property defined in chapter 2. A common name
found in the literature is “almost universality”.
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Definition 6.2.5. We say that M < V has the Ord-cover property if for
any x € V, x € M there is y € M with x S y.

Proof. (Theorem 6.2.4) Let 1(r) be the following statement:

“W is transitive, contains all ordinals, is closed under all

Godel operations and has the Ord-cover property”

As the Godel operations are absolute between transitive models, any inner
model of ZF is closed under them. Moreover, if M is an inner model and
x €V, € M, the absoluteness of the rank function implies that z € M,
for some « large enough. This shows that M has the Ord-cover property.

For the other direction, assume that ¢ (r) holds. We have to show that M |=
ZF. The extensionality and set existence axioms as well as the foundation
scheme hold in M as it is a nonempty transitive class. Pairing and union
hold as M is closed under Gy and G5 respectively. The infinity axiom holds
as we M.

Let us show that the separation scheme holds in M. As M is closed under the
Godel operations, M is also closed under all compositions of Godel functions,
so the above lemma shows that separation holds for all Ag-formulas. Every
¢ is equivalent to a formula of the form Quzq...Qn_ 12,19 for 1 some
Ap-formula and Q; € {3,V}. This means we only have to show that the set
of formulas for which separation holds is closed under 3 and V.

¢ = dx: We neglect additional parameters. Given b € M, we must show
{a € b3z Y(a,b,z)}M € M. For any a € b, if there is * € M with
Y(a,b,z)™, then there is some minimal «, with the property that
there is such a witness in V,,,. Taking a. = supgep g yields a uniform
« with this property. Now find y € M with V,, n M < y using
the Ord-cover property. The key idea is that (3z ¢(a,b,z))M is now
equivalent to (3z € y ¢(a,b,x))™ for all @ € b. As M is closed under
G1, b x ye M. We can now use the inductive hypothesis for ¢ to see
that by = {(a, ) € b x ylp(a,b,z)} € M. We conclude:

{a € b3z ¢(a,b,z)}M = dom(by) = Ge(by) € M

¢ = Yx1p: Notice that separation also holds for — by closure of M under
G'3. Then this case follows from the 3-case:

{a € b|Vx1p(a,b,2)} = b\{a € b|Fz—1)(a, b, x)}

The rest is easy now: To see that the power set axiom holds, let z € M. Then
P(x) n M eV and P(x) n M € M, so by the Ord-cover property, there is
y € M with P(xz) n M < y. By Separation, P(x) n M = {ueylu Sz} e M.
If F is a class term such that F™ is a class function in M, and z € M, then
FM[z] € V and FM[z] € M, so there is y € M with FM[z] € y. Again by
separation, F'M [z] € M. Thus the replacement scheme holds true in M as
well. O
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6.3 Bukovsky’s Theorem

In the proof of the strong Downwards Directed Grounds Hypothesis, we
skipped the hard direction of Bukovskys Theorem, so let’s do it here. The
result was originally published in [Buk73]. We follow [FFS18] instead.

Theorem 6.3.1. (Bukouvsky’s Theorem) Suppose W is an inner model of
ZFC and k is a cardinal. Then W is a ground which extends to V wvia a
k-cc forcing if and only if W € V' has the k-global cover property.

Proposition 6.3.2. If W < M < V are inner models such that W < V
has the r-global cover property, then W € M and M SV have the k-global
cover property, too.

Proof. By Proposition 3.2.6 it is enough to show that W € M and M € V
have the (k, #)-global cover property for every 6 > k. For the first inclusion,
any function we have to consider is a member of V' and so this follows from
the (k,#)-global cover property of W < V. For the latter, if ' € W is a
(K, 0)-global cover of f: 6 — P. ()", then the same is true for Fe M. [

First, we show that in the situation prescribed in the theorem, every set
of ordinals in V' is contained in a generic extension of W.

Lemma 6.3.3. If W is an inner model of ZFC such that W S M has
the k-global cover property and A is a set of ordinals in V', then there is a
generic extension W|G| of W with Ae W|G] € V.

The proof presented here relies on infinitary logic, so we need a few tools
first.

Definition 6.3.4. Let i be an ordinal and x a cardinal.

i) The language S, consists of one unary relation symbol A and constant
o
symbols & for o < p.

(71) We define a logic, that we will call L, in languages that only contain
symbols for constants and unary relations. The following are the rules
of producing formulas:

(a) The only atomic formulas are R(c) for constants ¢ and unary
relations R.
(b) —¢ is a formula for any formula ¢.
(¢) V@ is a formula for ® a set of formulas of size < k.
We will write ¢ € R instead of R(c). We let £,(S) be the minimal set
that contains all atomic formulas and is closed under the above rules.

Since we are mainly interested in the languages S, we write £, () for
the set of formulas in the language S,.
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(7i7) Let B be the canonical boolean algebra on 0, 1, which we understand as
the set of truth values. We define satisfaction M(¢) € B of ¢ € L(11)
in appropriate S structures M by induction:

(a) M(ce R) =1 iff M e RM

(b) M(=¢) = —M(¢)

(©) M(V @) = sup{M(¢)|¢ € D}
Write M E ¢ instead of M(¢) = 1.

(7v) For any B S p we can canonically define a S),-structure Mp on p by
putting M5 = a and AM5 = B. For readability we will write B = ¢
instead of Mp k= ¢.

Remark 6.3.5. We define the conjunction A\ ® as —\/{—¢|¢ € ®}. Fur-
thermore, we let ¢ v ¢ abbreviate \/{¢, 1} and similarly ¢ A 9. As usual,
we define — and < from v and —.

We should also be precise for formal correctness and define L.-formulas as
specific sets:

(i) “ce R” ={(c,R),0)
(i7) —¢ ={¢,1)
(iii) \/ @ = (®,2)

The key steps heavily depend on a formal deductive system for the logic
L, very similar to the sequent calculus for finitary first order logic, which
we will also denote as |-.

Definition 6.3.6. We define base rules for . To make life easy, we take
all rules that follow from the sequent calculus that do not involve equality
and quantifiers (and the symbol for contradiction). In addition to this, we
introduce the following infinitary deductive rules for any set of formulas
I, ® < L,(S) with ® of size < k:

) I'
-Introduct
(\/-Introduction) e

F ¢ forallped®
H A®

I' = A{-dlo e ¢}
r - -Veo

We write I' - ¢ for a theory I' and formula ¢ if there is a formal proof
of ¢ from ®. In this context, a formal proof of ¢ from ® is a sequence
{pa|a < 7v) for some ordinal v such that

¢
\/ @ for any ¢ with ¢ € ®
r
r

(/\-Introduction)

(Infinite De Morgan)
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(a)
(b)

d"yzﬁb

For each a < 7, ¢ is either an axiom of ® or is the result of applying
a basic rule to a subset of {¢3|5 < a}.

Proposition 6.3.7. The deductive system | has the following properties:

(4)
(i)

+ is correct, i.e. if ' ¢ then M = ¢ for any S-structure M =T

F 4s upwards absolute, i.e. if M S N are transitive models of ZFC
then (T = ¢)M implies (T - ¢)V

Proof. (i) The correctness of a rule purely depends on its syntactic prop-

(i)

erties and not on the logical context and formulas allowed in that rule,
as long as satisfaction and structures are defined in the right way. In
particular, every rule that is deductible from the sequent calculus is
correct in our context, since the sequent calculus is correct. Suppose
MET.

(\/-Introduction) If I' - ¢ for some ¢ € ® then by induction, M }= ¢
and hence M = \/ ®.

(/\-Introduction) Assume I' - ¢ for all ¢ € ®. It is easy to see that
M(A\ @) = inf{M(¢)|¢ € ®}. By induction M |= ¢ for all ¢ € & and
so M = A O.

(Infinite De Morgan) Assume I' + A{—¢|¢ € ®}. By induction
M = A{—¢|¢ € &} and thus M | —¢ for all p € ®. If M = \/ D
then there must be ¢ € ® with M = ¢, a contradiction. Hence

ME -\ .

By induction on the construction of L.-formulas, it follows directly
that £, (S)M < L£,(S)N for any appropriate language S € M. Assume
(T = ¢)M. Let (¢a|a < ) be a formal proof of ¢ from ® in M. By
induction on 8 < v we see that (¢,|a < () is a formal proof in N,
since M, N agree on what axioms are in I', what the basic rules of —
are and N contains all sets of formulas that are members of M.

O

Proof. (Lemma 6.3.3) Let A € u be a set of ordinals in V. The idea is that
we can approximate the £, (u) theory of M 4 inside of W using the x-global
cover property. In a natural way, A will then define a generic for the forcing
consisting of these approximations.

We will work in the logic L(gxy+. Notice that (2%)* is the same in W and
V as a consequence of the k-global cover property. Furthermore, £ (u) €
Lasy+(p). In V, we can find a choice function f on P(L(u)V\{D} s
that A = \/ ® implies A = f(®). By the s-global cover property, there is a
global cover F' of f in W. We can assume that F'(®) € ®. Let

I ={\/®—\/F(®)®edom(F)}
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and notice that A = T" by definition of F' and f. Work in W. We define the
forcing as all £, (p)-formulas that cannot be falsified from T in the deductive
system -

P={¢eLc(w)[I' ¥t —¢}
ordered by ¢ < ¢ it ' - ¢ — 2.

Claim 6.3.8. ¢,v¢ € P are compatible if and only if Tt/ (¢ — —) (which
is equivalent to T' £ —(¢p A )).

Proof. f 0 < ¢,¢, then ' + (6 - ¢) and ' - (f — ). Assuming I' -
(¢ — —1)), we can conclude T' - —6 as we have adapted all syntactical rules
of the first order sequent calculus. But this is a contradiction to 6 € P.

On the other hand, if ¢, € P are incompatible then ¢ A ¥ ¢ P. Thus
' —(¢ Av). O

Let’s show that P has the k-cc. Suppose that ® < P is an antichain.
Since F(®) has size < & it is enough to show ® = F(®), so suppose ¢ € P.
Combining (\/ ® — \/ F(®)) € I with the rule - (¢ — \/ ®) yields

I (60— \/ F(®)

If there is no ¢ € F(®) compatible with ¢ then

' (¢—=VF(@®)
F; :: (:b w_f)o;:fl)l Zc))la}lj (i)e F(e) (Assumption Bule & Modus Ponens)
(/\-Introduction)
Lo = A{~¢lYe F(@)}) .
(Infinite De Morgan)
D¢ - —\/ F(®) :
T (6 -\ F(®)) (—-Introduction)
(—-Introduction with line 1)

T+ ¢

contradicting ¢ € P. So there is ¢ € F(®) € ® compatible with ¢, but
® is an antichain, so ¢ = ¢ € F(®). We want to find a generic for P from
which A is definable. The canonical choice is G4 = {¢ € P|A = ¢}.

Claim 6.3.9. G4 is a P-generic filter over W.

Proof. If p € G4 and ¢ < ¢ then I' - (¢ — ¢) in W. As A =T v {¢},
we have A = 1 and thus v € G4. If 9,9 € G4, then A |= (¢ A 9) and
hence by upwards absoluteness and correctness of - we get T' £ —(¢p A 1))
in W and so by the above claim, ¢ and v are compatible witnessed by
¢ A € G4. This shows that G4 is a filter. To show that G4 is generic
over W, suppose that ® € W is a maximal antichain of P in W. We have
already seen that |®| < k so that \/® € L,(1). In addition to this, it is
the case that \/ ® € P: For every ¢ € ® we have - (¢ — \/ ®) as one of
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our deduction rules. As I' £ —¢, it follows from contraposition and modus
ponens that I' # —=\/®. Moreover, I' - \/ ®. Otherwise, =\/® € P by
elemination of double negation. Using the deductive rule - (¢ — \/ ®)
again together with contraposition, it follows that —\/® is incompatible
with every ¢ € ®, contradicting its maximality. Finally, we can conclude
AE\V ® using A =T as well as the correctness and upwards absoluteness
. By definition of f, A = f(®). Hence f(®) e G4 n ®. O

As G4 €V, we have that W[G4] € V. Observe that “a € A" e Pif
a€Aand “~ae A” e Pif a ¢ A, as this follows from upwards absoluteness
of - from W to V, the correctness of - and A = T'. This implies

A={a<pl“de A eGy}
and thus A e W[G4]. O

Proof. (Bukovsky’s Theorem)*“ < ” Using the notation of Lemma 6.3.3, it is
enough to show that there is an A with W[G 4] = V. Let A be a set of ordin-
als that codes (<57 2)V. Then A € W[G4] € V and (<5 2)WIGal — (<s7 )V
Now W[G 4] € V still has the k-global cover property by Proposition 6.3.2.
A consequence of this is that W[G 4] and V' have the same cardinals above
k. Otherwise, there is a surjection f : v — A for some v < A cardinals
in W[G4]. Now we can find a k-global cover F' € W[G4] of f. But then
A € Fl[x], contradicting |F[y]|"[¢4] < v .k < X. In particular, k** is
absolute between W[G 4] and V. Combining Lemma 3.2.7 with Proposition
3.2.6 yields that W[G 4] € V has the k*-cover and approximation proper-
ties for all sets of ordinals, and thus the full properties. This was the last
ingredient we need to conclude W[G 4] = V using Lemma 2.1.9. O

The quotient lemma, that we have also used in a prior chapter, is a nice
consequence of the above:

Corollary 6.3.10. Suppose that W is a ground and M an inner model such
that W <« M < V. Then W is a ground of M and M is a ground of V.
Moreover, if X\ is (strongly) inaccessible and W is a A-ground of V' then so
1s M.

Proof. One can see that W is a ground of M and M is a ground of V by
combining Proposition 6.3.2 with Bukovsky’s Theorem. For the second part,
find G € W), such that W[G] = V. Code G as a bounded subset A of A\. By
applying Lemma 6.3.3 inside V), we find that there is a forcing P € M) and
G 4 € V) P-generic over M), such that A € M)[G4]. As M and M), contain
the same subsets of P, G 4 is P-generic over M. Thus A € M[G 4] and hence
by decoding, G € M[G4]. As W € M,V = W[G] € M[Ga] € V. We
conclude that M is a A-ground. O
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Remark 6.3.11. As this result is in some way the dual of the product
lemma and since the standard way to proof it, is to show that if W extends
to V via a separative forcing P, then M extends to V' via a quotient of the
unique boolean algebra that P can be densely embedded into, it is referred
to as the quotient lemma in this thesis. The result is originally due to Serge
Grigorieff [Gri75]. By proving it with boolean algebras, it is not necessary
to assume that A is inaccessible. With a more thorough analysis of inner
models that satisfy the k-global cover property it is also possible to eliminate
this assumption without using boolean algebras.

6.4 Laver Indestructibility
In this section we will prove the following result:

Theorem 6.4.1. If k is supercompact then there is a forcing extension in
which k s Laver indestructible.

The result is due to Laver [Lav78], hence the name. We follow [Cum10,
Chapter 24]. We will make quite extensive use of the ultrafilter definition of
a supercompact cardinal.

Definition 6.4.2. Suppose k < X\ and U is an ultrafilter on P, (\).
(1) U is called uniform if {X € P,(A\)|Y € X} e U for all Y € P.()N).

(1) U is normal if it is < k-complete, uniform and moreover, for any
sequence (Aqy)a<y in U, the diagonal intersection

Na<rAa ={X € Pe(N)|X € Nsex Aa}
is again in U.

Fact 6.4.3. [Kan09, Theorem 22.7] For any cardinals Kk < X\, Kk is A-
supercompact if and only if there is a normal ultrafilter on Py (A).

The proof of the above fact proceeds as follows: If there is a normal
ultrafilter U on P,(\), then we may build the ultrapower embedding ji :
V - M = Ult(V,U). As usual, M is wellfounded and will be identified with
its transitive collapse. The fineness condition implies that ji is non-trivial
and one can compute that crit(j) = k. Using the normality condition, one
can show that j7[A\] € M and thus (similar to Lemma 1.4.10) that "M < M.
On the other hand, given an elementary embedding j : V' — M with critical
point k and *M < M, it is not difficult to prove that

U ={X € Pa(WIi[N € j(X)}

is a normal ultrafilter. Below, we will take advantage of the above argu-
ments.
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Lemma 6.4.4. If k is supercompact then there is a function f: k — Vi so
that for any A = k and x € Hy+ there is a normal ultrafilter on Pe(\) such
that if ju is the associated elementary embedding then j(f)(k) = x.

Proof. We take a “least counterexample” approach. Let < be a wellorder
of V. Define f by induction on o < k. Suppose f | « is already defined.
If there is some @ < A < k and z € Hy+ S V, so that there is no normal
ultrafilter U on P, (A) so that with jy(f | a)(a) = z then we let f(«) be
the <-least such x. Otherwise f(a) = 0.

Suppose that f does not have the desired property. Let A = x and x € Hy+
so that there is no normal ultrafilter U on Py (\) with ju(f)(k) = x. Let

§ = 22" and find a d-supercompactness embedding
j:V-M

with critical point . The closure condition of M yields that (Hy+)M = Hy+
and P(P.(A\)M = P(P.(\)). By assumption, M and j are definable in
V and since V is definable in every extension by a forcing in M, M and
its corresponding extension are two, as well as all further embeddings we
construct.

Claim 6.4.5. M believes that there is no normal ultrafilter U on Py (\) with
Ju()(k) = .

Proof. Suppose otherwise that there is such a U. Then U is a normal ultra-
filter in V', too. We thus may construct embeddings jx : K — Ult(K,U)
for K = V, M and compare the two. Since M is closed under sequences of
length ¢, there are the same functions Pr(A\) — H,+. Furthermore, if g, h
are such functions then

VEg~vheMEg~yh

and hence the embeddings jy and jjps coincide on H,+. In particular,

Jv(f) = jm(f) and even more, jv(f)(r) = jum(f)(k) = =, a contradic-
tion. O

By elementarity, j(f) is defined in M over the same induction as in V,
only with parameters replaced by their images under j. Since j(f) | k = f,
j(f) is defined non-trivially at £ in M. We now find the value of j(f)(k).
Let p be minimal so that there is y € H,+ so that for no normal ultrafilter
U on P.(n) we have jy(f)(k) = y. Notice that necessarily p < A and
thus y € H% Let z be the j(<)-minimal such y. As in the above claim,
M, too, is of the opinion that for no normal measure U on P,(u) we have
Jju(f)(k) = y. Thus in the inductive definition of j(f), j(f)(k) = z. We
define a filter on Py (u):

U ={X = Pu(p)jlp] € j(X)}
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The standard arguments show, using »M < M, that U is a normal ultrafil-
ter. Let
i:V->UWV,U)=N

be the induced elementary embedding. We now need to be able to go from
N to M, therefore we define the following map:

k:N— M, k(lglv) = j(9)(ilul)

k is well-defined since if g ~;7 h then j(g) and j(h) coincide on input j[u].
Claim 6.4.6. k has the following properties:

Proof. (i) Let ¢(xo,...,zn_1) be a formula. We may suppose that n = 1
and let [g]y € M. Using Lo$’s Theorem, we compute:

N e(lglv) = X :={s € Pu(w)le(g(s))} € U = jlu] € j(X)
=M = ¢(i(9)([u]) = M = ¢(k(g]v))

Thus k is elementary.

(17) If a € V, then k(i(a)) = k([ca]u) = j(ca)(G[1]) = j(a) where ¢, is the
constant function on Py (u) with value a. Thus koi = j.

(1it) Let g be the identity on P.(u). Then k(g) = j(9)(j[n]) = jlu] by
elementarity of j.

(iv) We will show that H,+ S ran(k). If we have this, then k “cannot skip
aset in H,+” and we can see easily by induction that the claim holds.
Since we can code every A € H,+ as a subset of p in an absolute way,
it is enough to show P(u) € ran(k). Given X € p, we will show that

X = {otp(y njluDly € jlu] 0 j(X)}

First, suppose a € X. Then j ! : j(a) n j[u] — «a is the transitive

collapse and hence o = otp(j(a) N j[p]). On the other hand, if v €
Jjlp] n j(X) we can write v = j(a) for some o € X. By (i), (i7) and
(7i1), the above representation of X shows that X € ran(k).

O
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In particular, k(z) = z and k(k) = k and thus:

k(i(f)(k)) = ko i(f)(k(r)) = j(f) (k) = =

and by applying (iv), we have k(i(f)(x)) = i(f)(x) as z € H,+ But then
i(f)(k) = z, a contradiction to the choice of z and pu.
O

With such a so called Laver function f, we can prove the main theorem.

Proof. (Theorem 6.4.1) Let f be a Laver function for k. We define a Easton
supported iteration ((P<q|a < k),{Q4|a < k)) by induction on a. Suppose
P_, is already defined. Assume the following conditions are met:

(i) f(a) is a pair of the form (v, Q) where Q is a P—,-name for a < a-
directed closed forcing.

(73) For all B < a, if f(B) is a pair with first coordinate an ordinal d, then
0 <.

In this case, let Qa = Q Otherwise, Qa is the name for the trivial forcing.
f acts as a bookkeeping function. We use the first coordinates to make sure
that we have large intervals at which the forcing is trivial. This will come
in handy later on.

We must show that P = P_, forces x to be Laver indestructible. Let G
be P-generic and suppose that Q € V[G] is a < k-directed closed forcing.
Find a P-name Q for Q in V. Suppose ¢ is Q-generic over VIG]. It is
enough to show that x is A-supercompact in V[G][g] for all cardinals X large
enough so that Qe H/‘\/ Set § = 2(2") and let U be a normal ultrafilter on
Ps(k) so that the induced embedding j : V' — Ult(V,U) = M satisfies
J(Hk) = (1, Q). Again, j(f) I & = f and since ran(f) € V, the first
coordinate of j(f)(a) = f(«) so that this is a pair with first coordinate an
ordinal, is less than u. Notice that j(P) is an iteration of length j(k) > &
with j(P)-, = P and thus by elementarity, Q is the forcing in j(P) at stage
#. We can find a canonical name R so that P+ QR = j(P) and let R be the
evaluation of R in V[G * g]. Suppose H is R-generic over V[G * g]. Since P
is Easton supported and x inaccessible in V', we see that P < V,; (recall that
ran(f) € V) and hence j[G] = G € G = g* H. Lemma 1.4.2 shows that we
may lift j to

J*VIG] > M[G + g+ H]

Next up, we have to further lift j to an embedding with domain V|G * g|.

Claim 6.4.7. There is h a j*(Q)-generic filter over V|G g « H] so that
i*lgl € h.
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Proof. Notice that exactly as in the proof of Proposition 4.3.8, we can proof
that
FM|G| € M|G]

from the perspective of V[G] and
FM[G = g] <€ M[G * g]
from the perspective of V[G * g] and last but not least,
FM|G g+ H| S M[G* g+ H]|

from the perspective of V[Gxg=H|. In particular, already M|[G] can see that
Qisofsize < Xand j | Qe M[G=g=H]. Now we have j7[g] € M[G*g* H]|
and moreover, j[g] is directed there and of size < j7 (k). By elementarity,
7T(Q) is < jt(k)-directed closed in M[G=*g=H] and thus there is a condition
p € 77(Q) below j[g]. Thus any j(Q)-generic filter with p € h suffices. O

In V[G = g * H * h], we may lift j* to
G VIG gl > M[G = g« H +h]

The problem that we have to deal with is that j7F lives in V|G % g« H = h]
as opposed to V[G = g]. To solve this, work in V[G = g * H * h] and let

U' = {X e P(P.(\)VI|j T[N\ e j77H(X)}

If we are able to show U’ € V[G * g] then we are done as U’ would be
a A-normal ultrafilter there. Our strategy will be to show that the two
further forcings we have used to get from V[G * g] to V[G = g * H % h] are
sufficiently closed so they could not have added U’. First, we deal with the
later extension. Observe that j(Q) = j(Q) is < p-closed in M [G* g+ H] by
elementarity of j© and thus also has this property in V[G = h* H| since they
have the same sequences of length p. This shows that this extension did
not add new subsets of P(P,())). In particular not U’. Now, we can finally
make use of j(f)(k) having first coordinate p. This implies that the stages
in the interval (k,pu] in j(P) are all trivial and since all stages after that
are at least < p-closed, R could not have added U’, too. We can conclude
U’ € V]G = g] and hence k is A-supercompact in V[G * g].

0

6.5 Preserving n-Superhuge Cardinals

We follow section 6 in [Tsal6]. Let P be the canonical Easton supported
class iteration that forces GCH. The goal of this section is to prove the
following theorem:
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Theorem 6.5.1. After forcing with P, any (n + 1)-superhuge cardinal re-
mains n-superhuge.

We lose one degree of superhugeness in the proof as we isolate a prop-
erty P(k,n) that is implied by (n + 1)-superhugeness, but itself only entails
n-superhugeness of k. Our strategy will be to show that P preserves the
property P(k,n). It is an open question whether or not one degree of su-
perhugeness can possibly be lost, i.e. if P can destroy the n-superhugeness
of a n-superhuge cardinal.

Lemma 6.5.2. Suppose k is a cardinal.

(4)

(i)

If k is (n + 1)-superhuge then for all A > k there is an elementary
embedding
J i Hjngeyr = Hjnvro)+

with critical point k and j(k) > A.

If n = 1 and the conclusion of (i) holds then K is n-superhuge.

Proof. (i) Suppose k is (n+1)-superhuge. Let A > k. Find an embedding

j:V-M

for a transitive inner model M with crit(j) = k, j(k) > X\ and
i""N®)M < M. Let k be the restriction of J to Hjngo)+. As a con-
sequence of the elementarity of 7,
M
k: Hjngoe = (Hjnergo+)

is an elementary embedding with critical point x and j(k) > A. Now
notice that the closure condition of M implies that M computes the
successor of j711(k) correctly and contains all transitive sets of size
(k). Thus:

(HjnJrl(K)Jr)M = Hjn+1(,€)+

As moreover k'(k) = j'(k) for all i <n + 1, k is as desired.

Let A > k and suppose that
J: Hjn(,{)#» - Hjn+1(ﬁ)+

is an elementary embedding with critical point £ and j(k) > \. For
notational ease, we let § = j"(k). As in the case of elementary em-
beddings from the universe into a transitive class, we can build £ the
(K, j(0))-extender derived from j. Note that not just the induced em-
beddings

Ult(H9+ 5 Ea) g Ult(Hg+ 5 Eb)
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are directed for a € b € j(0)=%, but so are
Jab : UlL(V, Eq) — Ult(V, Ej)
We thus can construct the extender embedding
Je 'V — Mg

as the directed limit of this system. We denote by E the element
relation on Mg.

Claim 6.5.3. (Mg, E) is wellfounded.

Proof. Observe that for any a € j(0)=%, Ult(V, E,) is wellfounded as
FE, is countably closed. Suppose that there is a decreasing sequence
(Tn)n<w With z,41 Ex, for all n < w. Note that Fact 1.4.6 (i) is still
true in our case so that we can find a,, € j(0)<“ and functions f, :

glanl — V so that je(fu)(an) = m,. Since je(fn)(an) = janS([fn]Ean)a
this implies that for all n < w we have

[fn+1]Ean+1 € jana7l+1 ([fn]Ean )

and thus:

Ap = {ce 9|a"+1‘|fn+1(c) € frn © Tapan,1(c)} € B,y

Observe that the existence of a sequence of functions (g, )n<w With

Ap = {ce glon+1] |gn+1(¢) € gn © Tanan4,(C)}

is a Xj-statement with parameters (A, )n<w, (@n)n<w € Hg+. Propos-
ition 6.1.2 shows that there is such a sequence (g, )new in Hy+. The
elementarity of j together with the definition of the extender ultrafil-
ters gives

3(gn+1)(an+1) € §(gn © Tananii)(An+1)
or equivalently
J(gn+1)(an+1) € j(gn)(an)

for all n < w, a contradiction. ]

Thus we may assume that Mg is transitive and E = n(Mg x Mg).

Claim 6.5.4. j[0] € Mg

90



Proof. We compare je to the derived embedding
](’c/‘ : H9+ i Mé‘

on the domain of j.

It is standard to see that
jlll : Hg+ g Ult(Hng,Ea)

is the restriction of
Ja: V> Ult(V, Ey,)

to Hy+ for any a € 0=“. By going to directed limits, it follows that jg
is the restriction of jg to Hy+. Since k is strongly inaccessible, Hjgy+
believes that j(6) is strongly inaccessible and thus it is really strongly
inaccessible. Let § = sup j[A]. Since j(0) is regular, § < j(#). Now,
it follows from Fact 1.4.6 (i) that j[0] € V511 < M{. Find a € j(6)<*
and f : 019l — Hyy so that j[0] = jL(f)(a). Then as jL(f) = je(f),
we have

Jl0] = je(f)(a) € Me
O

Now the same argument as in the above claim shows that Fact 1.4.6
(74) implies
j(z) = je(z) = je(z)
holds for any = € Hjp) = Vjg). In particular, JE(k) = j'(k) for
all i < n and jgl|f] = j[0] € Mg so that Proposition 1.4.10 yields
Me < Me. Thus & is n-superstrong.
O

The following proof is a slight modification of the argument in [Tsal6]
where the above theorem was proven for n = 2 since this was the only
instance relevant for the main interest of that paper. In contrast to this,
we applied it with n = 3 and thus will go ahead and show it for all n < w.
By ;<, we will denote the operator for iterated two step iterations. We
will make use of the weak homogeneity of Add(k,1). This property means
that for any p, ¢ there is an automorphism f of the forcing so that f(p) is
compatible with ¢q. For Add(k, 1), this can be seen by finding a suitable
permutation of k such that the image of dom(p) is disjoint from dom(q) and
taking the induced automorphism on Add(k,1). It is not hard to see that
this weak homogeneity property still holds for (every inital segment of) P.
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Proof. (Theorem 6.5.1) Suppose k is (n + 1)-superhuge and G is P-generic.
We wand to show that the conclusion of Lemma 6.5.2 (i) holds. We know
that it holds in V. So given A > &, let

J s Hineyr — Hjni(op+

be an elementary embedding with critical point £ and j(k) > A.

We want to apply Lemma 1.4.2 to j. Note that the exact same proof works
out in the present setting even though the domain of j is only a model of
ZFC~. Basically, the only additional thing we need there is that we can
apply the forcing theorem in both the domain and the target model which
holds true by Fact 1.5.3. Later on, we will apply that result to elementary
embeddings whose domain and target models are the Hy of some interme-
diate forcing extension of V' and V[G], however not of the same one. It is
not difficult to see that we still may apply this lemma in that situation.

For notational simplicity we let x; = j(k) for i < n (where rg = x). For A
an interval of ordinals with minimum «, we denote by fPA the P.,-name for
the iteration with stages in A. Pa denotes the evaluation of IP)A in V[G<q].
We let A; = [ki, ki+1). Factor P as

Py * (* ]P)Al> *P>nn
1<<n

and the generic accordingly. We construct elementary embeddings (j;);

by induction on . Since IP is Easton supported and k inaccessible, P, <

and so j[G<x] = G<x S Gy, and thus we can lift j to

<n
Vi

Jo: H, + [G<r]l = Hj()+ [G<ri]

Now suppose that the embedding

Jm + H [G<H] [ K GAZ] = Hj(kn)+ [G<Fvl] [ K GAi+1]
<<m <<m

is already constructed for some m < n. The strategy is the following: Notice

that Ap, = j[Ga,,] € H,+ is directed and of size fip,+1 which is a consequence

of k1 being strongly inaccessible and P being Easton supported. Since

is < j™*!(k)-directed closed, there is a condition p,, below A,,. However,

Pm need not be in the generic Ga,,,,. We will be able to solve this problem

using the weak homogeneity of the forcing Pp,, ., in

Hien [ Gon ][ 2 Gava
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That is, the conditions ¢ for which there is an automorphism f of the for-
cing, so that f(q) < pp is dense. Hence there must be such a ¢ in Ga,, .,
witnessed by some automorphism f. Let H be the generic filter generated
by flGa,,..]- Now, p,, € H which implies

jm[GAm] CcH

and thus we may lift j,,:

Jm+1: H + [G<K][ * GAZ-] = Hij(en)+ [G<'ﬂ] [Zikm GAM] [H]

t<m+1

Observe that

Hj(nn)+ [G<,€1] [ S GAi+1:| [H] = Hj(,gn)+ I:G<n1:| [ Ok GAi+1:|

<<m <m+1

since the latter can compute H using the automorphism f and the former

Ga,,,, using fL.
In the end, we have an embedding

.jn : HN:; I:G<l€:| [ ,* GA/L:l - j(nn)Jr I:G<"‘€1:| [ .* GAH—I]
<<n <<n
which is in fact of the desired form, as the domain of j, is already HI?[G]

n

and the target is H:Jr[G] as the tail of the iteration is sufficiently closed.

n

O]
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