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0 Abstract

Set-Theoretic Geology is the study of grounds, the base models of forcing ex-
tensions, and the generic multiverse and was initially founded by Hamkins
and Reitz in an effort to find regular structure under the generic “dust”
added by forcing. Although their hope was not quite fulfilled, this investig-
ation left open many interesting questions about the nature of forcing, until
the recent results of Usuba about the strong downwards directed grounds
hypothesis. For example the mantle, the intersection of all grounds, turned
out to be a model of ZFC and the largest forcing invariant definable class.
The first chapter of this thesis deals with basic theory of forcing and provides
a foundation for the rest of this thesis.
After that, we dive right into the theory of Set-Theoretic Geology. The main
theorem, with which we will start, could be described as the fundamental
theorem of this topic, the uniform definability of grounds. Moreover, we will
examine the implications of Usuba’s breakthrough. This serves as a good
motivation for chapter 3, where we will proof these results.
In the following chapter, we will discuss the interplay between the generic
multiverse, its mantle and large cardinals, including Usuba’s results on ex-
tendible and hyper-huge cardinals. In addition to this, we will investigate
how large cardinals at and below the level of a supercompact relate to the
mantle. The supercompacts will come out as the most flexible large car-
dinals, they can both be found in the mantle with no sign of them in the
entire generic multiverse and lose their supercompactness (even weak com-
pactness) by passing to the mantle. Also, we will find a connection between
the generic multiverse and the mantle regarding smaller large cardinals, that
will make the first situation impossible for them.
Chapter 6 serves as an addendum and deals with findings crucial for our
analysis in chapters 2 and 3. But since their nature is not inherently geolo-
gic and have been known for longer than this topic exists, we skip the proofs
in these chapters. Most prominently, one can find a discussion of the inner
model criterion, i.e. a first order sentence that checks whether or not a given
class is an inner model ZFC, and a proof of Bukovský’s Theorem in there.
We finish with a conclusion.
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1 Preliminaries on Forcing

In this section, we discuss basic theory on forcing which serves as a basis for
constructions later on in this thesis. The results in this chapter can be found
in most standard introductions to forcing, such as [Jec03] and [Kun83].

1.1 ∆-System Arguments

Definition 1.1.1. Given two ordinals κ, λ ¡ 0, the forcing Addpκ, λq con-
sists of functions p of size   κ with domppq � κ�λ and ranppq � 2, ordered
by reverse inclusion.

It is standard to show that if G is Addpκ, λq-generic over V then f ��
G : κ � λ Ñ 2 is a function with f æ pκ � tαuq R V for all α   λ. In

particular Addpκ, λq adds λ many new subsets of κ.

Lemma 1.1.2. (∆-system lemma) Suppose κ   λ are cardinals such that
λ is regular and α κ   λ for all α   λ. If X is a set of size λ such that
|x|   κ for every x P X, then there is some Y � X of size λ and a set r
with x X y � r for all x � y P Y . In this situation, Y is called a ∆-system
with root r.

Proof. Since |
�
X| ¤

°
xPX |x| ¤ λ � κ � λ, we can assume that X � Ppλq

and so we will identify x P X with its increasing enumeration xxpαq|α  
otppxqy. For notational simplicity, we will allow us to switch between viewing
x P X as a function and a subset of λ. By regularity of λ, we can furthermore
impose without loss of generality that all x P X have the same ordertype
γ. If α   λ then αγ   λ and hence X � Ppαq. This implies that

�
X

is unbounded in λ and as λ is regular and γ   κ   λ, there must be
some minimal β   γ such that txpβq|x P Xu is unbounded in λ. Let
ρ � sup

�
tranpx æ βq|x P Xu. We must have ρ   λ as a consequence of λ

being regular. We construct a sequence xxα|α   λy by induction on α. If
xδ is already constructed for all δ   α   λ then

�
δ α xδ is bounded in λ.

Hence there must be some xα P X with xαpβq ¡ sup
�
δ α xδ. This ensures

that xαXxδ � pxα æ βqXpxδ æ βq � ρ for all δ   α (where we identify x æ β
with its range).
Now txα X ρ|α   λu � Ppρq and thus has size at most 2ρ   λ. Hence there
must be some r � ρ and A � λ of size λ such that xα X ρ � r for all α P A.
Let Y � txα|α P Au. Then for x � y both in Y , we have xX ρ � r � y X ρ
and xX y � ρ and hence xX y � r.

Lemma 1.1.3. Let κ be a regular cardinal and θ any ordinal.

piq If κ κ � κ then Addpκ, θq is κ�-cc.

piiq If 2κ � κ� then Addpκ, θq is κ��-cc.
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Proof. Suppose A � Addpκ, θq and let X � tdomppq|p P Au.

piq Assume A is of size κ�. Apply the ∆-system lemma (1.1.2) to X with
λ � κ�. This yields B � A of size κ� and some r � κ � θ of size
less than κ such that domppq X dompqq � r for all p � q P B. But as
κ κ � κ, 2|r| ¤ κ   κ� which implies that there must be some C � B
of size κ� with p æ r � q æ r for all p, q P C. But in this case, p and q
must be compatible witnessed by pY q.

piiq Here, assume that A is of size κ�� and apply the ∆-system lemma to
X with λ � κ��. To do this we have to check that pκ�q κ   κ��.
For any θ   κ, this simplifies to pκ�qθ � p2κqθ � 2κ � κ�. Since
κ κ ¤ κκ � κ�, we can coclude as above that there must be some
subset of A of cardinality κ�� that consists of pairwise compatible
conditions.

1.2 Counting Nice Names

Definition 1.2.1. A nice P-name for a subset of an ordinal α is a P-name
of the form 9x �

�
β αtβ̌u �Aβ where Aβ is an antichain of P for each β.

Lemma 1.2.2. (The counting nice names argument) Let P be a forcing and
G be P-generic.

piq If x P PpαqV rGs then there is a nice name 9x with x � 9xG.

piiq If λ, κ are cardinals such that P has the κ-cc then

p2λqV rGs ¤ pp|P| κqλqV

Furthermore if λ ¥ p|P| κq then p2λqV rGs � p2λqV .

Proof. piq Find a name 9z for x. For β   α, let Dβ � tp P P|p , β̌ P 9zu
and find an antichain Aβ � Dβ that is maximal in Dβ. Let 9x ��
β αtβ̌u �Aβ. We have to show 9xG � x.

“ � ” : If β P 9xG then Aβ XG � H. Find p in this intersection. Then
p , β̌ P 9z, so we have β P x.
“ � ” : Let β P x. Find p P G with p , β̌ P 9z, i.e. p P Dβ. Let
E � tq ¤ p|Da P Aβ q ¤ au. If q ¤ p then still q P Dβ. As Aβ was
chosen maximal in Dβ, there is a P Aβ and r ¤ a, q. Then r P E and
r ¤ q which shows that E is dense below p. This implies GXAβ � H
and so β P 9xG.

piiq The first part shows that the size of PpλqV rGs is bounded by the size
of the set of all nice P-names for subsets of λ in V . A nice name is
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basically a function that maps each β   α to an antichain in P. As
P has the κ-cc, we can understand such a nice name as a function
f : λ Ñ PκpPq, where PκpPq is the set of all subsets of P of size   κ.
As |PκpPq| � |P| κ, there are p|P| κqλ many of these functions in V . If
now λ ¥ p|P| κq then first of all p2λqV ¥ κ is still a cardinal in V rGs.
We calculate:

p2λqV ¤ p2λqV rGs ¤ pp|P| κqλqV ¤ pλλqV � p2λqV

Remark 1.2.3. In any case, P always has the |P|�-cc and thus the above
lemma shows that if G is P-generic, then the continuum function of V and
V rGs coincide from 2|P| onwards.

Similarly as for subsets of λ, there are nice names for functions with
domain λ and range in V . In fact, we will only need that there are small
names.

Proposition 1.2.4. Suppose that κ is an infinite cardinal, P a forcing of
size κ, G a P-generic filter and f : λÑ Ord a function in V rGs. Then there
is a P-name for f in V of size κ � λ.

Proof. Find a P-name 9f for f so that:

1P , “ 9f : qλÑ Ord is a function”

For α   λ, let Dα be the (dense) set of conditions that decide 9fpα̌q and for
p P Dα let dppq be the corresponding decision. Then

9g �
!�
op
�
α̌,}dppq	 , p	|α   λ, p P Dα

)
is another P-name for f , where opp 9x, 9yq is the canonical P-name for the
corresponding ordered pair. Furthermore, 9g has size κ � λ.

1.3 Degrees of Closure

In this section we will introduce both a strengthening and a weakening of the
usual ¤ λ-closure conditions which prescribes that any decreasing sequence
xpα|α   γy for γ ¤ λ has a lower bound.

Definition 1.3.1. Let P be a forcing.

piq A subset X of P is directed if for any p, q P X there is r P X with
r ¤ p, q.

piiq P is ¤ λ-directed closed if any directed X � P of size ¤ λ has a lower
bound in P.
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Directed closure is certainly a stronger condition than mere closure as
any decreasing sequence is directed. This concept is important with regard
to Laver indestructibility, which comes up in chapter 4. In the same context,
we will will force that a certain combinatorial property holds in the generic
extension. This forcing will in general not have the desired closure property,
but will be sufficiently strategically closed.

Definition 1.3.2. Let P be a forcing and α an ordinal.

piq For α an ordinal, GpP, αq is the following two player game of perfect
information of length α: The goal is to construct a decreasing sequence
xpβ|β   αy in P. The game starts with player II playing p0 � 1P. If
xpβ|β   γy has already been played for some γ   α then it is player
I to play if γ is odd and player II to play if γ is even. In any case,
a legal move is a pγ which extends every pβ for β   γ. If there is
no such legal move, player I wins the game (notice that this can only
happen at a limit stage γ, where it is player II to play). Otherwise, if
the game reaches stage α, player II wins.

piiq A strategy in the game GpP, αq for a player is a complete plan of
action for every possible configuration where this player is asked to
make a move. More formally, a strategy for player II is a function
which maps every decreasing sequence xpβ|β   γy to a legal move pγ
(if there is one) for γ even, similarly for player I with γ odd. If σI , σII
are strategies for players I and II respectively, then there is a unique
outcome OpσI , σIIq � xpβ|β   γy which is the result of always playing
according to the strategies. If player I has won, then γ   α and the
sequence can not be extended further. Otherwise, γ � α and player
II has won. A strategy is a winning strategy if it wins against every
possible strategy of the opposing player.

piiiq The forcing P is said to be ¤ λ-strategically closed if player II has a
winning strategy in the game GpP, λ � 1q. Notice that the last move
player II plays in this game extends a decreasing sequence of length
λ. P is   λ-strategically closed if player II has a winning strategy in
the game GpP, λq. Note that this is in general a stronger assumption
than being   α-strategically closed for all α   λ.

Remark 1.3.3. We have defined a strategy as a function that prescribes a
legal move at any possible state of the game. However, when we explicitly
define strategies, we will usually only prescribe an action at positions that
are important for the argument and neglect positions that are irrelevant.

Any ¤ λ-closed forcing is ¤ λ-strategically closed since any strategy for
player II is in fact a winning strategy in the game GpP, λ�1q. On the other
hand, every ¤ λ-strategically closed forcing does not add new sequences of
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ordinals of length ¤ λ. This latter concept is known as ¤ λ-distributivity.
To be precise, a forcing is ¤ λ-distributive if the intersection of λ-many
dense open subsets is again dense. This directly implies that P does not
add new ordinal sequences of length ¤ λ and the inverse implication is true
for all separative forcings. Since all forcings considered in this thesis will be
separative, we will use these two properties interchangeably.

Proposition 1.3.4. If P is ¤ λ-strategically closed then it is ¤ λ-distributive.
Consequently, if P is   λ-strategically closed then it is   λ-distributive.

Proof. Assume xDα|α   λy is a sequence of dense open subsets of P. Let σI
be the strategy for player I which demands him to extend p2α to a condition
p2α�1 P Dα at stage 2α � 1. Let σII be a winning strategy for player II.
These strategies build a sequence OpσI , σIIq � xpα|α ¤ λy and by the choice
of σI , pλ P

�
α λDα.

Lemma 1.3.5. [Cum10] If λ is a cardinal and P,Q are forcings such that
P is λ-cc and Q is   λ-strategically closed, then:

1P , “Q̌ is   λ̌-distributive”

Proof. Let G�H be P�Q generic over V . Assume 9f is a P�Q-name with
1P�Q , “ 9f : γ̌ Ñ Ord is a function” for some γ   λ. Define subsets of Q
for α   γ:

Dα � tq P Q|DA � P max. AC such that @p P A pp, qq ‖ 9fpα̌qu

The Dα are dense: Let q P Q. Define a decreasing sequence xqα|α   2δy
in Q and a maximal AC xpα|α   δy in P. Find q1 ¤ q and p0 P P such
that pp0, q1q ‖ 9fpα̌q. q1 shall be the first move of player I. Let player II
play according to a winning strategy in the game GpQ, λq. If q2β�1, pβ are
defined for all β   ξ then first of all ξ   λ as tpβ|β   ξu is an antichain.
If this is a maximal antichain, stop the procedure and let δ � ξ. Else, find
p̃ incompatible with all pβ and let q2ξ be the next move of player II that
extends all qβ for β   2ξ. Now let ppξ, q2ξ�1q ¤ pp̃, q2ξq with ppξ, q2ξ�1q ‖
9fpα̌q.

By the λ-cc of P, δ must be less than λ. We let player II play one last
move to find some q2δ that lies below all qβ for β   2δ. Now tpβ|β   δu is

a maximal antichain and ppβ, q2δq ‖ 9fpα̌q holds for all β   δ. Thus q2δ P Dα

and q2δ ¤ q. This implies that Dα is dense and it is certainly open as if
q P Dα witnessed by A � P then this A works for any q1 ¤ q.
Finally, find q P H X

�
α γ Dα using the   λ-distributivity of Q (which is a

consequence of   λ-strategical closure). Let Aα be a maximal antichain of
P that witnesses q P Dα. We see that 9fG�Hpαq is the unique x such that the
unique p P GXASα decides 9fpα̌q as x. Hence 9fG�H is definable in V rGs.
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1.4 Elementary Embeddings and Extenders

We mostly follow [Kan09] and [Cum10] here.

Definition 1.4.1. Given two P-models xM, Py and xN, Py, a map j : M Ñ
N is an elementary embedding if for every P-formula ϕpx0, . . . , xn�1q and
parameters a0, . . . , an�1 in M , the following holds:

xM, Py |ù ϕpa0, . . . , an�1q ô xN, Py |ù ϕpjpa0q, . . . , jpan�1qq

Usually we just write M for xM, Py and N for xN, Py. Moreover, the critical
point critpjq of j is the least ordinal moved by j, if there is any.

Lemma 1.4.2. [Cum10] Suppose M is an inner model and j : V Ñ M is
an elementary embedding, G is P-generic over V and H is jpPq-generic over
M . Suppose jrGs � H. Then j lifts to an elementary embedding

j� : V rGs ÑM rHs

with j� æ V � j.

Proof. We have to extend j to evaluations of P-names. Thus we define
j�p 9xGq � jp 9xqH . Notice that since 9x is a P-name, jp 9xq is a jpPq-name.

Claim 1.4.3. j� is welldefined.

Proof. Suppose 9xG � 9yG. Find p P G with p , 9x � 9y. By elementarity,
M |ù jppq , jp 9xq � jp 9yq. By our assumption, jppq P H. Hence jp 9xqH �
jp 9yqH .

j� really extends j as

j�pxq � jpx̌Gq � jpx̌qH � }jpxqH � jpxq

and so it is only left to show that j� : V rGs Ñ M rHs is elementary. Let ϕ
be an P-formula. For simplicity, we assume that ϕ only has one free variable.
Let a � 9aG P V rGs. We have:

V rGs |ù ϕpaq ôDp P G V |ù p ,P ϕp 9aq

ñDq P H M |ù q ,jpPq ϕp 9aq ôM rHs |ù ϕpaq

The middle implication follows by elementarity as jrGs � H. Lastly, observe
that just this one direction is enough for elementarity.

Next, we look into a way to approximate elementary embeddings by
much better controllable ones, that is embeddings which are induced by
ultrafilters. This has the advantage that we know exactly how the target
models look like. They will be quite thin after some point, which allows us
to lift these embeddings more easily.
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Definition 1.4.4. Suppose M is an inner model and j : V ÑM a nontrivial
elementary embedding with critical point κ. Let β ¡ κ and ζ minimal with
β ¤ jpζq. β will be the variable that controls the degree of approximation.
In most cases, we will have β � jpκq and thus ζ � κ. For a P β ω, let

Ea � tX � ζ |a||a P jpXqu

and E � tEa|a P β ωu. Then E is the pκ, βq-extender derived from j.

The standard arguments show that the Ea are all ultrafilters and thus
induce an elementary embedding ja : V Ñ UltpV,Eaq. One can check
that for every a P β ω, j factors as ka � ja where ka : UltpV,Eaq Ñ M is
an elementary embedding defined via kaprf sEaq � jpfqpaq. In particular,
UltpV,Eaq is wellfounded and so we will identify them with their transitive
collapse. Now suppose a � b P β ω, say b � tα0, . . . , αn�1u and a �
tαi0 , . . . , αim�1u in increasing order respectively. Let πab : βn Ñ βm be
given by

πabptβ0, . . . βnuq � tβi0 , . . . , βim�1u

where the sets are again represented in increasing order. Then the map

jab : UltpV,Eaq Ñ UltpV,Ebq, jabprf sEaq � rf � πabsEb

is an elementary embedding between the corresponding ultrapowers and
these maps cohere in the sense that jab � ja � jb.

Definition 1.4.5. In this situation, we will write pME , xjaE |a P β
 ωyq for

the direct limit of the directed system

pxUltpV,Eaq|a P β
 ωy, xjab|a � b P β ωyq

and jE : V Ñ ME for the elementary embedding given by jaE � ja (for any
a P β ω).

Since each UltpV,Eaq embeds into M via ka, and since these embeddings
cohere with the jab via jab � ka � kb, the universal property of the direct
limit yields an elementary embedding k : ME Ñ M with k � ja � ka for all
a P β ω and thus k � jE � j. In particular, ME is wellfounded and thus we
will always assume that ME is transitive (and hence an inner model).

Fact 1.4.6. [Kan09, Lemma 26.1] The following hold:

piq ME � tjEpfqpaq|a P β
 ω, f : κ|a| Ñ V u

piiq If |Mγ |
M ¤ β then Mγ � pMEqγ and kEpxq � x for all x P pMEqγ.

piiiq critpjEq � κ and jEpκq ¥ β.
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Remark 1.4.7. With the above fact, we can conclude that if β is inaccess-
ible in M (as will be the case in any application in this thesis), the maps
jaE are given by:

jaEprf sEaq � jEpfqpaq

The reasoning being that kpαq � α for all α   β is a consequence of piiq by
our assumption on β and hence kpaq � a for all a P β ω. We compute:

kpjaEprf sEaqq �k � jaEprf sEaq � kaprf sEaq

�jpfqpaq � kpjEpfqqpkpaqq � kpjEpfqpaqq

And so the assertion follows from the injectivity of k.

Without deriving such an extender from some embedding j, it is possible
to axiomatize how a system of ultrafilters pEaqaPβ ω shall behave in order
to make the above construction work nonetheless. This yields a first order
definition of an pκ, βq-extender E such that the pκ, βq extender derived from
the resulting embedding jE is again E . This implies that a large cardinal
axiom which we will define later is first order definable. We state another
fact that we will use later on.

Fact 1.4.8. [Cum10, Proposition 9.4 1.] If E is a derived pκ, βq-extender
(again with β ¤ jpκq) and we lift jE to j�E : V rGs Ñ M rHs as in Lemma
1.4.2 and E� is the pκ, βq-extender derived from j�E , then jE� � j�E and
ME� �ME rHs.

Lemma 1.4.9. Suppose jE : V ÑME is a pκ, βq-extender embedding derived
from j with β ¤ jpκq. Suppose that P is ¤ κ-distributive. If G is P-generic
over V then the upwards closure H of jE rGs in jEpPq is jEpPq-generic over
ME . Thus jE lifts to an embedding j�E : V rGs ÑME rHs.

Proof. Suppose that D � jEpPq, D P ME is dense open. We have to show
that H XD � H. Since jE is a derived pκ, βq-extender embedding, we can
find a map f : κ ω Ñ V and a finite sequence a P β ω such that jEpfqpaq �
D. Now jE factors as jaE � ja. Let g � f æ κ|a|. Then jaEprgsaq � jEpfqpaq
and hence rgsa is a dense open subset of japPq in UltpV,Eaq by elementarity
of jaE . By  Loś’s Theorem:

tb P κ|a||fpbq � gpbq is a dense open subset of Pu P Ea

Thus we may assume without loss of generality that ranpfq only contains
dense open subsets of P. Since P is ¤ κ-distributive in V ,

�
ranpfq is still

dense open. Since G is P-generic over V , there is some p P G X
�
ranpfq.

Hence by elementarity, jEppq P jE rGs X
�
ranpjEpfqq and in particular,

jEppq P jE rGs X jEpfqpaq � H XD.
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Proposition 1.4.10. Suppose E is a derived pκ, βq-extender (say from j).
Again let ζ be minimal with jpζq ¥ β. If λ ¥ ζ ,jE rλs P ME and λpβ ωq �
ME then λME �ME .

Proof. It is enough to show that every set x � M of size λ is in M . Write
x � tjEpfγqpaγq|γ   λu. Let h : ζ ω Ñ V such that

hpaq : λÑ V, hpaqpγq � fγpaq

for all a P ζ ω. For n   ω, let hn � h æ ζn and similarly for g. For a given a,
rh|a|sEa is a function with domain jarλs � domprhnsEaq, by  Lós’s Theorem.
Furthermore, if |a| � |aγ |, then rh|a|sEapjapγqq � rfγsEa since

tc P β|a||hpcqpγq � fγpcqu � ζ ω P Ea

and thus

jaEprhnsEaqpjEpγqq � jaEprhnsEaqpjaEpjapγqqq

�jaEprhnsEapjapγqqq � jaEprfγsEaq � jEpfγqpaq

This shows:

jEphqpaγqpjEpγqq � jaγEprh|aγ |sEaγ pjaγ pγqqq � jEpfγqpaγq

Let A � tpaγ , jpγqq|γ   λu. After currying, we may write (with abuse of
notation):

x � jEphqrAs

Hence it is enough to show A PME and since jE rλs PME we may only show
paγqγ λ PME , but this is given by one of our assumptions.

1.5 Miscellaneous

In this section we present a few result that resisted to fit into a prior category.

Proposition 1.5.1. [Gol93] If κ is regular and x P Hκ then there is an
ordinal λ   κ and a sequence xxα|α ¤ λy of sets in Hκ with the following
properties:

piq @α ¤ λ xα � txβ|β   αu

piiq xλ � x

Proof. Suppose the claim holds for all y P x. Enumerate x as x � tyδ|δ   γu
and find a witnessing sequences xyδα|α ¥ λδy for every yδ. Let λ � Σδ γλ

δ

be the ordinal sum and let xxα|α   λy be the concatenation of the sequences
xyδα|α ¥ λδy for δ   γ. Since κ is regular and γ   κ, λ   κ. Finally, set
xλ � x.
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Lemma 1.5.2. [Gol93] If κ is regular, P is κ-cc, P � Hκ, 9x is a P-name
and 1P , 9x P Hκ̌, then there is a P-name 9y P Hκ with 1P , 9x � 9y.

Proof. First of all, P does not collapse κ by the κ-cc. Find P-names 9S and 9λ
such that for every generic G, 9SG is a sequence of length 9λG that witness the
statement of Proposition 1.5.1 for x. Since P is κ-cc and κ regular, we can
cover 9λ in V by a set of size   κ and thus find some λ   κ with 1P , 9λ ¤ λ̌.
Since we can always extend the sequence 9SG in V rGs to a sequence of length
λ with the same properties, we can assume that 1P , 9λ � λ̌. Now, for each
α ¤ λ find a P-name 9xα such that 1P forces 9xα to be the α-th point in the
sequence 9S. For every β   α ¤ λ, find a maximal antichain Aβ,α in

Dβ,α � tp P P|p , 9xβ P 9xαu

and by induction define

9yα � tp 9yβ, pq|β   α^ p P Aβ,αu

It is left to show by induction that 9yα P Hκ and 1P , 9xα � 9yα. So assume
this is true for all β   α. Since every 9yβ and p P Aβ,α is in Hκ, κ is regular
and |Aβ,α|   κ, we can conclude that 9yα P Hκ. Now suppose that G is
P-generic over V . We calculate:

9yGα � t 9y
G
β |β   α^GXAβ,α � Hu

� t 9xGβ |β   α^GXAβ,α � Hu

� t 9xGβ |β   α^ 9xGβ P 9xGα u � 9xGα

Here, the first equality holds by induction and the second by choice of Aβ,α.
Finally, 9y � 9yλ is as desired.

Using the above result, one can prove the following by an induction over
the complexity of formulas. The essence of the next statement is that if p
forces a formula to hold in Hκ, then Hκ knows about this.

Fact 1.5.3. [LS16, Lemma 1.2.3] Suppose κ is regular and P P Hκ. Then
for p P P and any formula ϕpx0, . . . xn�1q and P-names 9x0, . . . , 9xn�1 with
p , 9xi P Hκ̌ there are P-names 9y0, . . . , 9yn1 P Hκ with p , 9xi � 9yi for i   n
so that

p , ϕp 9x0, . . . , 9xn�1q
Hκ̌ ô Hκ |ù p , ϕp 9y0, . . . , 9yn�1q

Lemma 1.5.4. Suppose that κ is a cardinal of uncountable cofinality and P
is a forcing of size   cofpκq. Then all stationary subsets of κ in V remain
stationary in V rGs.

Proof. Suppose C P V rGs is a club in κ.

Claim 1.5.5. There is a club D � C in V .
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Proof. Let 9C be a P-name for C so that 1P , “ 9C � κ̌ is a club”. Let D
be the set of all α   κ such that 1P , α̌ P 9C. It is clear that D is closed.
Given α   κ we have to find some element of D above α. Construct an
increasing sequence xαn P κ|n   ωy by induction. Let α0 � α. Given αn,

we can find for every p P P some qnp ¤ p and βnp ¡ αn so that qnp ,
|βnp P 9C.

Let αn�1 � suptβnp |p P Pu. Since P has size   cofpκq, αn�1   κ.
Let α� � supn ω αn   κ. By construction, the set

Dn � tq P P|q , Dβ α̌n   β ¤ α̌n�1 ^ β P 9Cu

is dense for every n   ω. Since 9C is forced to be closed, 1P , α̌� P 9C.

If D is as above and S � κ stationary in V then CXS � DXS � H.

Lemma 1.5.6. Suppose P is κ-cc and 9Q is a P-name for a κ-cc forcing for
κ regular. Then P � 9Q is κ-cc.

Proof. It is enough to show that if 9α is a P � 9Q-name for an ordinal then
there is a set X of size   κ with 1P� 9Q , 9α P X̌. We can naturally identify 9α

with a P-name for a 9Q-name :α, so that whenever G�H is P� 9Q-generic then

9αG�
9H � p:αGqH . If G is P-generic then as Q � 9QG is κ-cc, there is a cardinal

λ   κ and a function f : λ Ñ Ord so that 1Q , :αG P ran f̌ . Going back
to V , this shows that there are P-names 9λ, 9f that are forced by 1P to have
the above properties in the extension. Now as P is κ-cc, there is a set Z of
cardinals   κ of size   κ that covers 9λ. Let θ � sup Z which is less than κ
by regularity of κ. Again by the κ-cc of P, we can find a set Xβ of size   κ

so that 1P , β̌ P dom 9f Ñ 9fpβ̌q P X̌β for every β   θ. Now X �
�
β θXβ

is as desired.
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2 Set-Theoretic Geology

Set-Theoretic Geology is motivated by a change of perspective regarding the
tool forcing. Usually, forcing is used to construct a model that satisfies some
specific properties. One starts with a model V and produces a larger model
V rGs that contains some generic object G. That means that traditionally,
the perspective is directed upwards in this setting. Here, we direct our
attention downwards. We do not ask “Where are we going?”, but rather
“Where are we coming from?”. This view is already cemented in the most
basic definition in this context. We shift from looking at extensions to
focusing on grounds

Definition 2.0.1. If V �W rGs is a forcing extension of some inner model
W of ZFC, then W is called a ground of V .

We will mainly follow [FHR15] and [Rei06] in this chapter.

2.1 Definability of Grounds

As we want to analyze the structure of grounds, it is necessary for models of
ZFC to be able to talk about their grounds in the first place. The following
could thus be called the fundamental theorem of Set-Theoretic Geology.

Theorem 2.1.1. (Definability of Grounds Theorem) The grounds of V are
uniformly definable. This means that there is a first order formula φpx, rq
with the following properties: For r P V set Wr � tx|φpx, rqu.

piq For any r, Wr is a ground of V with r PW .

piiq If W is a ground of V then for some r P V , W �Wr.

Remark 2.1.2. For the second condition to make sense, we implicitly sup-
pose that V is a countable set in some large background model. A different
approach would be to formulate this statement in the second order set theory
GBC.

To show that grounds are definable, it is essential to be able to uniquely
characterize a ground W and its initial segments via simple properties. In
the end, we want to be able to say that “Wα is the unique subset of Vα in
which the bounded subsets of δ are exactly r and which has certain properties
(that depend on δ)” for arbitrarily large α and some (single) δ. This allows
us to define W over its initial segments. Next we introduce these properties
which were first formulated by Hamkins in [Ham03] and have proven very
useful in Set-Theoretic Geology.

Definition 2.1.3. Assume M � N are transitive classes and δ is a regular
cardinal in N .
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piq M � N has the δ-cover property if for every x �M , x P N of size   δ
in N , there is a cover y P M of x, x � y, of size   δ in M . We will
call such y a δ-cover of x.

piiq Given x � M , x P N and a P M of size   δ (in M), we call x X a a
δ-approximation of x in M . M � N has the δ-approximation property
if every such x for which all δ-approximations of x in M are members
of M , are itself in M , i.e. x PM .

Remark 2.1.4. The δ-cover and approximation properties are respectively
equivalent to the δ-cover and approximation properties restricted only to
sets of ordinals, given that both classes are transitive models of (a suitable
fragment of) ZFC. This is because if x �M , then x �Mα for α � rkpxqN .
Then one can find a bijection f : Mα Ñ κ, f P M for some cardinal κ and
apply the respective properties to f rxs � κ. Reversing this construction
yields x PM .

The unique characterization of certain subsets of Vα only works in case
we have a sufficiently large fragment of ZFC present. This fragment was
isolated by Jonas Reitz in his dissertation [Rei06].

Definition 2.1.5. Let Sδ � tP, 9δu be the first order language consisting of
the usual binary relation symbol P and a constant symbol 9δ. ZFCδ is the
Sδ-theory consisting of the following axioms:

piq the axioms of Zermelo set theory (extensionality, set existence, pairing,
separation, union, power set, infinity)

piiq the well-ordering theorem

piiiq the statement “every set is coded as a set of ordinals”

pivq “ 9δ is a regular cardinal”

pvq the δ-replacement scheme: For a tPu-formula φpx, y, z0, . . . , zn�1q this
scheme contains the formula

@z0, . . . , zn�1@x P 9δD!y φpx, y, ~zq Ñ Da@bpb P aØ Dc P 9δ φpc, b, ~zqq

Remark 2.1.6. piq Usually, when working with a Sδ-structure M , we
will write δ for 9δM . If we have previously defined a regular cardinal δ,
we will always assume that any Sδ-structure appearing afterwards has
9δM � δ.

piiq Since not all versions of the axiom of choice are equivalent under just
Zermelo set theory, we chose the well-ordering theorem as a represent-
ative and for convenience.
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piiiq Notice that the δ-replacement scheme is just the standard replacement
scheme restricted to functions with domain δ.

The word “code” is used quite freely in set theory, so let us make sure
we specify exactly what is meant here.

Definition 2.1.7. Given a class M and x P M , we say that x is coded
as a set of ordinals in M if there is an ordinal α, R � α � α such that
xα,Ry � xtcptxuq, Py.

Remark 2.1.8. piq The above definition might seem strange as R is not a
set of ordinals. However, one can usually think of R as a set of ordinals
if one takes its pointwise image under an injection α�αÑ Ord. One
can even choose this injection uniformly, for example as (the inverse of)
the Gödel pairing function. Nonetheless, the above definition manages
to refrain from making further assumptions on M .

piiq Under ZFC, every set is coded as a set of ordinals (de facto this is
equivalent to the axiom of choice under ZF ). Given a set x, find a
bijection f : αÑ tcptxuq for some ordinal α. We let

R � tpβ, γq P α� α|fpβq P fpγqu

so that f : xα,Ry Ñ xtcptxuq, Py is an isomorphism.

In the next argument, we want to be able to apply Mostowski’s theorem
in the context of ZFCδ, however we cannot do so in general as one needs
full replacement to do so. Observe however that ZFCδ proves Mostowski’s
theorem for structures xA,Ey of size ¤ δ. This is in fact all we need.

Lemma 2.1.9. Assume U is a transitive model of ZFCδ and M,N � U
are transitive substructures that also satisfy ZFCδ. Suppose the following:

piq δ� is constant across M,N and U .

piiq M,N � U both satisfy the δ-cover and approximation properties

piiiq p δ2qM � p δ2qN

Then already M � N .

Proof. First of all, the δ-cover property of M,N � U assures that the state-
ment “x has size   δ” is absolute between these models. This is because
any bijection f : α Ñ x for some α   δ in U can be covered by A P M ,
A � α� x of size κ   δ in M . From A, M is able to construct a surjection
g : α�λÑ x for some λ   δ, so x has size   δ in M . The same works for N .
Furthermore, as δ� is evaluated equally in all three models, the statement
“x has size δ” is also absolute between all three of them. Statements about
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sizes will always be regarded from the perspective of U .
The proof will proceed through several steps.

Step 1: PpδqM � PpδqN .
Let x P PpδqM . Clearly x P U . By piiiq, every δ-approximation of x in N
is in N . As N � U has the δ-approximation property, x P N and hence
PpδqM � PpδqN . Equality follows from the symmetry of the argument.

Step 2: M and N have the same sets of ordinals of size   δ.
Assume x P M is a set of ordinals of size   δ. I claim that x is contained
in some y PM XN of size δ. That means that there is some uniform cover
that is contained both in M and N . The construction will take place in
U and will make use of the well-ordering theorem by implicitly choosing
desired sets via a well-order on Ppsup xqU . We define yKα for α   δ and
K �M,N by induction. Let yK0 P K be a δ-cover of x. If yKγ is defined for

all γ   α and K � M,N , then let xα � p
�
γ α y

M
γ q Y p

�
γ α y

N
γ q. First of

all, xα P U as U models Zermelo set theory and the δ-replacement scheme.
Furthermore, xα has size   δ as δ is regular. Thus we can define yKα P K to
be a δ-cover of xα for K �M,N .
Let y �

�
α δ y

M
α �

�
α δ y

N
α . We use the δ-approximation property of

M,N � U to show that y PM XN . Let K be either M or N . Let a P K of
size   δ. By regularity of δ, there is some α   δ such that yXa �

�
γ α y

K
γ .

This implies that y X a � yKα�1 X a P K. Since every δ-approximation of y
is in K, y P K.
Without loss of generality, y only contains ordinals. Now find a well-order
 ̃ P M on a subset of δ of ordertype otppyq. The Gödel Pairing function
restricted to δ, G : δ � δ Ñ δ, is contained in both M and N . By Step 1,
Gr ̃s P N and thus  ̃ P N .  ̃ induces a homomorphism f : xy, Py Ñ xδ,  ̃y.
To be precise, f is the concatenation of the Mostowski collapse of xy, Py
and the inverse collapse of xδ,  ̃y, which both exist in N as these structures
have size δ. In N , we can now reconstruct x from y P N , f P N and
f rxs P PpδqM � N . That f rxs is a set in M follows from the δ-replacement
scheme as x is a set of size   δ. We conclude x P N . By the symmetry of
this argument, M also contains all sets of ordinals of size   δ of N.

Step 3: M and N contain the same sets of size   δ.
If A PM , then A is coded as a set of ordinals in M , i.e. there is α an ordinal
R � α�α with xtcptAuq, Py � xα,Ry. Via Gödel pairing, we can understand
R as a set of ordinals. By Step 2, R P N . Applying the Mostowski collapse
to the structure xα,Ry in N yields a structure xB, Py that is transitive from
the perspective of N and is isomorphic to xα,Ry. As N is transitive, B
is really transitive. As M is transitive, tcptAuq is transitive as well. This
implies B � tcptAuq. Using the transitivity of N once again we get A P N .
As usual the other direction follows from symmetry.

Step 4: M � N .
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Let A PM be any set. Step 2 shows that N contains all δ-approximations of
A in N . By the δ-approximation property of N � U , x P N and so N �M .
Again by symmetry, the reverse inclusion follows.

The following definition is thus justified.

Definition 2.1.10. Suppose N is a model of ZFCδ and M � N is a sub-
model of ZFCδ so that δ� is the same in M,N and so that the δ-cover and
approximation properties hold. Then we call M the (unique) r-substructure
of N where r � p δ2qM .

Fortunately, the necessity of satisfying ZFCδ in the above lemma isn’t
too restrictive. The next proposition shows that Vα |ù ZFCδ for class many
α for any given interpretation of 9δ as a regular cardinal.

Proposition 2.1.11. If δ is a regular cardinal and κ is a i-fixed point of
cofinality ¡ δ then Vκ |ù ZFCδ.

Proof. We must show that piq � pvq of Definition 2.1.5 are satisfied in Vκ.

piq � piiq As κ is an infinite limit ordinal, Vκ satisfies Zermelo set theory and
well-ordering theorem.

piiiq By induction one sees that |Vω�α| � iα for all ordinals α. Since κ is
a i-fixed point, and of course ω � κ � κ, we have |Vκ| � κ. If x P Vκ,
then x P Vβ for some β   κ. As Vβ is transitive, tcptxuq � Vβ. In
particular α � |tcptxuq| ¤ |Vβ| ¤ iβ   κ and thus α P Vκ. With this
we can see that after the construction of Remark 2.1.8, the code R for
x is in Vκ. Thus every set in Vκ is coded as a set of ordinals in Vκ.

pivq δ is a regular cardinal in Vκ as it is in V .

pvq Here, we have to show that Vκ is a model of the δ-replacement scheme.
So let φpx, y, z0, . . . , zn�1q be a P-formula that is functional on δ in Vκ
for given parameters ~z P Vκ. This induces a function f : δ Ñ Vκ. As
cofpκq ¡ δ, the function rk � f : δ Ñ κ must be bounded by some β.
But then ranpfq P Vβ�1 � Vκ.

Remark 2.1.12. Actually, we will need a little more. The above theorem
states that the structure xVκ, P, δy satisfies the system ZFCδ from the per-
spective of the meta-theory. What we actually need is that V |ù “Vκ |ù
xZFCδy”. The brackets x, y indicate that this is the theory ZFCδ as form-
alized in V , opposed to the ZFCδ of the meta-theory. This includes the
formalized single axioms of ZFCδ, as well as the formalized axiom schemes
of separation xSepy and δ-replacement xRepδy. The single axioms φ (for
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example the extensionality axiom) are unproblematic as Vκ |ù φ is equival-
ent to V |ù “Vκ |ù xφy”. However, the formalized schemes contain every
formalized instance of it for every formalized formula.This means we have
to show for example V |ù “@k P Fml Vκ |ù xSepypkq” where Fml is the
set of formalized formulas and xSepypkq is the formalized separation scheme
with instance k P Fml. Fml includes all “standard formulas” of the form
xφy, but might contain nonstandard formulas that cannot be represented in
this from. Showing V |ù “Vκ |ù xZFCδy” is however virtually the same as
the above proof. For formalized separation this amounts to showing that
ta P x|Vκ |ù kpa, x, ~yqu P Vκ for a formalized formula k and that is clear. In
the same way for formalized δ-replacement, any functional k P Fml gener-
ates a function f as in the proof above.

The next definition is only for convenience for now, but becomes more
essential later on.

Definition 2.1.13. A ground W is called a δ-ground if there is a forcing P
of size   δ in W such that V is an extension of W via P.

Since we want to use Lemma 2.1.9 to define grounds, we need to show
that grounds satisfy the δ-cover and approximation properties for some large
enough δ.

Proposition 2.1.14. [HJ10] Suppose δ is regular and P � 9Q is a two step
iteration such that P has size ¤ δ, is nontrivial and 1P , “ 9Q is ¤ δ-
strategically closed. Then for any generic G �H, V � V rG �Hs satisfies the
δ�-cover and approximation properties.

Proof. V � V rGs has the δ�-cover property: Assume x � V , x P V rGs is of
size ¤ δ. Let 9x be a P-name for x and 9f a P-name such that 1P , “ 9f : θ̌ Ñ 9x
is surjective” for some θ ¤ δ. Let

y � ta|Dp P P, α   θ p , 9fpα̌q � ǎu

be the set of possible elements of 9x. For every p P P and α   θ there is at
most one a with p , 9fpα̌q � ǎ. Hence y has size at most |P| � |θ| ¤ δ and
1P , 9x � y̌.
Since H does not add any new subsets of V of size   δ, V � V rG � Hs
satisfies the δ�-cover property.
W � V has the δ�-approximation property: First of all, enumerate P as
tpα|α ¤ δu (not necessarily injective). Suppose x P V rG � Hs is not in
V . Thus we can find a P � 9Q-name 9x for x such that 1P� 9Q , 9x R V , i.e.
1P� 9Q , 9x � ž for every z P V .

Claim 2.1.15. For any pp, 9qq P P� 9Q there is a set a � app, 9qq and a P-name
9q1 � qpp, 9qq P domp 9Qq such that:
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piq 1P , 9q1 ¤ q

piiq There are p0, p1 ¤ p with pp0, 9q1q , ǎ P 9x and pp1, 9q1q , ǎ R 9x.

Proof. By our assumption on 9x, there must be some a such that pp, 9qq ∦
“ǎ P 9x”. This means we can find ppi, 9qiq ¤ pp, 9qq with pp0, 9q0q , ǎ P 9x and
pp1, 9q1q , ǎ R 9x. Since P is nontrivial, we may choose p0, p1 incompatible
with one another. We can extend these two conditions to a maximal anti-
chain A of P. We can now build a P-name 9q1 so that p 9q1qḠ � p 9qiqḠ whenever
pi is the unique element of Ḡ X A and p 9q1qḠ � 9qḠ if pi R Ḡ X A for i   2,
for any P-generic Ḡ. Without loss of generality, 9q1 P domp 9Qq. Then 9q1 is as
desired.

Now let 9σII be a P-name for the winning strategy witnessing the ¤ δ-
strategic closure of 9Q in the extension by P.

Claim 2.1.16. There is a sequence x 9qα|α ¤ δy in domp 9Qq such that for all
α ¤ δ:

piq 1P , 9qα ¤ 9qβ for β ¤ α

piiq If α � 2β � 1, there is a set aβ and piβ ¤ pβ for i   2 such that

pp0
β, 9qαq , ǎβ P 9x and pp1

β, 9qαq , ǎβ R 9x.

Proof. Assume α � 2β ¤ δ. By induction, we can assume that 1P forces
that the sequence constructed up to α is the outcome of a play in Gp 9Q, α̌q
where player I played according to some strategy 9σαI and II according to

the strategy 9σII restricted to this shorter game. Let 9qα P domp 9Qq be a name
for the next play according to 9σII . If α   δ, we let 9σα�2

I be a P-name for the
strategy extending 9σαI by playing qppβ, 9qαq at stage α�1. Set aβ � appβ, qαq.
By the first claim, we have extended the sequence as desired.

In the above argument, we may as well incorporate into the strategy of
player I to make sure that his first move is below a given 9q P domp 9Qq. This
shows that the endpoints of sequences with the above properties are forced to
be dense in 9Q, so that we can assume 9qGδ P H. Let A � taβ|β   δu. Suppose
x0 � xXA P V . Then there is pp, 9qq ¤ p1P, 9qδq such that pp, 9qq , x̌0 � ǍX 9x.
But then p � pβ for some β   δ and thus for α � 2β � 1, piβ ¤ pβ for

i   2 and pp0
β, 9qq ¤ pp0

β, 9qαq , ǎβ P 9x and pp1
β, 9qq ¤ pp1

β, 9qαq , ǎβ R 9x, a

contradiction. Thus not every δ�-approximation of x is in V .

Remark 2.1.17. Since the second step in the two step iteration may be
chosen trivial, the above proposition shows that whenever W is a δ-ground,
then W � V has the δ-cover and approximation properties.

Proposition 2.1.18. The statement “θ is a strong limit cardinal of cofinal-
ity ¡ κ” is downwards absolute to inner models.
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Proof. Let W be an inner model and suppose the statement is true in V .
Clearly cofpθqW ¥ cofpθqV ¡ κ. Let’s show |iWα |V ¤ iVα by induction on
α. The base and limit cases are trivial. If |iWα |V ¤ iVα then |iWα�1|

V ¤

p2i
W
α qV ¤ p2i

V
α qV � iVα�1 . Clearly iWθ ¥ θ. On the other hand |iWα |V ¤

iVα   θ and thus iWα   θ for all α   θ. But then iWθ � supα θiWα ¤ θ.

With the last few lemmata and propositions we have collected all the
tools we need to show the definability of grounds.

Proof. (Theorem 2.1.1) We have already mentioned the general idea for this
proof. We can make this more precise now: Suppose δ is a regular cardinal.
If W is a δ-ground then W � V satisfies the δ-cover and approximation
properties by Proposition 2.1.14 and the same is true for Wα � Vα for all
limit α. Define Cδ as the class of all i-fixed points of cofinality ¡ δ. Pro-
position 2.1.11 states that Vα |ù ZFCδ for all α P Cδ and furthermore the
same is true for Wα by Proposition 2.1.18. This already shows that every
ground W is definable from the parameter r � p δ2qW as the union of the
unique r-substructures of the Vα for α P Cδ.
For the uniform definability of grounds, we basically have to do this back-
wards. That means we start with r and have to reconstruct W . We define
Wr via the following steps. The first order formula φpx, rq can be extracted
from this procedure.

Stage 1: Here, we try to recover δ from r. If r is not a set of 0 � 1 se-
quences with ordinal domain, then this stage fails. Otherwise δ �
suptdom f |f P ru. This stage can also fail if δ is not a regular car-
dinal.

Stage 2: For the mean time, we cache W r as the union over the unique
r-substructures of Vα for α P Cδ. If any one of them does not exists,
this stage fails. Notice that for two sets m � n, it is possible to check
whether or not m is the r-substructure of n in one first order formula.

Stage 3: We perform the last sanity checks. Firstly, we check in one single
first order formula whether W r is an inner model. This can be done
via the inner model criterion (Theorem 6.2.4).
Next, if the last step succeeded, we check if W r is a ground of V . This
can be done by looking for a forcing P P W r and a G P V which is
P-generic over W r such that for all x P V there is 9x PW r with x � 9xG.
This succeeds if and only if W r is a ground of V .

If all stages were successful, we let Wr � W r. If any failed, we just take
Wr � V .
The first part of this proof shows that if W is a δ-ground, then Wr �W for
r � p δ2qW . On the other hand, if Wr � V , then r must have passed stage
3 and thus is a ground. Clearly r PWr for any r.
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2.2 The Ground Axiom

The uniform definability of grounds allows models of set theory to talk about
the structure of their grounds in a first order sense. This can be understood
as a dual to the forcing theorem, which allows models to talk about their
forcing extensions in a first order sense.

Definition 2.2.1. (The ground axiom) The ground axiom pGAq is the sen-
tence “@r Wr � V ”.

The ground axiom states that there are no nontrivial grounds. This is of
course the most simple structure the grounds can have. The ground axiom
holds for example in Gödels constructible universe L, which is a consequence
of L being the minimal inner model (and the absoluteness of L). The same
is true for other canonical inner models such as Lr0#s since the existence of
0# is absolute between grounds and extensions. Clearly, any nontrivial set
forcing forces the negation of pGAq. On the other hand, using class forcing
it is always possible to force the ground axiom, so pGAq is not reserved for
small inner models.

Theorem 2.2.2. There is a class forcing extension V rGs of V which is a
model of pGAq. Even more, for any given α we can arrange V rGsα � Vα.

The strategy for the above theorem is to iteratively code sets into the
GCH pattern.

Definition 2.2.3. We make precise what this means:

piq A set of ordinals x � α is coded into the GCH pattern if

Dβ@γ   α 2ℵβ�γ�1 � ℵβ�γ�2 Ø γ P x

In other words, to every β, we can define the 0� 1 sequence of length
α which corresponds to whether or not the GCH holds at ℵβ�γ�1.
The above formula holds if and only if for some β this sequence is the
characteristic function of x in α.

piiq The Continuum Coding Axiom pCCAq states that all sets of ordinals
are coded into the continuum pattern.

Remark 2.2.4. If pCCAq holds, then in fact every set of ordinals x must be
coded into the GCH pattern unboundedly often. This is because every set
of ordinals x is a proper initial segment of class many other sets of ordinals,
which all must be coded into the GCH pattern. We can choose these sets
incompatible with each other, so that the position β at which the coding
takes place must vary. Then x is coded at each of these class many positions.

If x � α is coded into the GCH pattern, then x is definable from α and
the corresponding position β, so the pCCAq is essentially a strong form of
V � HOD. It is useful for us as it does entail the ground axiom.
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Lemma 2.2.5. pCCAq implies pGAq.

Proof. Assume W is a ground of V . Then the continuum functions of W
and V coincide eventually by Lemma 1.2.2. If x � α is a set of ordinals in V
then there are arbitrarily large β so that x is coded into the GCH pattern
of V at position β. If β is large enough, the GCH pattern of W is the same
as in V . But then x is definable in W from β and α as

x � tγ   α|2ℵβ�γ�1 � ℵβ�γ�2u
W

This means that W contains all sets of ordinals of V . As in Lemma 2.1.9
we can conclude that V �W and hence W � V .

For Theorem 2.2.2 it is now enough to show that one can extend every
model of ZFC to one in which pCCAq holds. To do this we have to code
every set of V into the GCH pattern, as well as every new set we add in
this way. It is possible to manage this via iterative bookkeeping, however
it is more appealing to generically choose each bit of the encoding. The
following concept is the perfect fit for this job.

Definition 2.2.6. Given two forcings pP0,¤0q and pP1,¤1q, the lottery sum
pP0 ` P1,¤q is defined as the coproduct of the two forcings together with a
new maximal element. To be more precise:

P0 ` P1 :� pP0 � t0uq Y pP1 � t1uq Y tHu

and pp, iq ¤ pq, jq iff i � j and p ¤i q. H is the new maximal element.

Notice that if G is generic for P0 ` P1, then it is essentially either a
generic for P0 or for P1. If there are no other restrictions on G, then one can
think of this situation as a random binary choice of G to be either generic
for the first forcing or the latter. Because of this, P0`P1 is called the lottery
sum.
We will say that G chose Pi if the second coordinates of (non-maximal)
conditions in G are i. Similarly we say that p P P0 ` P1 lies in Pi if its not
maximal and has second coordinate i.
On the other hand, every generic for P0 or P1 is easily transformed into a
generic for P0 ` P1. It seems like one looses a bit of control when using the
lottery sum in a forcing construction, but it can be useful in iterations or
products if one does not want to make these binary choices by hand. One
can let these happen generically.
In the case of forcing pGAq we will use the class iteration with Easton support
Ppκq � pxPθ|κ ¤ θy, x 9Qθ|κ ¤ θyq where 9Qθ is a Pθ-name for Addpθ�, θ���q`
t1u (as defined in the extension) if θ is a cardinal and a name for the trivial
forcing otherwise. We will see that Ppκq forces pCCAq given that GCH
holds in V at and above κ. The construction is a modification of [Rei06,
Theorem 10] by using lottery sums.
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Lemma 2.2.7. Let κ be a cardinal such that GCH holds at and above κ
and let G be P � Ppκq-generic over V .

piq P preserves ZFC.

piiq P preserves all cardinals.

piiiq In V rGs, if the generic G chose the trivial dorcing at stage λ ¥ κ
cardinal, then GCH holds at λ�. Otherwise 2λ

�
� λ���.

pivq Every bounded subset x of κ is coded into the GCH pattern of V rGs.

Proof. piq In the language of [Rei06], P is a progressively closed iteration.
Thus Theorem 95, in the above source, yields that P preserves ZFC.
Note that we may consider V together with it’s definable classes as a
model of GBC, even with global choice after forcing to add a global
choice function without adding sets.
Alternatively, the proof of 2.3.8 piq can be modified (and simplified)
to work here.

piiq It is enough to show that every regular cardinal is preserved. We can
factor P at stage λ into P λ � 9P¥λ. The latter is forced to be   λ�-
closed.
We will show by induction that P λ has the λ�-cc if λ is regular and
the λ��-cc if it is singular.

λ � κ: This case is trivial.

λ � θ�: By induction, P θ has the λ� � θ��-cc. Furthermore, we
have that Addpθ�, θ���q is θ�� � λ�-cc by Lemma 1.1.3 piq as
pθ�qθ � 2θ � θ� and thus 9QG θ

θ � Addpθ�, θ���q ` t1u is λ�-cc

in V rG θs. Now P λ � P θ � 9Qθ is λ�-cc by Lemma 1.5.6.

λ P LimpCardq: As GCH holds above κ, we have that

|P λ| ¤
¹
θ λ

| 9Qθ| ¤
¹
δ λ

λ � λλ � λ�

Hence P λ has the λ��-cc.
If λ is regular then can use that P is Easton-supported. If A �
P λ is a set of size λ� then there must be some A0 � A of
the same size and θ   λ such that domppq � θ for all p P A0,
since all conditions in Pλ have support bounded in λ. But then
we can understand A0 as a subset of P θ which has the θ��-cc
by induction. But then A0 and in particular A cannot be an
antichain. Hence P λ has the λ�-cc.
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As P is ¤ κ-closed, it preserves all cardinals ¤ κ. Assume λ ¡ κ is a
regular cardinal in V , but not in V rGs. This implies that there is some
θ   λ regular and a cofinal function f P V rGs, f : θ Ñ λ. We know
that P θ has the θ�-cc and that P¥θ � 9PG θ

¥θ is   θ�-closed in V rG θs
and thus it cannot have added f . We conclude f P V rG θs, but this
means that P θ has destroyed the regularity of λ in contradiction to
its θ� ¤ λ-cc.

piiiq First assume that G chose the trivial forcing at stage λ. Then we can

split G into G λ, a P λ-generic over V , and G¡λ, a P¡λ � 9PpG λ�t1uq
¡λ -

generic over V , such that V rGs � V rG λsrG¡λs. We have that P¡λ is
λ��-closed in V rG λs. Thus every sequence of ordinals of length λ� in
V rGs is already in V rG λs. In particular Ppλ�qV rGs � Ppλ�qV rG λs.
Counting nice names for the forcing P λ gives:�

2pλ
�q
	V rGs

�
�

2pλ
�q
	V rG λs

¤ pp|P λ|λ
�
qλ

�
qV ¤ ppλ��qλ

�
qV � λ��

On the other hand, suppose that G did not choose the trivial forcing
at stage λ. Then G adds a generic g for Addpλ�, λ���q and thus�

2pλ
�q
	V rGs

¥ λ���. For the other inequality, we can conclude as

above that Ppλ�qV rGs � Ppλ�qV rG¤λs and that GCH holds at λ� in
V rG λs. By Lemma 1.1.3 piiq, Addpλ�, λ���q is λ���-cc in V rG λs.
Counting names again yields�

2pλ
�q
	V rGs

�
�

2pλ
�q
	V rG¤λs

¤ pp|Addpλ�, λ���q|λ
��
qλ

�
qV rG λs

¤ ppλ���qλ
��
qV rG λs � λ���

where the last equality holds as λ��� � 2λ
��

in V rG λs.

pivq Every p P P defines a “lottery” sequence lppq : dppq Ñ 2 that describes
the outcome of the lottery for the condition p. We make this precise:
dppq � domppq is the set of cardinals λ P domppq so that either

p æ λ , “ppλq lies in the nontrivial part of 9Qλ”

or
p æ λ , “ppλq lies in the trivial part of 9Qλ”

In the former case, we define lpλq � 0 and in the latter lpλq � 1.
Observe that if two conditions p, q are compatible then their lottery
sequences lppq, lpqq coincide on dppqXdpqq. In particular, the generic G
has its own lottery sequence lpGq �

�
pPG lppq that corresponds to the

choices it has made along the iteration. Suppose x � ρ is a bounded
subset of κ, i.e. ρ   κ. Notice that V and V rGs have the same subsets
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of κ as P is   κ�-closed, so that x P V . We have to show that x is
coded into the GCH pattern of V rGs, which will follow from a density
argument. Define a subclass D of P as:

D � tp P P|Dβ @γ   α ℵβ�γ P dppq ^ plppqpℵβ�γq � 1 Ø γ P xqu

If p P P is any condition, then we can find β so that domppq � ℵβ. As
P is Easton supported and ρ   κ we can add conditions qpℵβ�γq to p
for γ   ρ as we like and are guaranteed that the resulting q is again
in P. In particular we can define q in such a way that q satisfies the
defining property of D with the β we have picked. This shows that
P is dense, so that the characteristic function of x in ρ appears as a
block in lpGq. By part piiiq, lpGq exactly describes the GCH pattern
of successor cardinals in V rGs, that means x is coded into the GCH
pattern.

Proof. (Theorem 2.2.2) Let κ � |Vα|
�. We can assume that GCH holds

in V at and above κ as otherwise we would first extend via the canonical
Easton support product that forces this. Since this forcing is   κ-closed, it
preserves Vα. Now let G be P � Ppκq-generic over V . First of all V rGs is
a model of ZFC with the same cardinals as V by the above lemma. Since
P also has enough closure, V rGsα � V rGs. Now assume that x � λ is a
set of ordinals in V rGs. Split G as G λ, a P λ-generic filter over V , and
G¥λ a P¥λ � 9PG λ

¥λ -generic filter over V rG λs. As P¥λ is   λ�-closed, x is

already an element of V rG λs. But now we have that P¥λ � PpλqV rG λs.
Furthermore, the counting names arguments of part piiiq in the above lemma
show that GCH holds at and above λ in V rG λs. Part pivq shows that x is
coded into the GCH pattern of V rGs.

2.3 The Mantle

A lot of the motivation of Set-Theoretic Geology comes from the hope to
find regular structure beneath the generic sets that are the result of forcing.
This takes the perspective that the general set theoretic universe is similar
to dry erosion-prone land that once was the home of a flourishing flora.
However by digging through the grounds, we should be able to uncover this
old and forgotten structure that has been buried by the accumulated dust
added by forcing.
It is not unreasonable to propose that such a structure should be digging-
minimal, i.e. should satisfy the ground axiom. However, we have seen
that one can turn the tables and add new generic sets to extend to such
a structure, rather than cleaning up and looking inwards. Since there are
extensions that satisfy the ground axiom and coincide with V to an arbitrary
degree, ZFC � GA cannot have any Σ2-consequences that do not already
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follow from ZFC alone. One can come to this conclusion via the following
lemma, a proof can be found in the addendum.

Lemma 6.1.1. A formula φpxq is ΣZFC
2 if and only if

ZFC $ @x pφpxq Ø Dα x P Vα ^ Vα |ù xψpxqyq

for some formula ψpxq.

To round this up, the ground axiom does not fully capture what was
actually looked for. The downwards directed perspective motivates the next
definition, one that plays a central role in Set-Theoretic Geology and this
thesis.

Definition 2.3.1. The mantle M �
�
rWr is the intersection of all grounds.

Is the mantle the promised land? Unfortunately, the first answer to this
question will be a hard no, in a way that is even somewhat worse than in the
case of the ground axiom. Also, if we take a quick glance at the canonical
inner models L and Lr0#s again, we see that since they satisfy pGAq, they
are their own mantles (observe that trying to capture “V � M” resolves
in the ground axiom, so the two ideas are connected in this way). More
so, the mantle of every set forcing extension of L,Lr0#s is again L, Lr0#s
respectively. For L this is clear as it is the minimal inner model of ZFC and
is always contained in every ground. For Lr0#s, this holds as every ground
of every extension must also contain 0# since this set refuses to be added
by forcing. We will later see that this is no coincidence.

Theorem 2.3.2. [FHR15, Theorem 66] Any model V of ZFC has a class
forcing extension V rGs |ù ZFC such that MV rGs � V .

This has the consequence that in general, the mantle does not have any
special properties. In particular, the mantle need not satisfy the ground
axiom, which might go a bit against the first unreflected intuition.
Let’s get back on track to the theorem above. Our construction will achieve
the ground axiom fails badly in the final model. More precisely, there will be
no bedroch. Ironically, the strategy is almost identical to forcing the ground
axiom. In fact if GCH holds, one can just take the product instead of an
iteration. We want to extend a model V using a class forcing to produce
a model V rGs with mantle V . Instead of coding iteratively all sets into
the GCH pattern that were added in a prior step as in Theorem 2.2.2, we
only code the sets of V in the below construction. That is the reason we
use a class product instead of an iteration. A new obstacle is that we do
not want to start with a model of GCH or eventual GCH, so we have to
modify the forcing even more. In Theorem 2.2.2, we only had to force the
failure of GCH at certain stages. However in this situation the GCH can
fail at a cardinal λ already in V . That means that now we have to produce
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instances of GCH and will use Addpλ��, 1q instead of the trivial forcing in
the second component of the lottery sum to make this happen. We still have
one more problem to solve: Recall that a quiet but none the less important
part in the argument for forcing pGAq was that the forcing we used did not
collapse cardinals. This was necessary in order to ensure that the encoding
at each stage was effective. Since both Addpλ�, λ���q and Addpλ��, 1q can
collapse cardinals without the assumption of GCH, we will code sets into
the GCH pattern relative to a rather spaced out class of cardinals that both
makes the construction easy and is robust in the sense that it will not be
changed by the forcing we use.

Definition 2.3.3. Suppose C is a class of cardinals and xζγ |γ P Ordy is the
increasing enumeration of C. We say that a set of ordinals x � α is coded
into the GCH pattern relative to C if

Dβ@γ   α pGCH fails at ζγ Ø γ P xq

Note that being coded into the GCH pattern according to Definition
2.2.3 is relative to the class of all successor cardinals. In this case, we choose
C � Cκ as the class of all strong limit cardinals above some cardinal κ that
are not itself limits of such cardinals. Furthermore, having already the next
chapter in mind, we want to keep some flexibility in the forcing itself. Be-
cause of this, we will allow a sequence of forcings on that we only impose
mild restrictions to interfere.

Notice that ` is associative in the sense that pP`Qq`R � P`pQ`Rq,
so we will omit the brackets.

As we deal with class forcing, we have to argue that ZFC is preserved.
Unfortunately we may not use the reasoning we have applied in Lemma 2.2.2
piq. There we used a quite general preservation theorem for class iterations.
Here we use a class product, for which Reitz has elaborated an analogous
result, but we will not have the necessary closure properties at hand.

Definition 2.3.4. A class forcing P is pretame if for any sequence xDi|i P Iy
of dense subclasses of P and any p P P, there is q ¤ p and a sequence of
subsets xdi � Di|i P Iy so that each di is predense below q.

Remark 2.3.5. A sequence of classes xCi|i P Iy is to be understood as one
single definable class C with the following property:

C � tpx, iq|i P I ^ x P Ciu

Fact 2.3.6. [Fri00] If a class forcing is pretame then it preserves ZF�.

The following is a modificaton of Theorem 66 in [FHR15] that further
encapsulates an additional sequence of forcings.
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Theorem 2.3.7. Assume xQλ|λ P Cκy is a sequence of forcings so that Qλ

is   λ-strategically closed and has size less than the next cardinal above λ
in C. Let P be the class product¹

λPCκ

Addpλ�, λ���q `Addpλ�, 1q `Qλ

with set-sized support. If V rGs is a P-extension of V then V rGs does not con-
tain any new sequences of ordinals of length   κ and MV rGs � V . Moreover,
if λ P Cκ, λ̄ is the next strong limit cardinal and gλ is the generic for stage
λ, then the cardinals in the interval rλ, λ̄q are the same in V rGs and V rgλs.

Proof. Let us break up the necessary ingredients of the core argument into
several points.

Claim 2.3.8. Let λ P Cκ. The following hold:

piq P preserves ZFC.

piiq The initial factor P λ has size   λ.

piiiq The tail segment P¥λ is   λ-distributive.

pivq If G chose Addpλ�, λ���q at stage λ then GCH fails at λ� in V rGs.

pvq If G chose Addpλ��, 1q at stage λ then GCH holds at λ� in V rGs.

pviq The class Cκ is absolute between V and V rGs.

Let us first assume that all of the above is true. Most importantly
V rGs |ù ZFC by piq. To show that V rGsκ � Vκ it is enough to prove that
V rGs contains no new sequences of ordinals of length   κ. But this holds
by piiiq.
Now we will see that every set in V is coded into the GCH pattern of V rGs
relative to Cκ. We write xζα|α P Ordy for the increasing enumeration of Cκ.
Note that Cκ is the same in V and V rGs by pviq. As in Lemma 2.2.7, every
p P P defines a lottery sequence lppq : dppq Ñ 3 which describes the choices
p has made in the lottery sums. It is a little more direct to define this here:
We let dppq � domppq be the subset where the decision has already fallen,
that is the set of all λ for which ppλq is not the maximal element. Now for
λ P dppq we define:

lppqpλq �

$'&'%
0 if ppλq lies in Addpλ�, λ���q

1 if ppλq lies in Addpλ��, 1q

2 if ppλq lies in Qλ

In the same way as in the proof of Lemma 2.2.7 (iv), the generic filter
has its own lottery sequence lpGq �

�
pPG lppq : Cκ Ñ 3. By pivq and pvq,
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the 0’s and 1’s in lpGq describe whether or not GCH holds in V rGs at the
respective successor cardinals, i.e. GCH holds at λ� in V rGs if lpGqpλq � 1
and it fails if lpGqpλq � 0. If lpGqpλq � 2, this will depend on V and the
forcing Qλ, but this will not be a problem. Let x P V be a subset of some
ordinal α. If the characteristic function of x appears as a block in lpGq, this
would exactly mean that x is coded into the GCH pattern of V rGs relative
to Cκ. We will see that this is indeed the case. Define a subclass of P:

Dx � tp P P|Dβ@γ   α ζβ�γ P dppq^plppqpζβ�γq � 1 Ø γ P xq

^plppqpζβ�γq � 0 Ø γ R xqu

If p P P then we can add conditions to p high enough above its support
to make sure the defining property of Dx is satisfied for some β, this is
okay since P has set-sized support. This shows that Dx is dense and hence
GXDx � H. Thus x is coded into the GCH pattern of V rGs relative to Cκ.
This is very convenient to show that V �MV rGs: As usual, we can conclude
that indeed every set of ordinals x P V is coded unboundedly often into
the GCH pattern of V rGs relative to Cκ. This implies that this also holds
for every ground W of V rGs as the continuum functions of V rGs and W

eventually coincide, and so the classes CWκ and CV rGsκ coincide eventually,
too. Hence x P W as it is definable in W . As every set in V can be coded
as a set of ordinals in V , this implies V � W and as W was arbitrary,
V �MV rGs.
On the other hand, for every i-fixed point λ ¥ κ we can factor P � P λ�P¥λ
and the generic G � G λ�G¥λ accordingly. Now P¥λ is   λ-distributive by
piiiq and as λ is a i-fixed point, in particular V rG¡λsλ � Vλ. But V rG¥λs

is also a ground of V rGs as V rG¥λsrG λs � V rGs and hence MV rGs
λ � Vλ.

Next up, we have to show that given λ P Cκ and λ̄ the next strong limit,
the cardinals of V rGs and V rgλs in the interval rλ, λ̄q coincide. It is enough
to show that if δ P rλ, λ̄q is a cardinal in V rgλs, then it is in V rGs. Notice
that we can factor G as G λ � gλ � G¡λ. Since P λ has size   λ, δ is
still a cardinal in V rgλsrG λs. We have seen that every initial segment of
P¡λ is   λ̄-strategically closed in V . By Lemma 1.3.5, every such initial
segment is still   λ̄-distributive in V rgλsrG λs. Thus P¡λ does not add
any new sequences of length   λ̄. This shows that δ is still a cardinal in
V rgλsrG λsrG¡λs � V rGs.
It remains to prove the claim. The reasoning is quite similar to Lemma 2.2.7.
Critically, we have to replace arguments exploiting the iterative nature of
the forcing there with arguments that work for products.

Proof. (Claim 2.3.8)

piq Let us show that P is pretame. Our argument will be a modification
of Lemma 2.23 in [Fri00]. Suppose xDα|α   δy is a sequence of dense
subclasses of P, δ ¡ κ is a cardinal and p P P. Let λ ¡ δ so that
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p P P λ. By piiq, we may enumerate P λ as tpα|α   ρu for some
ρ   λ. By increasing one or the other, we may assume δ � ρ. It is not
necessary that the enumeration of P λ is injective. Notice that every
initial segment of P¥λ is ¤ δ-strategically closed, as each factor is. The
point is that we can build a winning strategy for player II by applying
winning strategies coordinate-wise. Since we have to apply a winning
strategy only in a large enough initial segment of P¥λ, we may assume
that σII is a winning strategy for player II in the game GpP¥λ, δ� 1q
(formulated in the canonical way for class forcings). Alternatively, we
could assume that global choice holds after forcing to add a global
choice function without adding new sets. In that case, we can build
the class winning strategy by choosing strategies for each factor. Let
h : δ Ñ δ�δ be a bijection. Let σI be the following strategy for player
I in GpP¥λ, δ�1q: Suppose we are at stage 2β�1. Let hpβq � pβ0, β1q.
If xqβ|β ¥ 2αy is the prior play, then let the next move be any q ¤ q2β

so that q Y pβ0 P P is a condition below some rβ P Dβ1 , if possible.
Otherwise, play r2β.
Let xqβ|β ¤ δy be the outcome after playing according to σI and σII .
Moreover, we can extract the sequence xrβ|β   λy from the resulting
play. Note that by using an inductive argument, we can avoid the
use of global choice in the construction of σI . Let p� � p Y qδ and
furthermore set

dα � trγ |Dβ   δ hpβq � pγ, αqu

for every α   δ. It is left to show that dα is predense below p�.
Suppose q ¤ p� and find a stronger condition q1 P Dα. We can find
γ   δ so that q1 æ λ � pγ . Find β   δ with hpβq � pγ, αq and note
that q ¤ p2β�1 Y pβ ¤ rγ P dα.
Thus P is pretame and so preserves ZF� by Fact 2.3.6. To show that
the powerset axiom holds in an extension V rGs, suppose λ ¥ κ is a
cardinal. We can factor P at stage λ� into P � P λ� �P¥λ� (and the
generic accordingly) then P¥λ� is   λ�-distributive and thus every
subset of λ in V rGs is already contained in V rG¤λ�s, which is a set
forcing extension. Hence

PpλqV rGs � PpλqV rG¤λ� s P V rG¤λ�s � V rGs

which shows that P preserves the power set axiom.

piiq Find α so that λ � ζα. For any given β, our assumption on the
size of Qζβ implies that the factor of P at stage ζβ has size some
δβ   ζβ�1. If α � α1 � 1 then we can conclude by induction that
|P¤λ| � |P¤ζα1 | � δα   λ. If α is a limit, we have

|P λ| ¤
¹
β α

ζβ�1 ¤ αpsupβ αζβq � 2psupβ αζβq   ζα

31



where the last inequality holds since we have purposefully excluded
limits of strong limits in Cκ.

piiiq It is enough to show that P is   κ-distributive as P¥λ is essentially P
defined using the parameter λ instead of κ. As any sequence of ordinals
is already contained in the induced extension V rG λs of P λ for some
large enough λ, it is enough to show that P ζα is   κ-distributive
for any α. Notice that the factor at stage λ P Cκ is   λ-strategically
closed as each summand is in the lottery sum. Now the product P λ is
  κ-strategically closed, and thus   κ-distributive, as can be seen by
applying winning strategies coordinate wise. In fact the whole product
P would satisfy the class equivalent of   κ-strategical closure if there
were a class sequence of winning strategies.

pivq Let λ1 be the successor of λ in Cκ and let V rG¥λ1s be the induced
extension of V by P¥λ1 . Using piiiq, we get Addpλ�, λ���qV rG¥λ1 s �
Addpλ�, λ���qV and since G¥λ adds a Addpλ�, λ���q-generic filter
by assumption, we conclude that in V rG¥λs GCH fails at λ�. Now
P λ has size   λ by piiq and so the same is true in V rGs.

pvq The same argument as above works in this case, using thatAddpλ��, 1q
forces GCH at λ. This is true as the new Cohen subset of λ�� must
contain every subset of λ� in V as a block and does itself not add any
new subsets of λ�.

pviq Let λ P Cκ. By piiiq, P¥λ is   λ-distributive and thus does not destroy
any strong limit cardinal ¤ λ. Since P λ has size   λ by piiq, λ is still
a strong limit in V rG¥λsrG λs � V rGs. This shows that any cardinal
in CVκ is a strong limit in V rGs. On the other hand, “λ is a strong
limit cardinal” is downwards absolute. This is enough to conclude

CVκ � C
V rGs
κ .

Theorem 2.3.2 follows by applying Theorem 2.3.7 with the trivial se-
quence Qλ � t1u.

2.4 The Structure of Grounds

Now that we have seen that all models of ZFC are the mantle of another
model, one can ask if the other direction also holds: Is the mantle always a
model of ZFC? This is where we get some redemption for the disappointing
lack of special features of the mantle, as the answer turns out to be yes. The
mantle is always an inner model of ZFC. Furthermore, this result is highly
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nontrivial and was only recently solved by Usuba ([Usu17]). The structure
of how the grounds align is a the key insight we need to show that the
mantle is a nice object. But before we dive into this, we will first investigate
a few other geologic questions that are connected to the above one. We have
seen that in the case of the constructible universe, L is the mantle of all its
extensions, but we needed a crucial property of L to see this. In general,
without further assumption on the universe, it is not clear whether V is the
mantle of all its extensions if V |ù GA. A priori, there might be grounds
of some extension V rGs not included in V that descend indefinitely. We
capture this setting in a definition.

Definition 2.4.1. piq A bedrock W is a local minimum of grounds, that
means it has no nontrivial grounds itself. In other words pGAqW holds.

piiq A solid bedrock W is a global minimum of grounds, i.e. W �M.

The above situation put differently results in the question whether or
not all bedrocks are solid. It is not clear whether a ground U exists which
does not contain the bedrock.
A more ambitious question is to ask if the mantle is forcing invariant. This
would make the above situation where a bedrock W is non-solid impossible,
since in this case MW � W � MV . Let’s quickly introduce the generic
multiverse of a model of ZFC. Whenever we mention this, we picture V
as a countable set in a large background model V. Then the generic mul-
tiverse is the closure of tV u under taking grounds and forcing extensions.
If the mantle were provably forcing invariant, this would clearly imply that
the mantle is constant across the whole generic multiverse, since any point
in there can be reached via a finite crisscross between grounds and exten-
sion. But how many steps do you need? Is there an upper bound? Observe
that the generic multiverse is two-dimensional: In general, one step is not
enough, as if P, Q are nontrivial forcing notions and G � H is generic for
their product, then V rGs and V rHs are in the same generic multiverse, but
are neither extension nor grounds of each other as V rGs � V rHs and vice
versa. But are two steps enough?

The answers to all of these questions are consequences of a hypothesis
that prescribes that the grounds are structured in the arguably simplest way
possible.

Definition 2.4.2. The strong Downwards Directed Grounds Hypothesis
psDDGq is the assertion @XDr Wr �

�
sPXWs. This states that for any

set-sized collection of grounds, the intersection contains another ground.

This hypothesis is now a theorem.

Theorem 2.4.3. [Usu17] (Usuba) The sDDG is a consequence of ZFC.
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Originally, there was also a weak Downwards Directed Grounds Hypo-
thesis that states that for any two grounds, their intersection contains a
grounds. However this has become obsolete with the above theorem.
First let’s show that the sDDG is both the link and the answer to all of the
above problems.

Corollary 2.4.4. piq All bedrocks are solid.

piiq The mantle is forcing invariant.

piiiq Two points M,N in the generic multiverse are at most two steps apart
from each other. More precisely, N is a ground extension of M , that
means it is a forcing extension of some ground of M .

Proof. piq As we have already discussed, this follows from piiq.

piiq It is enough to show that MV � MW for every ground W of V . By
the product lemma, every ground of W is still a ground of V , so that
MV � MW . For the other direction, assume M is another ground of
V . Applying the sDDG yields a ground N � W,M . By the quotient
lemma (Corollary 6.3.10), N is again a ground of W .

piiiq Assume N is a ground extension of M , i.e. W is a common ground
of M,N . It is enough to show that the same holds for all grounds
and extensions of N . It is clear for all extensions of N by the product
lemma. If N 1 � N is a ground then apply the sDDG in N to find a
ground W 1 �W,N 1.

W

M
�

N

�
N 1

�

W 1

�
�

Then W 1 is a ground of W by the quotient lemma and thus a ground
of M and so witnesses that N 1 is a ground extension of M .

Remark 2.4.5. The order is important in part piiiq. It is possible that
N is not a ground of an extension of M , despite being in the same generic
multiverse. We will see an example for this situation later.
Moreover, piiiq allows us to state “everywhere in the generic multiverse ϕ
holds” and “somewhere in the generic multiverse ϕ holds” as first order
P-formulas since we can express “in all ground extension ϕ holds” and “in
some ground extension ϕ holds” using the definability of grounds and the
forcing relation.
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We argue that the mantle is, from the perspective of forcing, a canonical
object. First let’s get back to the first question. Since this one was the
most prominent one and a strong driving force in research concerning Set-
Theoretic Geology, it deserves its own theorem.

Theorem 2.4.6. M |ù ZFC.

Proof. We apply the inner model criterion (Lemma 6.2.4). As the Gödel
operations are all absolute between transitive models of ZFC and since all
grounds are closed under them, their intersection M is, too. Assume x �M
for some set x of V . Let α � rkpxq. Since the mantle is forcing invariant,
we have that MX Vα �MW XWα is definable in every ground W and thus
x � M X Vα P M. Hence M |ù ZF . For the axiom of choice, we need
the full strength of sDDG. Suppose x P M has no well-order in M. For
every well-order ¨ of x in V , there must be a ground Wr¨ that does not
contain it. Let X � tr¨| ¨ is a well-order of xu. By the sDDG, there is a
ground W �

�
r¨PX

Wr¨ , but then W does not contain a well-order of x, a
contradiction.

Remark 2.4.7. Earlier we have argued that it is consistent that the mantle
does not satisfy the ground axiom. Now that we know that the mantle is
a model of ZFC, we can put this differently: It is possible that MM � M.
One could try to iterate this procedure, which first of all gives rise to the n-
mantle Mn, the result of taking mantles n times, but only for meta-theoretic
natural numbers n. The problem is that the uniform definability of grounds
does not give any ground to believe that the n-mantles should be uniformly
definable in n. That means that it is not at all clear whether or not

�
n ωMn

makes sense or is a definable class even when the natural numbers in the
object theory coincide with the meta natural numbers. However, in some
models of the second order set theory GBC, there might be a meaningful
way to define the α-mantle for any ordinal α, so that the limit mantles are
intersections of the previous mantles. It is conjectured in a strong way by
Fuchs, Hamkins and Reitz ([FHR15, Conjecture 74]) that every model of
ZFC is the α-mantle of an outer model of GBC. Furthermore they expect
that similar to the case of iterating HOD (compare [Zad83]), it is in general
not possible to define the α-mantle and more precisely that there is a model
of GBC in which Mn is a class for all n   ω, but the ω-mantle is not.

In addition to this, the mantle is not just forcing invariant as we have
seen in Corollary 2.4.4 piiq, it is the largest class with this property.

Lemma 2.4.8. If C is a class term such that ZFC $ “C is forcing invari-
ant” then ZFC $ C �M.

Proof. It is enough to show that CV � MV . If W is any ground then
applying the assumption in W yields that CW � CV . But then CV ��
rWr �M.
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2.5 A Destructibility Result

We apply the Definability of Grounds Theorem to see that a certain class
of forcings destroys a correctness property. As a wide variety of large car-
dinals necessarily satisfy this correctness property, these large cardinals are
destroyed by this class of forcings. We follow [BHTU16].

Theorem 2.5.1. Suppose κ is a strongly inaccessible cardinal and Vκ   Vλ
for some λ ¥ η ¥ κ. If P is a nontrivial   κ-strategically closed forcing,
P P Vη and G is P-generic over V , then for all θ ¥ η, V rGsκ ¢ V rGsθ.

We first prove an auxiliary result.

Lemma 2.5.2. If κ is a strongly inaccessible cardinal, κ   λ and Vκ  

Vλ then both κ and λ are i-fixed points and fixed points of the increasing
enumeration of i-fixed points.

Proof. The claim holds for κ as κ is strongly inaccessible. Furthermore,
Vκ |ù “for all α, iα exists” and so the same is true in Vλ. As Vλ computes the
i-function correctly, this shows iα   λ for all α   λ. Since the i-function
is continuous and strictly increasing, this implies that λ is a i-fixed point.
The same argument works if we replace the i-function by the increasing
enumeration of i-fixed points.

Proof. (Theorem 2.5.1) Assume towards a contradiction that V rGsκ   V rGsθ
for some θ ¥ η. By Lemma 2.5.2, λ and θ are i-fixed points. Thus we can as-
sume, by increasing η if necessary, that η is a i-fixed point itself. Moreover,
by passing to the κ�-th i-fixed point above η if necessary, we can assume
that cofpηq ¡ κ. The above Lemma implies that η will still be less than λ
and θ. Since P adds no new sequences of ordinals of length   κ and since κ
is a i-fixed point, it follows that V rGsκ � Vκ. We thus want to conclude a
contradiction from the following:

Vκ

Vλ
¡

V rGsθ

 

Observe that Vκ |ù ZFC and thus Vλ and V rGsθ are models of ZFC, too.

Claim 2.5.3. The following hold:

piq Vθ |ù ZFC

piiq V rGsλ � VλrGs and V rGsθ � VθrGs.

Proof. piq Clearly Vθ is closed under the Gödel operations and satisfies the
Ord-cover property with respect to V rGsθ. This means we can apply
the inner model citerion (Theorem 6.2.4). Since furthermore the axiom
of choice holds in Vθ, as it does so in V , we conclude Vθ |ù ZFC.
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piiq Let ξ be λ or θ. Notice that Vξ |ù ZFC and so does VξrGs. First
suppose x P V rGsξ. If x � α then there is a nice name 9x for a subset
of α with 9xG � x. Since P P Vη � Vξ, one can see that rkp 9xq   ξ.
Thus 9xG P VξrGs. Any general x P V rGsξ can be coded as a set of
ordinals (compare Remark 2.1.8) and decoded correctly inside VξrGs.
The other inclusion follows from the simple observation that rkp 9xGq ¤
rkp 9xq for any P-name 9x.

Thus, V rGsξ sees that it is generated by a P-generic filter G over Vξ for

ξ � λ, θ. Let r �
�
 |P|�2

	V
. We want to apply Theorem 2.1.1 to be able to

define Vθ inside of V rGsθ. This only works if Vθ is a ground of V rGsθ, but
this is true by the above claim. Thus:

V rGsθ |ù“for some parameter s and H some generic over Ws

for nontrivial forcing Q, the universe is WsrHs”

By elementarity, the same is true in Vκ and thus Vκ � W Vκ
s rHs for some

parameter s, nontrivial forcing Q and Q-generic H. Let δ � |Q|�. We can

assume that s �
�
 δ2
�WVκ

s . It follows from the two elementarity conditions
that:

piq Vλ �W Vλ
s rHs

piiq V rGsθ �W
V rGsθ
s rHs

V rGsλ � VλrGs � W Vλ
s rHsrGs is an extension by a forcing of size   δ

followed by a   δ-strategically closed forcing. By Proposition 2.1.14, it
follows that W Vλ

s � V rGsλ has the δ-cover and approximation properties.
Notice that W Vλ

s has the correct δ� since P is in fact   κ-strategically closed.

The same holds true for W
V rGsθ
s � V rGsθ. By going down to η   λ, θ it

follows that:

piq1 V rGsη �W Vλ
s rHsrGs X V rGsη

piiq1 V rGsη �W
V rGsθ
s rHs X V rGsη

Let W0 �W Vλ
s XV rGsη and W1 �W

V rGsθ
s XV rGsη. Thus W0,W1 � V rGsη

have the δ-cover and approximation properties, the correct δ� and the same
set of bounded subsets of δ (namely s) and are models of ZFCδ, by our
further assumptions on η and Proposition 2.1.18 as well as 2.1.11. By Lemma
2.1.9, W0 �W1.

Claim 2.5.4.

V rGsη �W V rGsθ
s rHs X V rGsη �W Vλ

s rHs X V rGsη
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Proof. The first equality is just piiq1. From piq1, we can conclude

W Vλ
s rHs X V rGsη �W Vλ

s rHsrGs X V rGsη � V rGsη

so it is left to show that the inclusion

W V rGsθ
s rHs X V rGsη �W Vλ

s rHs X V rGsη

holds. So suppose 9xH is in the left hand side, where 9x P W
V rGsθ
s is a Q-

name. Since η is a strong limit cardinal in V rGsθ, we can find a regular

ζ   η with 9xH P H
V rGsθ
ζ . We can assume without loss of generality that

1Q , 9x P Hζ̌ holds in W
V rGsθ
s . By Lemma 1.5.2, we can furthermore assume

that 9x P H
pW

V rGsθ
s q

ζ � W
V rGsθ
s X V rGsη � W0 � W1. Thus 9xH P W Vλ

s rHs

and by absoluteness of the rank, 9xH is in the right hand side.

This shows G PW Vλ
s rHs � Vλ, contradicting the non-triviality of P.

Remark 2.5.5. The following assumptions can be weakened a bit, see
[BHTU16]. For example, a thorough analysis of the complexity of the key
formulas used in the above proof yields that it is enough to assume Vκ  3 Vλ
to conclude Vκ ¢2 Vθ for all θ ¥ η.

We will apply the above theorem later on in chapter 4. Arguably, this
is quite a heavy gun for that application and more simple arguments could
do the trick. However, there is a reason why this section is included in this
thesis. Any useful theory should influence another part of mathematics.
The result above is not a geologic one, but an insight into the nature of
large cardinals. Down the road, we will make use of a concept called Laver
indestructibility. It is possible that a supercompact cardinal is preserved by
any sufficiently closed forcing. Here, we can conclude that there is no ana-
logue of this for, say, extendible cardinals. This destructibility of extendible
cardinals is in line with Theorem 4.2.2, which will be presented right after
the proof of the sDDG. It states that an extendible cardinal is incompat-
ible with a bottomless, that is bedrock-free, universe. If there were a “Laver
indestructible extendible cardinal” than the forcing of Theorem 2.3.7 would
produce a universe with an extendible in which there is no bedrock.
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3 The Downwards Directed Grounds Hypothesis

The result we present in this chapter is due to Usuba [Usu17]. However, the
proof has been improved by Hamkins and thus we follow his version that he
presented at the University of Bonn in January 2017 [Ham17a].

3.1 Combinatorial Prerequisites

For δ   κ, δ a regular cardinal, we denote the set of ordinals below κ of
cofinality δ by Eκδ . We will need a variant of Fodor’s lemma for singular
ordinals.

Lemma 3.1.1. If δ   cofpλq is a regular cardinal and f : Eλδ Ñ λ is
regressive, there a stationary subset S � Eλδ such that f rSs is bounded in λ.

Proof. Let κ � cofpλq and g : κ Ñ λ increasing, continuous and cofinal
with gp0q � 0. By continuity, grEκδ s � Eλδ , so the following function is
well-defined: We let h : Eκδ Ñ κ, hpαq � maxtβ   κ|gpβq ¤ f � gpαqu.
The maximum always exists as ranpgq is a club in λ and gp0q � 0. As f is
regressive and g increasing, h must be regressive, too. By Fodor’s Lemma,
there is a stationary set T � Eκδ and ρ   κ such that h æ T � ρ. I claim
that grT s is stationary in λ. Let D be a club in λ. Then DX ranpgq is club
and since g is continuous and increasing, D1 � g�1rD X ranpgqs is club in
κ. Find α P T XD1. Then gpαq P grT s XD. Now since h is constant on T
with value ρ, it must be that f rgrT ss is bounded by gpρ� 1q.

Lemma 3.1.2. Assume δ   cofpλq is a regular cardinal and T is a tree of
height λ with levels of size   δ. Then T has a cofinal branch, but fewer than
δ many.

Proof. If α P Eλδ , then let fpαq � supt∆pt, sq|t � s P Tαu. Since Tα has size
  δ � cofpαq, we have fpαq   α. Lemma 3.1.1 yields a stationary S � Eλδ
and ρ   λ such that f æ S is bounded by ρ. For every α P S choose one
tα P Tα. Since S has size ¡ δ and Tρ has size   δ, there has to be S� � S
unbounded and some t� P Tρ with t� ¤T tα for all α P S�. Now the sequence
xtα|α P S�y must form a cofinal branch: Suppose α   β P S�. If tα ¦T tβ,
then let t1β be the unique node on level α that extends to tβ. As t1β � tα
are both nodes on level α P S, we have that ∆pt1β, tαq ¤ fpαq ¤ ρ. But this
contradicts t� ¤T tα, tβ.
If b, c are cofinal branches then b, c differ at all large enough levels, in par-
ticular at all large enough levels in S. But then b and c must have parted
ways already below level ρ. This yields an injection

tb � T|b is a cofinal branchu Ñ Tρ

and thus there must be fewer than δ many.
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Lemma 3.1.3. Suppose W is an inner model of V , δ   cofpλqV a regular
cardinal in V and T a tree in W of height λ and levels of size   δ in W .
Then every cofinal branch b P V of W is already in W .

Proof. Notice that if t P T is a node that can extend to arbitrary large levels,
then T æ t � ts P T|s ¤T t _ t ¤T su is also a tree of height λ with levels
of size   δ in W . If b P V is a cofinal branch that is not contained in W
then it differs from all   δ many cofinal branches W knows about. Since
δ   cofpλqV we have

supt∆pb, cq|c PW cofinal branch in Tu   λ

and thus there is a node t P b that is not contained in any cofinal branch
c P W . Nonetheless W sees that t can extend to arbitrary large levels, so
our observation together with Lemma 3.1.2 implies that T æ t has a cofinal
branch in W . But T æ t � T, so this cofinal branch must be a cofinal branch
of T that contains the node t, a contradiction.

3.2 The Proof

Firstly, let us see that the naive approach is doomed. That would be to try
to prove that any intersection

�
rPXWr is itself a ground. Indeed this would

not even work for just two grounds:

Lemma 3.2.1. [FHR15] If ZFC is consistent, it is consistent that the in-
tersection of two grounds does not satisfy ZFC and thus is not a ground.

Proof. For simplicity, start with a model V rcs of GCH that already is the
result of adding a Cohen real. Consider the finite support product P �±
n ω Addpℵn,ℵn�2q

V and notice that P can be factored in V rcs as�� ¹
cpnq�0

Addpℵn,ℵn�2q
V

�
�
�� ¹
cpnq�1

Addpℵn,ℵn�2q
V

�
� P0 � P1

Observe that since V and V rcs have the same finite subsets of ω, P is a
member of V even though P0 and P1 are not. If G is P-generic over V rcs
then G factors accordingly into G0 � G1. This shows that V rcsrG1s is a
ground of V rcsrGs. Furthermore by the product lemma, V rGs is a ground of
V rcsrGs, too. Consider their intersection W � V rcsrG1sXV rGs and assume
for a contradiction that W is a model of ZFC. In the present situation,
the counting names argument used in the proof of Claim 2.3.8 applies as
well and shows that in V rcsrG1s, GCH holds at ℵn if and only if cpnq � 1
(actually one can understand c as a the lottery sequence of G1 in the context
of the forcing

±
n ωpAddpℵn,ℵn�2q

V ` t1uq). In addition, we get that in
V rGs, 2ℵn � ℵn�2 for all n   ω and that V, V rGs, V rcsrG1s all have the
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same cardinals. As V � W � V rGs, W has exactly these cardinals as
well. The point is that as c R V rGs, c R W , anyhow one can read c off
from the GCH pattern of W : If cpnq � 1, the n-th coordinate gn of G
(which is Addpℵn,ℵn�2q

V -generic) is also part of G1. This means that in
W , 2ℵn ¥ ℵn�2. On the other hand if cpnq � 0, there must be a bijection
f : PpℵnqW Ñ κ in W for some cardinal κ. But then f P V rcsrG1s and since
PpℵnqW � PpℵnqqV rcsrG1s it must be that κ � ℵn�1.

The dual to the Downwards Directed Grounds Hypothesis would be the
Upwards Directed Extensions Hypothesis. It is not clear how one should
formulate this on a first order basis, except for countable substructures. In
any case, this hypothesis is false and thus we are unable to use the more
refined understanding of extensions to tackle the sDDG.

Lemma 3.2.2. [FHR15] It is consistent that there are two extensions that
have no common extensions.

Proof. Here, we have to take the perspective that V is a transitive countable
model in a large background universe V. Let α � OrdV . We produce
two Cohen extensions of V . The main idea is that the two Cohen reals
together uncover the countability of the ordinals if put togehter, so they
cannot coexist in any model of ZFC with Ord � α.
In V, take a bijection f : ω Ñ α and code it as R � ω � ω so that

xω,Ry � xtcptfuq, Py

and let g : ω � ω Ñ ω be the Gödel pairing function. Let h be the char-
acteristic function of grRs. Any transitive model of ZFC that contains
h can reconstruct f as it contains g and thus knows about the countab-
ility of α. Let xDn|n   ωy be an enumeration of all dense open subsets
of Cohen forcing of V . We define Cohen reals c, d over V and sequences
xkn|n   ωy, xln|n   ωy simultaneously by induction.
For formal correctness, put l�1 � 0. First let c æ k0 be any condition in
D0 with integer domain. Let cpk0q � hp0q. If c æ pkn � 1q, d æ ln�1 are
already defined, we store kn in d by letting d æ rln�1, ln�1 � knq � 0 and
dpln�1� knq � 1. Then extend to a condition in Dn with integer domain ln.
If c æ pkn�1q, d æ ln are defined, then store ln in c by letting c æ rkn�1, kn�
1� lnq � 0 and cpkn � 1� lnq � 1. Next extend to a condition with integer
domain kn�1 in Dn�1 and let cpkn�1q � hpn� 1q.
Since c æ kn, d æ ln P Dn, c and d are indeed Cohen reals over V . If both c
and d are present in a transitive model of ZFC, one can reverse the above
construction to recover the sequence xkn|n   ωy. The first bit can be read
off of d immediately, with this information one can find l0 through c, which
in turn yields k1 as the length of the block of zeros in d starting at l0, and
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so on. But now h � c � k. Hence V rcs and V rds can have no common
extensions.

Remark 3.2.3. Having no common extension is just a different way of
saying that one model is not a ground of an extension of the other. So the
lemma above gives the example promised in Remark 2.4.5.

Above, we have seen that the naive strategy cannot work out. In some
way, the sDDG suffers from a similar problem as the Goldbach conjecture.
Given an even natural number n ¡ 2, there tend to be a lot of pairs of primes
whose sum is n. On the other hand, it seems like there is no best such pair,
distinguished from all other pairs uniformly in n. In our case, there tend to
be a lot of grounds contained in the intersection of two grounds W0 and W1.
However, the canonical example for a good common ground would be the
intersection. This obstacle leads to a nonconstructive proof of the sDDG.
The final argument produces a common ground W�, but this procedure may
lead to almost any common ground, so W� is hardly distinguished from any
other one. Notably, we will need a general way to show that W� is a ground.

Definition 3.2.4. Suppose M � N are classes and κ is a cardinal in N .
Then M � N has the κ-global cover property if for any α and any function
f : α Ñ M in N such that fpβq � M and |fpβq|N   κ for all β   α,
there is a function F : α Ñ M such that for all β   α, |F pβq|M   κ and
fpβq � F pβq.

Depending on taste, the κ-global cover property seems to be a bit mis-
named. A better fitting name would be the κ-uniform cover property, as it
just asserts that for set many instances of the κ-cover property, there always
is a uniform way to cover. As it was originally defined with this name, we
will keep it. In any case, this is the correct criterion.

Theorem 6.3.1. (Bukovský’s Theorem)[Buk73] Suppose W is an inner
model of V and κ is a cardinal. Then W is a ground which extends to V
via a κ-cc forcing if and only if W � V has the κ-global cover property.

In this chapter, we will only proof the easy direction.

Proof. “ñ” Suppose W extends to V via a κ-cc forcing P. Suppose that 9f is
a P-name so that for some α, 1 , “ 9f : α̌Ñ V ” (notice that 1 , ranp 9fq � V
makes sense, as V is definable in the same manner in all its P extensions
from the same parameter). For each β   α, there is a maximal antichain
Aα in the dense set of all p P P that decide 9fpα̌q. Finally

F pβq � tx|Dp P Aβ p , 9fpβ̌q � x̌u

is as desired.
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A proof of the hard and interesting direction can be found in the ad-
dendum.

If we have a set of grounds Wr for r P X present, we want to construct
a common inner model that has the κ-global cover property relative to V fo
some large regular κ. The construction will in some vague way resemble the
proof of the Definability of Grounds Theorem, as we want to approximate
this inner model from below. More precisely, we stratify the κ-global cover
property and produce common inner models that come closer and closer to
the full property in this sense. Only the initial segments of these approxima-
tions are good approximations, and in the end if we do this in the right way,
enough of these initial segments will cohere to produce the desired common
ground.

Definition 3.2.5. If M � N are classes, κ is a cardinal in N , θ ¥ κ
some ordinal, then M � N has the pκ, θq-global cover property if for any
f : λÑ PκpλqN in N , there is F : θ Ñ PκpθqM in M with fpαq � F pαq for
all α   θ.

Proposition 3.2.6. Suppose W is an inner model of V . Then W � V
has the κ-global cover property if and only if it has the pκ, θq-global cover
property for all θ ¥ κ.

Proof. The forward direction is clear so assume that W � V has the pκ, θq-
global cover property for all θ ¥ κ. Let f : α Ñ V be a function in V so
that fpβq � M and |fpβq|V   κ for all β   α. Find γ ¥ κ large enough so
that ranpfq �Wγ and put θ � |Wγ |

W . Now take g PW a bijection between
Wγ and θ. We can use g to translate fpβq as the subset grfpαqs � θ. The
pκ, θq-global cover property yields a function F 1 : θ Ñ Pκpθq that covers
grfp qs. Translating back using g�1 yields a κ-global cover F PW of f .

Recall that we want to show that initial segments of certain approx-
imations cohere. The way to go is Lemma 2.1.9, so we have to have the
κ-approximation property present. Luckily, we get this for free.

Lemma 3.2.7. If W � V has the pκ, θq-global cover property for regular κ
and strong limit θ in V , then also the κ�-cover and approximation properties
hold for subsets of θ.

Proof. First let us show that W � V has the κ�-cover property. Notice that
this is not a completely trivial consequence as we have to account for sets of
size κ. So let x P V be a subset of θ of size κ. Pick an enumeration f : κÑ x
and use the pκ, θq-global cover property to find a function F : κÑ PκpθqW
in W such that for all α   κ, fpαq P F pαq. Then y �

�
α κ F pαq is a

κ�-cover of x.
Next onto the κ�-approximation property for subsets of θ: Suppose that

x � θ is a set of size at most κ in V so that all κ� W -approximations of x
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are in W . By induction we can assume that the κ�-approximation property
holds for all ordinals below θ, so that xX α PW for all α   θ.

We build a tree T P W of height θ and levels of size   κ so that the
characteristic function χ of x is a maximal branch. Since θ is a strong limit in
both V and W , we have | θ2|W � θ. Therefore we can use the pκ, θq-global
cover property to find a function F : θ Ñ Pκp θ2qW so that χ æ α P F pαq
for all α   θ. Furthermore we can assume that F pαq � α2 for all α   θ
and that t æ β P F pβq for all t P F pαq, β   α   θ, as we could otherwise
throw out undesired elements of F pαq. Now T is defined in the natural way
as
�
α θ F pαq, ordered by ¤T��. Since F pαq is nonempty for every α, T

has height θ. Clearly Tα � F pαq and therefore has size   κ. As promised,
χ is (the union of) a cofinal branch of T.

Case 1, cofpθqV ¡ κ : In this case, Lemma 3.1.3 implies χ P W and thus
x PW .

Case 2, cofpθqV ¤ κ : Notice that cofpθqW ¤ κ as well, since we can κ�-
cover a cofinal subset C P V of θ of size κ in W . Work in W . Find a
cofinal subset C0 � θ of size ¤ κ. If Cn is defined let

Cn�1 � Cn Y
¤
αPCn

t∆pt, sq|t � s P Tαu

Finally C� �
�
n ω Cn. C� has size ¤ κ and satisfies the following:

For α P C�, t � s P Tα there is β P C�, β   α with t æ β � s æ β (�)

Now χ æ C� is a κ�-approximation of χ in W and thus a member of
W . Let xγα|α   ξy be the increasing enumeration of C�. I claim that
there is a unique function h : θ Ñ 2 in W so that

piq h æ γ0 P Tγ0

piiq h æ γα�1 is the unique node t P Tγα�1 extending h æ γα with
tpγαq � χpγαq

piiiq for α P Lim, hγα is the unique node in Tγα that extends all h æ γβ
for β   α

The closure property p�q of C� implies that Tγ0 contains exactly one
node, which must be χ æ γ0. If this is true up to and including α, then
p�q implies that every node t P Tγα�1 extending h æ γα is uniquely
determined by tpγαq, thus there is at most one valid continuation. By
induction, h æ γα � χ æ γα. Since χ æ γα�1 P Tγα�1 there is such a
node with tpγαq � χpγαq. If α is a limit, then again by p�q there can be
at most one t P Tγα extending

�
β α h æ γβ and as before, t � χ æ γα

does the trick. This shows that h � χ is definable in W from χ æ C�

and T and hence x PW .
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In the following proposition and subsequent proof, κ� will always refer
to pκ�qV even if that is not pκ�qW .

Proposition 3.2.8. Suppose κ� and θ ¡ κ are cardinals and W is an inner
model of ZFC. Assume that that for any f : θ Ñ θ in V there is a map
F : θ Ñ Pκ�pθq in W with fpαq P F pαq and |F pαq|W ¤ κ for all α   θ.
Then W � V has the pκ�, θq-global cover property.

Proof. Suppose g : θ Ñ Pκ�pθq is a function in V . Since κ � θ � θ, we can
split θ into θ-many blocks pBαqα θ PW of size κ and in V define a function
f : θ Ñ θ with gpαq � f rBαs for all α   θ. Let F PW be a cover of f as in
our assumption. In W , we can define Gpαq �

�
βPBα

F pβq for α   θ. Then
G is a pκ�, θq-global over of g.

Next up is the key construction.

Lemma 3.2.9. Assume Wr, r P X is a collection of grounds that extend to
V via Pr. Let κ be a regular cardinal larger then the size of X and Pr for
all r P X. Then for all cardinals θ ¥ κ, there is a set of ordinals A so that
LrAs �

�
rPXWr and LrAs � V has the pκ�, θq-global cover property.

Proof. Notice that all Wr � V have the full κ-global cover property by the
easy direction of Bukovský’s Theorem. Let θ be a cardinal ¥ κ. We want
to code pκ, θq-global covers for all f : θ Ñ Pκpθq in a set of ordinals A. On
the other hand, we have to achieve LrAs �

�
rPXWr, which is equivalent to

A P
�
rPXWr. Since A codes covers, we must find covers that are contained

in all Wr simultaneously. This is the point where me make the jump from
κ to κ�. Let λ � |Pκpθq|θ � 2θ.

Claim 3.2.10. Let f : λ Ñ Pκpλq be a function in V . Then there is a
pκ�, λq-global cover F P

�
rPXWr of f .

Proof. We construct pκ, λq-covers pF rαq
rPX
α κ by induction on α   κ so that

piq F rα PWr

piiq F r0 covers f for all r P X

piiiq @γ   λ
�
sPX,β α F

s
βpγq � F rαpγq

F r0 is given by piiq. If F sβ is constructed for all β   α and s P X, then
F rα P Wr is a pκ, λq-global cover of γ ÞÝÑ fαpγq �

�
sPX,β α F

s
βpγq. Since

κ ¥ |X| is regular in V , we have that ranpfαq � Pκpλq, so this is fine.
Take any r P X and let F : λÑ Pκ�pλq, F pγq �

�
α κ F

r
αpγq (this definition

is in fact independent of r P X as F sαpγq � F rα�1 for all s, r P X and α   κ).
F is certainly a pκ�, λq-cover of f by piiq, so it is left to show that F PWr.
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This is not immediate as we do not know whether xF rα|α   κy P Wr. On
the other hand, we know that Wr � V has the κ-approximation property
as |Pr|   κ, which we will make use of. It is enough to show that F̄ ��
γ λtγu � F pγq is in Wr. Clearly F̄ � Wr. So suppose a X F̄ is a κ-

approximation of F̄ in Wr. Then dompa X F̄ q is a set of size   κ. In the
same manner, the set pa X F̄ qγ � tβ   λ|pγ, βq P a X F̄ u has size   κ
for all γ P dompa X F̄ q. Define F̄ rα from F rα as we have F̄ from F . Given
γ P dompaX F̄ q, the regularity of κ implies that paX F̄ qγ � paX F̄

r
αγ qγ for

some αγ   κ. Again by regularity of κ, α� � suptαγ |γ P dompa X F̄ qu   κ
and thus aX F̄ � aX F̄ rα� PWr. This shows F̄ PWr.

We just have to pick the right f . We need one that encapsulates all
instances of pκ, θq-global cover. So define f : λ Ñ Pκpθq so that every
g : θ Ñ Pκpθq appears as a block in f . This is possible if λ is large enough.
Using the above claim, find a cover F : λÑ Pκ�pλq for f that works for all
Wr simultaneously. We can assume that ranpF q � Pκ�pθq. Code F in the
usual way as a subset A of λ. This implies A P

�
rPXWr. It is left to show

that LrAs � V has the pκ�, θq-global cover property. As A P LrAs, we can
recover F . Any instance g : θ Ñ Pκpθq we have to check appears as a block in
f and thus the corresponding block in F a pκ�, θq-global cover of g in LrAs.
It seems troublesome that clearly not all maps h : θ Ñ Pκ�pλq appear in f ,
however Proposition 3.2.8 gives that we have more than enough to conclude
that LrAs � V satisfies the full pκ�, θq-global cover property.

We have acquired all tools we need to proof the strong Downwards Dir-
ected Grounds Hypothesis.

Proof. (Theorem 2.4.3) Suppose Wr, r P X is a collection of grounds that
extend to V via Pr respectively. Let κ be a regular cardinal such that
κ ¥ |X|, |Pr| for all r P X. For any i-fixed point θ with cofpθq ¡ κ��,
there is a set A � 2θ such that LrAθs �

�
rPXWr and LrAθs � V has the

pκ�, θq-global cover property. Notice that this implies that LrAθsθ � Vθ
has the κ�-global cover property. By Lemma 3.2.7, LrAθs � V has the
κ��-cover and approximation properties for subsets of θ. This shows that
LrAθsθ � Vθ has the κ��-cover and approximation properties. Moreover,
LrAθs � V has the κ���-cover property for subsets of θ, too. Hence pκ��q�

is the same in LrAθs and V . By Proposition 2.1.18 and Proposition 2.1.11,
LrAθsθ and Vθ are models of ZFCδ. Lemma 2.1.9 shows that LrAθsθ is the
unique p κ

��
2qLrAθs-substructure of Vθ. We can conclude:

V |ù “for all i-fixed points of cofinality ¡ κ there is r �  κ��2 such that

the unique r-substructure of Vθ exists, is a subset of
�
rPXWr, can

compute its Von-Neumann-hierachy and has the κ�-global cover

property relative to Vθ”
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Here, we understand the ability of a structure M to compute the Von-
Neumann-hierachy as containing the set M X Vα for all α P M . As usual,
we abbreviate this as Mα. By the pigeonhole principle, there is some r�
that works for a proper class C of these θ. Let W� be the union of the
corresponding r�-substructures W θ

� of Vθ.

Claim 3.2.11. W� satisfies the following:

piq W� �
�
rPXWr

piiq pW θ
� qθPC cohere: If θ   θ1 are both in C then pW θ1

� qθ �W θ
�

piiiq W� is an inner model of ZFC

pivq W� � V has the κ�-global cover property.

Proof. piq By construction, W θ
� �

�
rPX holds for all θ P C.

piiq In this case pW θ1
� qθ � Vθ is another r�-substructure of Vθ. By Lemma

2.1.9, the assertion follows.

piiiq We apply the inner model criterion (6.2.4). W� is closed under all
Gödel operations, as each W θ

� is on its own. We have to show that
W� � V has the Ord-cover property. Suppose x P V is a subset of
W�. Let α � rkpxq. If θ P C is larger than α, then the coherence piiq
implies that already x � W θ

� . In particular x � pW θ
� qα P W

θ
� � W�.

By Theorem 6.2.4, W� is a model of ZF . The axiom of choice holds
in W� since it holds in each W θ

� respectively.

pivq For every θ P C we have that W θ
� � Vθ has the κ�-global cover prop-

erty. Thus W� �
�
θPCW

θ
� �

�
θPC Vθ � V has the κ�-global cover

property.

By Bukovskýs Theorem (6.3.1), piiiq and pivq imply that W� is a ground
of W . By piq, W� is as desired.
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4 Large Cardinals in the Mantle

In this chapter, we investigate the relationship between large cardinals, the
mantle and, the generic multiverse.

4.1 Preliminary Considerations

We say that ϕpxq is a large cardinal axiom if ϕpκq can only hold for uncount-
able cardinals. First of all, one can observe that no large cardinal axiom is
necessarily (upwards) absolute between the mantle M and V . Any cardinal
κ is countable in some generic extension V rGs and V rGs has the same mantle
as V by Corollary 2.4.4 piiq. Nonetheless, downwards absoluteness from V
to M is still a reasonable property and in fact we will see an example of
nontrivial downwards absoluteness. Regarding the other direction, we will
replace the notion of upwards absoluteness with a criterion that is independ-
ent of the basepoint V in the generic multiverse. To be precise we will ask
the question, whether or not κ having a certain property ϕ in M implies
that the same is true in dense many grounds, i.e. for every ground W there
is a deeper ground W 1 � W in which ϕpκq holds. Observe that this is first
order definable by the Definability of Grounds Theorem (2.1.1).

Proposition 4.1.1. Given a set-theoretic formula ϕ with parameters in the
mantle, the evaluation of the statement “ϕ holds in dense many grounds” is
constant across the generic multiverse.

Proof. Suppose W is a ground of V . First assume that V |ù “ϕ holds in
dense many grounds”. Notice that any ground of W is a ground of V , too.
Thus the statement is true in W . Now suppose that W |ù “ϕ holds in
dense many grounds”. Let M be any ground of V . By the sDDG, there
is a deeper ground W 1 � M,W . Our assumption on W gives that there is
W 2 � W 1 that satisfies ϕ. But then, from the perspective of V , this is a
deeper ground than M .

Let us start our analysis with results due to Usuba that show that the
existence of very large cardinals has a huge impact on the Set-Theoretic
Geology of V . In the end, this will yield the promised nontrivial downwards
absoluteness of some very large cardinal.

4.2 Extendibles

Definition 4.2.1. A cardinal κ is extendible iff for every λ there is an
elementary embedding j : Vλ Ñ Vξ for some ξ with critpjq � κ and λ   jpκq.

The main result of this section is that the existence of an extendible
implies the bedrock axiom.
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Theorem 4.2.2. (Usuba)[Usu18] If there is an extendible cardinal κ, then
the mantle is a ground.

Our strategy is to show that the mantle is the intersection of all grounds
which are a κ-small forcing away.

Definition 4.2.3. The κ-mantle M æ κ is the intersection of all κ-grounds.

Showing M �M æ κ is enough.

Proposition 4.2.4. [Usu18] For any κ there is a ground W contained in
M æ κ. In particular, if M �M æ κ then the mantle is a ground.

Proof. Let X � Pp κ2q. By the sDDG, there is a ground W contained in�
rPXWr. If N is a   κ-ground then N � V has the κ-approximation and

cover properties, thus there is some r P X with N �Wr.

Let us assume there is an extendible cardinal κ. First of all, this implies
that there are class many (strongly) inaccessibles. This is because (strong)
inaccessibility of a cardinal λ is decided in Vλ�1 and the extendibility of
κ implies the existence of elementary embeddings j : Vκ�1 Ñ Vjpκq�1 with
arbitrarily large target jpκq. Since κ is (strongly) inaccessible, every such
jpκq must be (strongly) inaccessible. We will use that almost all (strongly)
inaccessible cardinals above κ compute the κ-mantle correctly:

Lemma 4.2.5. Suppose κ is a cardinal.

piq Let W be a κ-ground. If λ ¡ κ is strongly inaccessible then Wλ is a
κ-ground of Vλ and thus pM æ κqVλ � pM æ κqλ.

piiq The above inclusion can only be strict in set-many cases, i.e. there
is an α ¥ κ such that for all λ ¡ κ strongly inaccessible, we have
pM æ κqVλ � pM æ κqλ.

Proof. piq Let P P W be of size   κ and let G be P-generic over W
such that W rGs � V . There is a forcing isomorphic to P in Wκ (for
example take a bijection from P to its cardinality and consider the
induced forcing), so without loss of generality P has this property.
Exactly as in Claim 2.5.3, we can show that W rGsλ � WλrGs using
the strong inaccessibility of λ.

piiq Assume for a contradiction that the class C of strong inaccessibles
λ ¡ κ with pM æ κqVλ � pM æ κqλ is unbounded. Lemma 2.1.9 shows
that for any λ P C there is some r �  κ2 and P, G P Vκ such that the
unique r-substructure of Vλ exists, is in fact a ground of Vλ, extends
to Vλ via the P-generic filter G and is a proper subset of pM æ κqλ.
There are only set-many possibilities for such a triple, but class-many
λ, hence there is one such triple pr,P, Gq that works for class many λ.
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Let W λ be the unique r-substructure of Vλ for λ P C and W� be the
union over these. Exactly as in Claim 3.2.11 piiq and piiiq, we see that
W� is an inner model of ZFC and that pW�qλ �W λ for λ P C. From
W λrGs � Vλ for λ P C we can conclude that W�rGs � V . But then
W� is a κ-ground of V that is not contained in M æ κ, a contradiction.

We need a tool to characterize the pointwise image jrλs for a given ele-
mentary embedding j. This argument is implicit in [Usu17], but apparently
goes back to Solovay.

Proposition 4.2.6. Suppose N � M are transitive models of ZFC and λ
is of uncountable cofinality in M . Assume λ   ξ and j : Mξ Ñ Nξ̄ is an

elementary embedding such that jrλs P M . Let ~S � xSα|α   λy P Mξ be a
sequence of disjoint stationary subsets of Eλω from the perspective of M . Let
δ � sup jrλs. Then we have that

jrλs � tα   δ|S̃α X δ is stationary in δuM

where jp~Sq � xS̃α|α   jpλqy.

The general idea here is that in fact α P jrλs iff S̃α meets jrλs and that
in this context jrλs has enough properties of a club so that “meeting jrλs”
can be replaced with stationarity.

Proof. Work in M . For the sake of this proof we will call a D � δ an ω-club
if it is unbounded and contains all its limit points in Eδω. Notice that the
standard argument for proving that the intersection of two clubs is a club
shows the same statement for ω-clubs (always given that the underlying
ordinal has uncountable cofinality). jrλs is an ω-club in δ: Clearly it is
unbounded and if ~γ � xγn|n   ωy P M is an increasing sequence in λ then,
since jpωq � ω, we have jp~γq � xjpγnq|n   ωy and thus by elementarity
jpsupn ω γnq � supn ω jpγnq.
Let us show that S̃jpαqXδ is stationary in δ in M . Now if D PM is a club in
δ, then jrλsXD is an ω-club in M . Notice that jrλs PM implies that j æ λ,
and so also its inverse, is a member of M since this is just the monotone
enumeration. As j æ λ : λÑ δ is increasing, has unbounded range and, as we
have seen, is continuous at limit ordinals of cofinality ω, C � j�1rjrλs XDs
is an ω-club in λ in M . Now Sα meets the club limpCq, but as Sα only
consists of ordinals of cofinality ω, Sα X C � Sα X limpCq � H. Now if
β P Sα X C then of course jpβq P jpSαq X jrCs � S̃jpαq XD.

Now let us assume that S̃α X δ is stationary. By elementarity, S̃α consists
only of ordinals of cofinality ω. As above this implies that S̃α meets jrλs, so
find some β with jpβq P S̃α. By elementarity, there is some ᾱ with β P Sᾱ.
Now since ~S is a sequence of disjoint sets

Mξ |ù “ᾱ is the unique γ with β P Sγ”
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and thus by elementarity

Nξ̄ |ù “jpᾱq is the unique γ with jpβq P S̃γ”

which implies α � jpᾱq P jrλs.

Remark 4.2.7. We made a slight mistake above. If ξ � λ � 1 then ~S R
dompjq as this sequence has rank λ�3. However, we can code ~S as a subset
of λ that is in dompjq and reformulate statements about ~S as statements
about its code.

Proof. (Theorem 4.2.2) Let W be any ground. We have to show that M æ
κ �W . It is enough to show pM æ κqλ �W for all large enough inaccessible
λ. Let λ ¡ κ be strongly inaccessible such that W is a λ-ground. The crucial
idea is that W might not be a κ-ground, but using the extendibility of κ
we can make W a jpκq-ground. Find θ ¡ λ strongly inaccessible such that
Vθ computes the κ-mantle correctly according to Lemma 4.2.5 piiq. We can
also assume that the same holds for all larger strongly inaccessibles. Now
let j : Vθ�1 Ñ Vjpθq�1 be an elementary embedding with critpjq � κ and
jpκq ¡ λ. Notice that jpθq is inaccessible, too. We have that

Vθ�1 |ù @x x P pM æ κqVθ Ø p“x is in all κ-grounds”qVθ

and by elementarity

Vjpθq�1 |ù @x x P jppM æ κqVθq Ø p“x is in all jpκq-grounds”qVjpθq

and hence

jppM æ κqθq � jppM æ κqVθq � pM æ jpκqqVjpθq � pM æ jpκqqjpθq �Wjpθq (�)

where the first and last equality holds by our assumption on θ and the
inclusion holds since Wjpθq is a λ   jpκq-ground of Vjpλq by Lemma 4.2.5 piq.
For the final argument, we will need that jrλs P W . To see this, we will
apply Proposition 4.2.6. So let ~S � xSα|α   λy P W be a sequence of
pairwise disjoint stationary subsets of pEλωq

W from the perspective of W .
Now V is an extension of W by a forcing of size   λ. Lemma 1.5.4 shows
that stationarity in λ is absolute between V and W . In particular in V ,
~S is still a sequence of pairwise disjoint stationary subsets of λ which only
contain ordinals of cofinality ω. Let jp~Sq � xS̃α|α   jpλqy. We have:

jrλs � tα   δ|S̃α X δ is stationary in δuV

If jp~Sq P W , then by absoluteness of stationarity above λ between V and
W , we could define jrλs inside W . Indeed, we have jp~Sq P jpWθq � jppM æ
κqVθq �Wjpθq by p�q. Hence jrλs PW which is what we wanted.
We will now show that pM æ κqα �W for α ¤ λ by induction on α.
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α � κ: pM æ κqκ � ppM æ κqVθqκ � jppM æ κqVθqκ � Wκ where the second
equality holds since j has critical point κ and the last inclusion holds
by p�q.

α α� 1: Assume pM æ κqα � Wα. Let X � pM æ κqα. We have to show
X PW . The idea is to code the set X and use p�q and jrλs PW . First
find a bijection f : ρ Ñ pM æ κqα in W � M æ κ. By p�q, jpfq P W .
jrρs is an initial segment of jrλs PW as ρ   λ by strong inaccessibility
of λ and thus jrρs PW . With this we can conclude

jrpM æ κqαs � jpfqrjrρss PW

and hence:
jrXs � jpXq X jpfqrjrpM æ κqαss PW

Now j�1 æ jrpM æ κqαs is just the Mostowski collapse and hence in W .
Thus X � j�1rjrXss PW which we wanted to show.

α P Lim: This case is clear by continuity of the Von-Neumann-hierarchy.

4.3 Hyper-Huge Cardinals

Usuba has given a strengthening of the notion of a 1-superhuge cardinal from
which one can conclude even more than from an extendible. All the follow-
ing large cardinal axioms can be defined in first order logic via demanding
the existence of certain ultrafilters (for huge cardinals consult [Kan09], for
hyperhuges [Usu17]).

Definition 4.3.1. Let κ be a cardinal.

piq κ is called n-huge for n   ω if there is some inner model M and an
elementary embedding j : V Ñ M with critpjq � κ and so that M is
closed under jnpκq-sequences.

piiq κ is called n-superhuge if additionally such an embedding can be found
with jpκq ¡ λ for arbitrarily large λ.

piiiq κ is hyper-huge if for every λ there is a nontrivial elementary em-
bedding j : V Ñ M into some transitive inner model M such that
critpjq � κ, jpκq ¡ λ and jpλqM �M .

Remark 4.3.2. Notice that all hyper-huge cardinals are extendible. If
λ ¡ κ is a i-fixed point and j : V Ñ M is an elementary embedding
with critpjq � κ and jpλqM � M then Vλ � M so that j restricts to an
elementary embedding Vλ Ñ Vjpλq with critical point κ. In particular, there
are unboundedly many strongly inaccessible cardinals above a hyper-huge
cardinal.
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Corollary 4.3.3. The existence of a hyper-huge cardinal implies the bedrock
axiom.

More interestingly, the reflective properties of a hyper-huge cardinal are
powerful enough to, in a sense, pull down the statement “jpW q is a jpκq-
ground” to conclude that W is a κ-ground. Of course we will make that
precise.

Theorem 4.3.4. (Usuba)[Usu17] If there is a hyper-huge cardinal κ, then
every ground is a κ-ground.

Remark 4.3.5. Usuba’s result regarding extendible cardinals is more recent
than the above one and appeared during the time this thesis was written. By
that time, this thesis was already focused on hyper-huge cardinals and thus
we stay true to that and even present (a modification of) the original proof.
The above theorem follows much easier (compared to the proof below) and
for smaller large cardinals with a lot less consistency strength than a hyper-
huge: It can be shown that a hyper-huge is a limit of extendible cardinals.
Suppose κ is the second extendible cardinal (or any large enough cardinal
above the first one). Now if λ is the least extendible, then M � M æ λ.
Since there can be at most λ-many λ-grounds, the proof of the sDDG shows
that M � V has the λ�-global covering property. The proof of Bukovský’s
Theorem shows that M extends to V via a forcing of size well below the next
inaccessible above λ. In particular, M is a κ-ground. The “hyper-huge” in
any result of this section can be safely replaced by, for example, 1-superhuge.

Proof. Let W be any ground and find a forcing P PW and a P-generic filter
G over W such that W rGs � V . Pick a strongly inaccessible cardinal λ ¡ κ
large enough so that P P Vλ. Using the hyper-hugeness of κ, we can find
some inner model M and a nontrivial elementary embedding j : V Ñ M
with critpjq � κ, jpκq ¡ λ and jpλqM � M . Let jpW q �

�
αPOrd jpWαq.

Using the definability of grounds, we can find r so that W �W V
r .

Claim 4.3.6. jpW q �WM
jprq.

Proof. We show that jpW q �
�
jrW s �

�
jrW V

r s � WM
jprq: If x P jpW q

then we can find some α such that x P jpW qjpαq � jpWαq P jrW s. In the

same way, if x PWM
jprq then there is α with x PMjpαqXW

M
jprq � jpVαXW

V
r q P

jrW V
r s.

In particular, jpW q is a model of ZFC as it satisfies the inner model
criterion inside M and the axiom of choice.

Claim 4.3.7. Wjpλq � jpWλq �Mjpλq � Vjpλq

Proof. We show one inclusion at a time.
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Wjpλq � jpWλq: Since λ is strongly inaccessible in V , so is jpλq in M . Now

M is closed under jpλq-sequences and thus jpλq is (strongly) inaccess-
ible in V , too. This shows that Wjpλq is a model of ZFC and so is
jpW qjpλq � jpWλq. By coding sets as sets of ordinals, it is enough to
show that any set of ordinals x P Wjpλq is a member of jpWλq. Note

that x is a bounded subset of jpλq. Let ~S � xSα|α   jpλqy P W be

a sequence of disjoint stationary subsets of E
jpλq
ω as computed in W .

Let δ � sup jrjpλqs. Proposition 4.2.6 yields

jrjpλqs � tα   δ|S̃α X δ is stationary in δuV

where jp~Sq � xS̃α|α   jpλqy. I claim that

tα   δ|S̃α X δ is stationary in δuV

�tα   δ|S̃α X δ is stationary in δujpW q

As jp~Sq P jpW q it is enough to show that stationarity in δ is abso-
lute between V and jpW q. As M is closed under jpλq-sequences and
cofpδq � jpλq, this is absolute between V and M . We see by element-
arity that

M |ù “jpW q �WM
jprq is a jpλq-ground”

and hence stationarity in δ is absolute between M and jpW q by Lemma
1.5.4.
This shows that jrjpλqs P jpW q. If x is a set of ordinals in Wjpλq then
x �Wjpλq XOrd � jpλq and jrxs � jpxq X jrjpλqs P jpW q. Now j�1 æ
jrjpλqs is the Mostowski collapse of jrjpλqs and thus in jpW q. Thus
x � j�1rjrxss P jpW q and as rkpxq   jpλq, x P jpW qjpλq � jpWλq.

jpWλq �Mjpλq: This inclusion holds since jpWλq � jpVλq �Mjpλq.

Mjpλq � Vjpλq: M is closed under all jpλq-sequences. jpλq is strongly in-

accessible so in particular a i-fixed point. Thus Vjpλq � M follows
directly by induction.

Lemma 4.2.5 piq shows that Wjpλq is a λ-ground of Vjpλq. Using the
quotient lemma (Corollary 6.3.10), we can conclude that jpWλq is a λ   jpκq-
ground of jpVλq � Mjpλq. By elementarity, Wλ is a κ-ground of Vλ. Thus
there is a forcing Q of size   κ in Wλ and H a Q-generic filter over Wλ

with WλrHs � Vλ. It is now enough to show that W rHs � V . As the
subsets of Q are the same in Wλ and W , H is Q-generic over W . Moreover,
G P Vλ �WλrHs �W rHs. This shows V �W rGs �W rHs � V and hence
W rHs � V .
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If we combine this with the following result, we see that hyper-huge
cardinals are downwards absolute to the mantle.

Proposition 4.3.8. If κ is a cardinal and W a κ-ground of V then κ is
hyper-huge if and only if it is in W .

In the “downwards” direction, we will make use of the following result
of Hamkins:

Fact 4.3.9. [Ham03, Corollary 6] Suppose δ is a regular cardinal and W is
an inner model of ZFC so that W � V has the δ-approximation and cover
properties. If M is an inner model of V with δM � M and j : V Ñ M an
elementary embedding with δ   critpjq then jrW s �W , M XW is an inner
model of W and

j æW : W ÑM XW

is an elementary embedding.

Proof. (Proposition 4.3.8) First suppose κ is hyper-huge in V . Let λ ¡ κ
and j : V Ñ M an elementary embedding with critical point κ, jpκq ¡ λ
and jpλqM � M . By Proposition 2.1.14, W � V has the κ-approximation
and cover properties. The above fact yields that N is an inner model of
W and k : W Ñ N is an elementary embedding where k � j æ W and
N �M XW . We still have kpκq ¡ λ and jpλqN � N (from the perspective
of W ). Thus κ is hyper-huge in W .

Now assume that κ is hyper-huge in W . Let λ ¡ κ and find j : W Ñ M
an elementary embedding with critpjq � κ, jpκq ¡ λ where M is an inner
model of W with jpκqM � M . Find a forcing P P Wκ and a P-generic G
so that W rGs � V . Since the critical point of j is κ, jpPq � P and thus
jrGs � G. We can apply Lemma 1.4.2 to lift j to an embedding

j� : V ÑM rGs

with j� æ W � j. In particular, j�pκq � jpκq ¡ λ and j�pλq � jpλq. Since
W is definable in V and G P V , M rGs is an inner model of V . It is left to
show that jpλqM rGs � M rGs. As usual, it is enough to verify this closure
condition for sequences of ordinals. So let f : jpλq Ñ Ord be a function
in V . By Proposition 1.2.4, there is a P-name 9f for f of size jpλq. The
closure of M implies that 9f PM and hence f � 9fG PM rGs follows from the
absoluteness of interpretation of names. This shows that κ is hyper-huge in
V .

Lemma 4.3.10. Hyper-huge cardinals are downwards absolute to the mantle.
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Proof. If κ is a hyper-huge cardinal then by Corollary 4.3.3 there is a bed-
rock. Thus the mantle is a ground. Furthermore by Theorem 4.3.4, V is a
generic extension of M by a forcing of size   κ. By Proposition 4.3.8, κ is
hyper-huge in M.

All in all, if κ is hyper-huge in V we can characterize exactly where in
the generic multiverse κ has the same property.

Corollary 4.3.11. If κ is hyper-huge and W is a point in the generic mul-
tiverse of V then κ is hyper-huge in W if and only if W is an extension of
M by a forcing of size   κ.

Proof. Find a forcing P PM of minimal size so that M extends to W via P.
We already now that κ is hyper-huge in M. If |P|M   κ then κ is hyper-huge
in W by Proposition 4.3.8. Otherwise,

W |ù “M is not a κ-ground”

and thus by Theorem 4.3.4, κ is not hyper-huge in W .

Using the qoutient lemma, we can put this differently:

Corollary 4.3.12. It is not possible to add hyper-huge cardinals via set
forcing.

Proof. Suppose κ is hyper-huge in an extension V rGs. By Theorem 4.3.4,
M is a κ-ground of V rGs. Since M � V � V rGs, V is a κ-ground of V rGs
by Corollary 6.3.10 and thus κ is hyper-huge in V by Proposition 4.3.8.

In contrast to this, it is possible to add a hyper-huge cardinal via class
forcing (relative to some larger cardinal axiom). For this let P be the canon-
ical Easton supported class iteration that forces GCH, namely the iteration
pxPα|α P Ordy, x 9Qα|α P Ordyq where 9Qα is a Pα-name for the Addpα�, 1q
forcing as defined in the extension if α is an infinite cardinal and for the
trivial forcing else. We will prove the following theorem in the addendum.

Theorem 6.5.1.[Tsa16] After forcing with P, any pn � 1q-superhuge car-
dinal remains n-superhuge.

Since a 2-superhuge cardinal is hyper-huge, any 3-superhuge cardinal
remains hyper-huge after forcing with P.

Corollary 4.3.13. If ZFC plus the existence of a 3-superhuge cardinal is
consistent, then it is consistent that some class forcing adds a hyper-huge
cardinal.
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Proof. Let κ be 3-superhuge in V and force with the canonical Easton sup-
ported class iteration P for GCH. Thus in the extension V rGs, κ is still
hyper-huge. However, we can factor P as P¤κ � 9P¡κ into the initial itera-
tion up to stage κ and the tail iteration. If G¤κ is the induced generic for
P¤κ, then κ is not hyper-huge in V rG¤κs: Let g be the induced generic for
Addpκ�, 1qV rG κs. We can understand g as a subset of κ�. Note that every
bounded subset of g is in V rG κs. That shows that V rG κs � V rG¤κs does
not have the κ�-approximation property. Proposition 2.1.14 implies that
V rG κs cannot be a κ-ground of V rG¤κs and so M cannot be a κ-ground by
the quotient lemma (6.3.10). Thus by Theorem 4.3.4, κ is not hyper-huge

in V rG¤κs. However, the tail iteration 9PG¤κ
¡κ forces κ to be hyper-huge.

We can also kill off as many hyper-huge cardinals as we want. We will
later see the analogous result for supercompacts.

Lemma 4.3.14. If ZFC+ “there are class many hyper-huge cardinals” is
consistent, then so is ZFC+ “there are class many hyper-huge cardinals in
M, but none in the entire generic multiverse”.

Proof. Start with a model V of ZFC+ “there are class many hyper-huge
cardinals” and add a Cohen real to obtain V rcs. By Lemma 4.3.8 all hyper-
huge cardinals remain so in V rcs. Now obtain any model W of ZFC such
that MW � V rcs by applying Theorem 2.3.2. Since V rcs has a nontrivial
ground, V rcs cannot be a ground of W . Hence, there cannot be a bedrock.
By Corollary 4.3.3, there cannot be a hyper-huge anywhere in the generic
multiverse of W since the statement “there is a bedrock” is constant across
the generic multiverse.

4.4 ∆ZFC
2 -Definable Large Cardinals Axioms

We determine when ∆ZFC
2 statements holds in the mantle. This directly

gives a criterion when ∆ZFC
2 -definable large cardinal axioms hold in the

mantle. We say that some property holds for dense-many grounds if for any
ground W , there is a deeper ground W 1 �W with this property. As grounds
are uniformly definable, this is first order expressible if the property is.

Lemma 4.4.1. For any ∆ZFC
2 -formula φpxq and any a P M the following

are equivalent:

piq M |ù ϕpaq

piiq The grounds W of V with W |ù ϕpaq are dense.

Σ2-formulas are exactly the locally verifable statements. Dually, Π2-
formulas are exactly the locally falsifiable statmenets. So ∆ZFC

2 -formulas
are both and in this sense local. We will exploit that the mantle locally
coincides with dense many grounds.
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Proposition 4.4.2. For any ordinal α, the grounds W of V for which
Wα �Mα are dense.

Proof. Let W be any ground of V and work in W . For every x P WαzMα,
find some ground Nx such that x R Nx. By the sDDG, there is a ground
N which is contained in all Nx for x as above. We have

Mα � Nα � Nx
α �Wαztxu

for every x PWαzMα and thus Nα �Mα.

Corollary 4.4.3. If ϕpxq is a Σ2-formula and a P M such that M |ù ϕpaq
then the grounds W of V for which W |ù ϕpaq are dense.

Proof. Using Lemma 6.1.1, find a formula ψpxq such that

ZFC $ @x pϕpxq Ø Dα x P Vα ^ ψpxq
Vαq

holds. Find α with Mα |ù ψpaq. By Proposition 4.4.2, the grounds W of V
with Wα � Mα are dense. Every such ground W satisfies W |ù ψpaqVα and
thus W |ù ϕpaq.

The converse holds for Π2-formulas.

Proposition 4.4.4. If ϕpxq is a Π2-formula and a P M such that the
grounds W of V for which W |ù ϕpaq holds are dense then M |ù ϕpaq.

Proof. Assume that M |ù  ϕpaq. As  φpxq is Σ2, an application of Corol-
lary 4.4.3 yields that W |ù  ϕpaq for dense many grounds. As above, let
ψpxq be a formula that witnesses Lemma 6.1.1 for the formula  ϕpxq. Find
α with Mα |ù ψpaq. There must be a ground W of V with Wα � Mα by
Proposition 4.4.2. Any deeper ground W 1 �W satisfies W 1

α �Mα and thus
W 1 |ù  ϕpaq, contradicting the assumption.

Lemma 4.4.1 now follows immediately from Corollary 4.4.3 and Propos-
ition 4.4.4.

Corollary 4.4.5. Suppose κ ¤ γ. If X is any of the properties weakly
inaccessible, strongly inaccessible, Mahlo, weakly compact, measurable or γ-
supercompact, then M |ù “κ is X” if and only if the grounds W for which
W |ù “κ is X” are dense.

Proof. All these properties are ∆ZFC
2 in κ (and γ).

However, the property of supercompactness is not locally verifiable (only
locally falsifiable) in contrast to the above properties. We will see later
that the Π2-statement “κ is supercompact” does not in general satisfy the
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conclusion of Corollay 4.4.3. Certainly, it is easy to build large cardinal
axioms that are not ∆ZFC

2 , but still satisfy Lemma 4.4.1. For example “κ
is supercompact in all grounds” would do the trick. Anyhow, there are
natural global large cardinal axioms that still satisfy Lemma 4.4.1. But
before we get to this, let us first observe that the ∆ZFC

2 statement “0#

exists” behaves really nice regarding the mantle. By the way, that this is
∆ZFC

2 can be observed by noting that the existence of 0# is equivalent to
ℵω being regular in L ([Jec03, p. 329]). Furthermore, the existence of 0#

cannot be changed via forcing (compare [Jec03, Exercise 18.2]). Together
with our characterization of ∆ZFC

2 -formulas in the mantle, this yields:

Proposition 4.4.6. The following are equivalent:

piq 0# exists somewhere in the generic multiverse of M.

piiq 0# exists in M.

piiiq 0# exists in dense many grounds.

pivq 0# exists in V .

pvq 0# exists somewhere in the generic multiverse of V .

In that sense, the existence of 0# transcends through the multiverses of
M and V . Let’s get back to the example of a natural global large cardinal

notion that does still satisfy our ∆ZFC
2 -characterization.

Definition 4.4.7. Let κ be a cardinal.

piq We say that M is a κ-model if M is transitive, of size κ, κ P M and
M |ù ZFC�.

piiq For λ ¡ κ, κ is called λ-unfoldable if for any κ-model M there is an
elementary embedding j : M Ñ N with critpjq � κ and jpκq ¡ λ for
some transitive N .

piiiq We say that κ is unfoldable if κ is λ-unfoldable for all λ ¡ κ.

Remark 4.4.8. It was carefully not specified whether or not unfoldability
is Σ2-definable. The author is in fact not sure whether this is true or not.
There stronger Σ2-large cardinals axioms that imply unfoldability. One
example is measurability. Suppose κ is measurable and λ ¥ κ. By iterating
a nonprincipal   κ-complete ultrafilter on κ (compare [Jec03, Chapter 19]),
we can construct an elementary embedding V ÑM with critical point κ and
jpκq ¡ λ. If N is a κ-model, then jpNq is transitive and j æ N : N Ñ jpNq
an elementary embedding. Thus κ is unfoldable. The same is true for
Ramsey cardinals. However , for example in L, the unfoldable cardinals
will not exhibit these stronger properties. On the other hand, Lemma 6.1.1
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gives a strategy with which one might try to proof that unfoldability is not
Σ2-definable: Start with κ unfoldable and for any given α ¡ κ, find a model
with the same sets of rank   α in which κ is not unfoldable. This is not
possible via forcing as κ will be unfoldable in any forcing extension with the
same Hκ� (as all κ-models are in there). Thus we would probably need to
employ techniques of inner model theory.

Unfoldability is a strengthening of weak compactness, in a way similar
to how supercompactness is a strengthening of measurability.

Lemma 4.4.9. κ is unfoldable in M if and only if κ is unfoldable in dense
many grounds.

We first need an auxiliary result.

Proposition 4.4.10. If M is a κ-model and λ ¥ κ a cardinal such that
there is an elementary embedding j : M Ñ N with critpjq � κ and jpκq ¡ λ
and N transitive, then there is such an embedding for some N 1 in Hλ�.

Proof. Let δ be large enough such that M,N P Hδ. Find an elementary
substructure K   Hδ with N, j P K, tcptMuq, λ � 1 � K of size λ. Let K̄
be the Mostowski collapse of K and π the corresponding collapse map. Let
ϕpx, y, z, u, vq be the statement

“y, z are transitive and x : y Ñ z is an elementary

embedding with critpxq � u and xpuq ¡ v”

As ϕ is Σ0, we have Hδ |ù ϕpj,M,N, κ, λq. By elementarity and applying
the isomorphism π, we conclude K̄ |ù ϕpπpjq, πpMq, πpNq, πpκq, πpλqq. By
choice of K we have that πpMq � M,πpκq � κ and πpλq � λ. As ϕ is
absolute between V and K̄, we have that πpjq : M Ñ πpNq is an elementary
embedding with critpπpjqq � κ and πpjqpκq ¡ λ. Since K̄ is transitive and
of size λ, we get that πpNq P K̄ � Hλ� .

Proof. (Lemma 4.4.9) Assume κ is unfoldable in M. As usual, it is enough
to show that κ is unfoldable in all grounds W with Wκ�1 � Mκ�1. So
suppose M is a κ-model in W and λ ¥ κ. Since we can code M as a subset
of κ in an absolute way (compare Remark 2.1.8), and since W and M have
the same subsets of κ, we can conclude that M PM and M has size κ in M.
Now the embedding that witnesses the unfoldability of κ in M with instance
M , λ works in W , too.
For the other direction, observe that being unfoldable is locally falsifiable by
Proposition 4.4.10, as λ-unfoldability can be falsified in Hλ� � Vλ� . Thus
“κ is unfoldable” is a Π2-property by (the dual of) Lemma 6.1.1 and hence
this direction follows from Proposition 4.4.4.
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On the other hand, it is possible to give an upper bound on the reflective
strength a large cardinal axiom that satisfies the conclusion of Lemma 4.4.1
can possibly have.

Lemma 4.4.11. Suppose ϕpxq is a large cardinal axiom such that ZFC �
GCH plus the existence of a cardinal κ with ϕpκq is consistent. If such a
cardinal provably reflects the failure of GCH, i.e.

ZFC $ @κ pϕpκq ^  GCHq Ñ Dλ   κ 2λ ¡ λ�

then ϕpxq does not in general satisfy the conclusion of Proposition 4.4.4.

Proof. Suppose V is a model of ZFC � GCH and a cardinal κ satisfies
ϕpκq in V . Force with the iteration P constructed in Theorem 2.3.7 where
the additional sequence of forcings is chosen trivial and so that P is   |Vκ|-
distributive. The extension V rGs satisfies MV rGs � V and V rGsκ � Vκ and
thus GCH holds in V rGs below κ. The latter is true for any ground W of
V rGs. On the other hand, GCH fails unboundedly often in V rGs and thus
in any ground of V rGs, too. As κ reflects the failure of GCH whenever ϕpκq
holds, we can conclude that W |ù  ϕpκq for every ground W of V rGs. But
then, there is in fact no ground in which ϕpκq holds true.

Remark 4.4.12. Even though this gives an upper bound on the reflect-
ive strength ∆ZFC

2 -definable large cardinal axioms exhibit, these can still
have exorbitant consistency strength. For example, one of the large cardinal
axioms with the highest consistency strength that is not known to be incon-
sistent is the existence of a nontrivial elementary embedding j : Vλ Ñ Vλ.
If we phrase this as an axiom in terms of λ instead of the critical point of j,
the existence of such an embedding is decided in Vλ�1 and thus is ∆ZFC

2 .

4.5 Supercompact Cardinals

Supercompacts are an example a large cardinal axiom that is consistent with
GCH and reflects the failure of GCH.

Proposition 4.5.1. A supercompact cardinal reflects the failure of GCH.

Proof. Assume GCH fails at λ ¥ κ. By supercompactness, find some inner
model1 M and an elementary embedding j : V Ñ M with critpjq � κ,
jpκq ¡ λ� and λ�M � M . Then pλ�qM � λ� and PpλqM � Ppλq. Since
there is no surjection from λ� to Ppλq in V , there is no such map in M
and thus M |ù “GCH fails at λ” and thus M |ù“GCH fails below jpκq”. By
elementarity, V |ù “GCH fails below κ”.

It is a standard result that supercomact cardinals are preserved by the
canonical Easton supported iteration which forces GCH. In particular, the
existence of a supercompact cardinal + GCH is relative consistent to the
existence of a supercompact.
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Corollary 4.5.2. If ZFC+ “there is a supercompact cardinal” is consistent,
then so is ZFC+ “there is a cardinal κ which is supercompact in M, but in
no ground”.

Remark 4.5.3. By Lemma 4.4.3, the analogue of the above result for any
Σ2-definable large cardinal axiom is impossible. As supercompactness is a
Π2-property, this is best possible complexity-wise.

It is easy to see that the same proof shows that the above corollary is
true for set-many supercompacts instead of only one. A natural question is
now, whether or not we can do this for class many supercompacts to get an
analog of Lemma 4.3.14 and the answer is yes, we can. The main result we
will prove in the rest of this subsection is thus the following.

Theorem 4.5.4. If ZFC+“there are class many supercompacts” is consist-
ent then so is ZFC+“there are class many supercompacts in the mantle, but
none in the entire generic multiverse”.

The main idea relies on a combinatorial principle we will define next.

Definition 4.5.5. If λ is an uncountable cardinal, then lλ denotes the
statement that there is a sequence xCα|α P LimXλ

�y such that the following
holds for all α P LimX λ�:

piq Cα is a club in α.

piiq otppCαq ¤ λ

piiiq If β   α is a limit point of Cα then Cβ � Cα X β.

Our result will rely heavily on the failure of lλ above a supercompact.

Proposition 4.5.6. If κ is supercompact, then lλ fails for any cardinal
λ ¥ κ.

Our strategy will thus be to start with a model with class many su-
percompacts and force it to be the mantle, while simultaneously force lλ
unboundedly often. Let us first proof the above Proposition.

Definition 4.5.7. Given a cardinal λ and a sequence ~C � xCα|α   λ�y
such that Cα is a club in α, an ω-thread through ~C is an unbounded set
D � λ� such that for all α P Eλ

�

ω X limpDq we have D X α � Cα.

Proposition 4.5.8. [SRK78] There are no ω-threads through lλ-sequences.

Proof. Suppose D � λ� is an ω-thread through a lλ-sequence ~C � xCα|α  
λ�y. Since λ� is regular and D unbounded in λ�, there is some β   λ� such
that otppDXβq � λ. Furthermore, we can find some β   α P Eλ

�

ω X limpDq.
But then λ   otppD X αq � Cα, contradicting that ~C is a lλ-sequence.
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Proof. (Proposition 4.5.6) Let λ ¥ κ be a cardinal. Let j : V Ñ M be a
nontrivial elementary embedding witnessing the λ�-supercompactness of κ.
Suppose for a contradiction that ~C � xCα|α   λ�y is a lλ-sequence in V .
Then jp~Cq � xC̃α|α   jpλ�qy is a ljpλq-sequence in M . Since M is closed
under λ�-sequences, we have that jrλ�s PM . From jpλ�q ¡ jpκq ¡ λ� and
the regularity of jpλ�q in M , it follows that δ � sup jrλ�s   jpλ�q. Thus
we can define D � j�1rC̃δs.

Claim 4.5.9. D is unbounded in λ�.

Proof. First notice that jrλ�s contains all its limit points of cofinality ω:
If xαn|n   ωy is an increasing sequence in λ� with limit α�   λ� then,
as ω does not get moved by j, jpxαn|n   ωyq � xjpαnq|n   ωy. Thus by
elementarity, supxjpαnq|n   ωy � jpα�q P jrλ

�s.
We have A � jrλ�s X δ P M . Clearly, A is unbounded in δ and cofpδq �
λ� ¡ ω. To show that D � λ� is unbounded, let α   λ�. In M , construct
a sequence xβn|n   ωy such that for all n   ω:

piq jpαq   β0

piiq βn   βn�1

piiiq β2n P A

pivq β2n�1 P C̃δ

This is possible as both A and C̃δ are unbounded in δ. Since both A and C̃δ
contain its limit points of cofinality ω, β� � supxβn|n   ωy P AX C̃δ. Now
j�1pβ�q P D is larger than α.

Claim 4.5.10. D is an ω-thread through ~C.

Proof. We already now that D is unbounded in λ�. Suppose γ is the su-
premum of an increasing sequence xγn|n   ωy in D. The argument in the
above claim shows that jpγq � supn ωjpγnq   δ. As jpγnq P C̃δ for every
n   ω, we can conclude that jpγq P limpC̃δq. But then C̃δ X jpγq � C̃jpγq
and thus:

D X γ � j�1rC̃δ X jrγss � j�1rC̃δ X jpγqs � j�1rC̃jpγqs � Cγ

Here, the last equality holds as β P Cγ is equivalent to jpβq P C̃jpγq, a
consequence of the elementarity of j.

This is a contradiction to Proposition 4.5.8.

We now have to find a forcing that forces lλ.
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Definition 4.5.11. For λ an uncountable cardinal let Plλ be the following
partial order: It consists of conditions which are basically initial segments
of a lλ-sequence. To be more precise, we will have p P Plλ iff

p � xCpα|α ¤ δp, α P Limy

where δp P Lim X λ� and piq � piiiq hold from the definition above for all
α P LimX δp. We also accept the empty sequence as the maximal element.
Let p ¤ q iff δq ¤ δp and p æ δq � q.

Lemma 4.5.12. [CFM01] Let λ be an uncountable cardinal. The forcing
Plλ has the following properties:

piq it adds a lλ sequence

piiq it has size at most 2λ

To prove this we will show that Plλ is ¤ λ-strategically closed.

Proposition 4.5.13. [CFM01] Let λ be an uncountable cardinal.

piq Plλ is ¤ λ-strategically closed.

piiq If p P Plλ and δp   δ   λ� then p can be extended to a q ¤ p with
δ ¤ δq.

Proof. piq In the following we will write δβ instead of δpβ in all instances.
Consider the following strategy for player II:

• At an even successor stage γ � γ1�1 just extend pγ1 nontrivially,
for example by pγ where pγ æ pδγ1 � 1q � pγ1 and pγpδγ1 � ωq �
tδγ1 � n|n   ωu.

• At a limit γ, let δγ � supβ γ δβ   λ�. We define pγ by pγ æ δγ ��
β γ pβ and pγpδγq � C

pγ
δγ
� tδβ|β   γu.

It is left to show that this is a winning strategy, i.e. that the above
play at limit γ is always legal if we have played according to this
strategy at prior stages. First of all, δγ is strictly larger than all prior
δβ by the choice of play at even successor stages, so pγ is functional.
Next we see that by induction, C

pγ
δγ

is closed by our prior choices of

δβ for limit β   γ. Clearly, otppC
pγ
δγ
q ¤ γ ¤ λ. Furthermore, if δρ is

a limit point of C
pγ
δγ

then by our choice of play at stage ρ, we have

C
pγ
δρ
� C

pρ
δρ
� tδβ|β   ρu � C

pγ
δγ
X δρ.

piiq For δ   λ� let Apγq be the statement “ if p P Plλ and δp   δ   γ then
p can be extended to a q ¤ p with δ ¤ δq”.
Let xγα|α   λ�y be the increasing enumeration of LimXλ�. We show
Apγαq by induction on α.
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α � 0: Trivial.

α α� 1: If p P Plλ with δp   γα�1 then first extend to q0 with
δq0 � γα using Apγαq. We can then extend q0 as in the successor
case of piq to a q with δq � γα � ω � γα�1.

α P Lim: Assume p P Plλ has δp   γα. Let ρ � cofpγαq ¤ λ and find
an increasing sequence xξβ|β   ρy in LimX γα cofinal in γα. Let
σI be the following strategy for player I in the game GpPlλ , λ�1q:
As a first move play p. At a later odd stage β � 1 with β   ρ
extend pβ to any condition pβ�1 with δpβ�1

¥ ξβ which is possible
by Apξβq. If β ¥ ρ, just copy the last move, pβ�1 � pβ.
Let σII be the winning strategy from piq. Then

OpσI , σIIq � xpβ|β ¤ λy

is a decreasing sequence of conditions of length λ� 1 since player
II must have won. Let q � pλ. By the choice of play of player I,
we have q ¤ p1 � p and δq ¥ supβ λ δpβ ¥ supβ ρ ξβ � γα.

Proof. (Lemma 4.5.12)

piq Let G be Plλ generic over V . First of all by piiq, pλ�qV rGs � pλ�qV .
Since two conditions p, q are compatible if and only if p ¤ q or q ¤ p,
~C �

�
G is functional. Indeed, it is a sequence of length λ�: For

δ P Lim X λ� define Dδ � tp P Plδ |δ ¤ δpu. By Proposition 4.5.13

piiq, Dδ is dense and thus GXD � H. This shows that ~C is of length
λ�. Any initial segment of ~C belongs to a condition in Plλ and thus

satisfies properties piq� piiiq of definition 4.5.5, hence ~C itself satisfies
these properties.

piiq We have that

|Plλ | ¤
¸
δ λ�

¹
α¤δ

2|α| ¤ λ� � 2λ � 2λ

We now have all the ingredients we need.

Lemma 4.5.14. There is a class extension V rGs with MV rGs � V such that
there are no supercompacts anywhere in the generic multiverse of V rGs.

Proof. Finally, the extra work we have put into Theorem 2.3.7 will pay off.
Let P be the forcing constructed in that theorem with κ � ω1 and additional
sequence Qλ � Plλ . We write C � Cκ (in the notation of that theorem). By
Lemma 4.5.12 and Proposition 4.5.13, the sequence xQλ|λ P Cy meets the
requirements. Let V rGs be a corresponding extension. Since Pl

λ�
does not

collapse λ and λ�, Theorem 2.3.7 yields the following:

65



piq MV rGs � V

piiq Whenever Plλ has been chosen, λ and pλ�qV are still cardinals in V rGs.

Since Plλ has been chosen at unboundedly many stages λ P C, we see
together with piiq that lλ holds at any of these cardinals. Suppose W 1 is
another universe in the generic multiverse of V rGs. By Corollary 2.4.4 piiiq,
there is a common ground W of V rGs and W 1. Find some large enough
cardinal δ so that W is a δ-ground of W 1 and of V rGs. Then W � V rGs
has the δ-approximation property by Proposition 2.1.14. If λ is any cardinal
above δ in C such thatG chose Plλ at stage λ, then every initial segment of the
added lλ-sequence is an element of V and thus of W . The δ-approximation
property of W � V rGs yields that the whole sequence is in W . As λ, λ�

are cardinals in W , lλ holds in W . Moreover, λ is still a cardinal in W 1

and has the same successor there and thus lλ is true in W 1 as well. Thus
lλ holds unboundedly often in W 1. By Fact 4.5.6, there cannot be any
supercompacts in W 1.

Theorem 4.5.4 follows.

This means that, by digging through to the mantle, it is possible to uncover
new supercompacts, even class many, that crumbled so badly under the
accumulated dust of forcing that they are not resurrectible via set forcing.

4.6 Counterexamples to Downwards Absoluteness

We have answered the questions which large cardinals are upwards absolute
from M to V in our revised sense in a lot of instances. Moreover, we have
seen that some very large cardinals are in fact downwards absolute to the
mantle. What about smaller large cardinals? Certainly, all Π1 definable
large cardinal axioms such as weakly/strongly inaccessible and Mahlo are
trivially downwards absolute to the mantle. Next, we will see that a lot
of large cardinal notions are not downwards absolute to the mantle. More
precisely, no large cardinal axiom ϕpκq that is implied by supercompact-
ness and itself implies weak compactness can be downwards absolute to the
mantle. This means that there is some kind of sweet spot where the large
cardinal axiom is strong enough to not be trivially downwards absolute, but
not too strong to cause such drastic consequences for the generic multiverse
that imply downwards absoluteness.

Theorem 4.6.1. Weakly compact, measurable, unfoldable, γ-supercompact,
supercompact and any other large cardinals whose defining property is im-
plied by supercompactness and itself implies weak compactness, are in general
not downwards absolute between V and M.

The proof will be a modification of Kunens observation in [Kun78] that
these large cardinals can be consistently added by forcing.
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Fact 4.6.2. [Kun78] Given a weakly compact cardinal κ, there is a forcing
Q that adds a Suslin tree T , so that the two step iteration Q � 9T is forcing
equivalent to Addpκ, 1q.

In addition to this, a main ingredient is a tool to make supercompact
cardinals indestructible by a large class of forcings.

Definition 4.6.3. A supercompact cardinal κ is Laver indestructible if κ is
supercompact in any extension by a   κ-closed forcing.

We prove in the addendum (Theorem 6.4.1) that any supercompact car-
dinal can be forced to be Laver indestructible.

Proof. (Theorem 4.6.1) Start with a model V in which κ is supercompact
and Laver-indestructible. Now find Q� 9T as given by Fact 4.6.2. Let V rT s be
a Q-generic extension of V . T is a Suslin tree, so in particular an Aronszajn
tree and hence the tree property fails at κ so that κ is not even weakly
compact in V rT s. We want this model to be our mantle, so let P be the
forcing from Theorem 2.3.7 (with trivial additional sequence) starting at
κ as defined in V rT s, but first we force with with T, the evaluation of 9T
in V rT s, to get an extension V rT srhs � V rgs, where g is Addpκ, 1q-generic
over V . Since Addpκ, 1q is   κ-directed-closed, κ is again supercompact in
V rgs. As V rT s is a ground of V rgs, this class product is definable in V rgs by
the definability of grounds. For any α ¡ κ, we can factor the generic G as
G α �G¥α, where G α is the induced generic for the initial factor of P up
to stage α. Note that P is even   κ�-closed and so does not add any new
subsets to T, so that h is still generic over V rT srG αs. The product lemma
implies that then

V rT srG αsrhs � V rT srhsrG αs � V rgsrG αs

for any α.

Claim 4.6.4.

V rT srGsrhs �
¤
α¥κ

V rT srG αsrhs �
¤
α¥κ

V rgsrG αs � V rgsrGs

Proof. We only have to show that the first and last equalities hold. For the
last equality, this is simply true since any x P V rgsrGs has a P-name 9x in
V rgs, but tcpt 9xuq can only contain conditions up to some large stage α so
that x � 9xG � 9xG α P V rgsrG αs.
The argument for the first equality is similar: Any x P V rT srGsrhs is of the
form 9xh for some T -name 9x P V rT srGs. Thus 9x P V rT srG αs for some large
enough α and hence x P V rT srG αsrhs.
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We get the following commutative diagram, where arrows represent in-
clusions:

V V rT s
Q

V rT srGs

P

V rgs
T

V rgsrGs
T

Pö

Note that vertical arrows are class forcing extensions, while horizontal arrows
refer to set forcing extensions. We will establish that κ is supercompact in
the right column, but fails to be weakly compact in the middle column. I
claim that in this universe, κ is supercompact, but not weakly compact in
its mantle. First, note that since the mantle is constant across the generic
multiverse, MV rgsrGs � MV rT srGs � V rT s, where the second equality holds
by Theorem 2.3.7. Thus κ is not weakly compact in MV rgsrGs.
Observe that V, V rT s and V rgs all have the same   κ-sequences of ordinals
as Addpκ, 1q is   κ-closed and V rT s is an intermediate model. This implies
that P and each of its factors is   κ-directed closed in V rgs, since it is in
V rT s. In V rgs, κ is still Laver-indestructible, as the two-step iteration of
  κ-directed closed forcings is   κ-directed closed. We want to apply this
to P, but we cannot directly do so, as Laver-indestructibility only takes set
forcings into consideration. Let γ ¥ κ. We show that κ is γ-supercompact
in V rgsrGs. This property only depends on the Von-Neumann-hierarchy up

to γ � 2. Find a P-name 9x for V
V rgsrGs
γ�2 . Let α be large enough so that 9x

is an P α-name. As 9xGα � 9xG � V
V rgsrGs
γ�2 , the Von-Neumann-hierarchies

of V rgsrG αs and V rgsrGs coincide up to γ � 2. By the prior observation,
Pα is   κ-directed closed in V rgs and hence by, Laver-indestructibility, κ
is supercompact in V rgsrG αs, so in particular γ-supercompact. But this
means that κ must be γ-supercompact in V rgsrGs, too. This concludes the
proof.

In the above proof, we still have that κ is not weakly compact in some
ground of V rgsrGs, namely V rT srGs, (and in fact in every deeper ground,
too) since T is still an Aronszajn tree there (note that P does not add subsets
of T ). Since being weakly compact is a ∆ZFC

2 -statement, Lemma 4.4.1 shows
that this must necessarily be the case whenever κ is weakly compact, but
not weakly compact in M.

Remark 4.6.5. The above construction implicitly shows that in contrast
to extendible cardinals, the existence of supercompact cardinals does not
imply the bedrock axiom.

We give another example of a large cardinal axiom that is not downwards
absolute to the mantle.
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Definition 4.6.6. A cardinal κ is superstrong if there is an inner model
M and an elementary embedding j : V Ñ M with critical point κ and
Vjpκq �M .

Superstrong cardinals are measurable and thus weakly compact. How-
ever, even though the existence of a supercompact cardinal implies the ex-
istence of a superstrong cardinal, a supercompact cardinal need not be su-
perstrong itself. Indeed, adding a κ-Cohen subset to a Laver indestructible
supercompact cardinal κ will preserve it’s supercompactness, but Theorem
2.5.1 shows that κ cannot be superstrong in the extension. Therefore The-
orem 4.6.1 does not apply in this case.

Theorem 4.6.7. Superstrong cardinals are in general not downwards abso-
lute to the mantle.

The general strategy to construct a model in which κ is superstrong, but
in which the superstrongness of κ fails in M, is to apply Theorem 2.5.1 to
kill the superstrongness, make the resulting model the mantel and then to
restore the superstrongness. To apply Theorem 2.5.1, we need the following
auxiliary result to meet the necessary assumptions.

Proposition 4.6.8. If κ is superstrong and j : V Ñ M an embedding
witnessing this, then Vκ   Vjpκq.

Proof. Let ϕpx0, . . . xn�1q be a P-formula and let a0, . . . an�1 be parameters
in Vκ. Since κ is the critical point of j, the ai are not moved by j. Assume
Vκ |ù ϕpa0, . . . an�1q. Then

V |ù Vκ |ù xϕpa0, . . . an�1qy

and hence by elementarity,

M |ùMjpκq |ù xϕpa0, . . . an�1qy

from which we can conclude, by transitivity of M , that

Vjpκq �Mjpκq |ù ϕpa0, . . . an�1q

We will force with a product forcing that preserves superstrongness, but
has a factor that destroys it.

Definition 4.6.9. Given a superstrong cardinal κ, we call j : V Ñ M
a superstrong extender embedding if it is the embedding induced by the
pκ, kpκqq-extender of an embedding witnessing that κ is superstrong. Note
that Fact 1.4.6 implies that Vjpκq �M so that j is superstrong as well.
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Lemma 4.6.10. Suppose κ is superstrong and j : V ÑM is a superstrong
extender embedding. Then after forcing with the Easton supported product
forcing

Q �
¹

λ jpκq

Addpλ�, 1q

the embedding j lifts to an embedding j�� : V rGs Ñ M rHs witnessing that
κ is superstrong in V rGs.

Proof. Factor the generic as G κ � G¥κ. Notice that since P is Easton
supported and since κ is inaccessible, every p P Q κ has bounded domain
and thus is a member of Vκ. Furthermore

jpQ κq �

�� ¹
λ jpκq

Addpλ�, 1q

�
M � Q

where the last equality holds since Vjpκq �M . Clearly, G is jpQ κq-generic
over M and jrG κs � G κ � G. Thus we can lift j to:

j� : V rG κs ÑM rGs

Observe that Q¥κ fails to be   κ�-closed in V rG κs, but is still   κ�-
distributive by Lemma 1.3.5. But now, as j is a derived extender embedding,
so is j� by Fact 1.4.8 and thus the upwards closure H of jrG¥κs in jpQ¥κq
is generic over M rGs by Lemma 1.4.9. Hence we can lift j� to

j�� : V rGs ÑM rGsrHs

and it is left to verify V rGsjpκq �M rGsrHs. But as in Claim 2.5.3, we find
that V rGsjpκq � VjpκqrGs and this is certainly a subset of M rGs �M rGsrHs.

Proof. (Theorem 4.6.7) Start with a model V in which some cardinal κ is
superstrong and find j : V Ñ M a superstrong extender embedding for
κ. Let g be Addpκ�, 1q-generic over V . It follows from Theorem 2.5.1 and
Proposition 4.6.8 that κ is not superstrong in V rgs. Let G be P-generic over
V rgs. Now, in V rgs, define P to be the forcing from Theorem 2.3.7 with
trivial additional sequence, starting high enough to be |V rgsjpκq|-closed. Let

G be P-generic over V rgs. We find that MV rgsrGs � V rgs, where κ is not
superstrong. Now let Q be the forcing from above as defined in V , and let
Q̂ be the modification of Q where the factor at stage κ is trivial. Notice
that Addpκ�, 1q � Q̂ � Q (in fact we could just use Q instead of Q̂). Let
h be Q̂-generic over V rgsrGs. Exactly as in Claim 4.6.4, it follows that
V rgsrGsrhs � V rgsrhsrGs. By the above lemma, κ is superstrong in V rgsrhs
and so in V rgsrhsrGs, too, since their Von-Neumann-hierachy coincides up
to rank jpκq by closure of P. Again by Corollary 2.4.4 piiq, MV rgsrhsrGs �
MV rgsrGs � V rgs.
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In the above construction, it was significantly easier to make the step up
to the class forcing extension that has the right mantle, compared to The-
orem 4.6.1. The reason for this is that being superstrong is a Σ2-property,
while being supercompact is not, and thus we were able to choose the class
forcing closed enough to not interfere with the destruction and resurrection
of this large cardinal property. In this way we can generalize. Lets say that
a large cardinal property ϕpκq is always destructible and resurrectible by set
forcing if ZFC proves that if ϕpκq holds, then there is a two step iteration
P � 9Q such that 1P ,P  ϕpκ̌q, but 1P� 9Q ,P� 9Q ϕpκ̌q.

Corollary 4.6.11. Suppose ϕpκq is a Σ2 large cardinal property that is
always destructible and resurrectible by set forcing. If ZFC � Dκ ϕpκq is
consistent, then so is ZFC � Dκ ϕpκq ^  ϕpκqM.

Anyhow, the example in the case of superstrongness was included in
this thesis as the destruction and resurrection of this property, as we have
seen, is a nice application of Theorem 2.5.1, which itself is proven using
Set-Theoretic Geology.
The same reasoning applies to worldly cardinals, that are cardinals κ for
which Vκ |ù ZFC, even though this is not definable as an P-formula ϕpκq, as
in many cases V will not be able to put everything together to see V |ù Vκ |ù
xZFCy. In his blog post titled “Worldly cardinals are not always downwards
absolute” [Ham17b], Hamkins shows that singular worldly cardinals can
always be destroyed and further resurrected via set forcing. Since κ being
worldy only depends on Vκ, this property is Σ2 in a meta-theoretic sense:
Whenever V � W is an outer model with the same sets of rank ¤ κ, κ is
worldly in W . Thus we can apply the same reasoning to find a model V in
which some κ is worldly, but fails to be so in M.
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5 Conclusion and Questions

As we have already discussed, Set-Theoretic Geology was not successful at
its original task. Theorem 2.3.2 shows that in general, the mantle has no
interesting properties. If that were the case, this would have, for example,
opened up the possibility of achieving lower bounds in consistency strength,
by trying to show that certain cardinals are large in a ground or in M. The
current reach of inner model theory is below a supercompact cardinal and
thus the expected equiconsistency of PFA and the existence of a super-
compact is still open. On the other hand, the mantle can satisfy any large
cardinal axiom that is consistent with ZFC. A naive approach would have
been to try and reverse the usual forcing construction which gives PFA
from a supercompact. There, a supercompact κ is collapsed to ℵ2. Naively,
one could hope that in general under PFA, ℵ2 is supercompact in M, or at
least in some ground. However, PFA is indestructible under   ℵ2-directed
closed forcing ([Lar00]) and thus using Theorem 2.3.7, one can show that
PFA is consistent together with the ground axiom.
However, certain canonical inner models do have non-trivial grounds, in con-
trast to L or Lr0#s. The mantle of these models will again admit a regular
structure. For a starting point, consult [FS16].
Moreover, Set-Theoretic Geology has proven to be an interesting topic with
an outreach beyond its own scope. In section 2.5, we have applied the uni-
form definability of grounds to see that a lot of large cardinals are always
destructible by quite mild forcings. To be precise, this is true for all large
cardinals κ for which Vκ is provably a (Σ3-)elementary substructure of a
higher initial segment of the universe. As a consequence, the analogue of
Laver indestructibility is impossible for all of these large cardinals. These are
already non-geologic statements. Thus Set-Theoretic Geology fulfills the ar-
guably most important property of an interesting theory, it has implications
that are not subject of their own nature.

In the present thesis, there was an emphasis on the interplay between
large cardinals, the mantle and the generic multiverse discussed in chapter
4. We begun with results due to Usuba, the existence of an extendible
implies the bedrock axiom. Even more is true for a hyper-huge (or some
smaller large cardinal, compare Remark 4.3.5). If κ is such a cardinal, M is
a κ-ground. Whether the same is true for extendibles was already asked by
Usuba in [Usu18].

Question 5.0.1. Is the existence of an extendible cardinal κ already enough
to conclude that the mantle is a κ-ground?

Similar questions can be postulated for other consequences we have found
to be true for hyper-huges.

Question 5.0.2. Are extendible cardinals downwards absolute to M?
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If the prior question can be answered positively then the latter can be
shown to be true by similar methods as in the case of a hyper-huge. We
have seen that if κ is extendible then the mantle is the intersection of all
κ-grounds. If λ ¡ κ is another extendible cardinal, it follows (compare Re-
mark 4.3.5) that M is a λ-ground. It can be shown, similar to Proposition
4.3.8, that λ must be extendible in M. Thus all, but maybe the least, ex-
tendibles are extendible in M. It seems plausible that the least extendible
is downwards absolute to M as well.
Subsequently, we investigated large cardinals at and below the level of a
supercompact. Once again, supercompacts have proven to be very flexible.
They inhabit a sweet spot where they are too weak to have drastic effects
on the generic multiverse, but are strong (and/or complex) enough to not
fall prey to Lemma 4.4.1, a significant restriction on possible configurations
in the generic multiverse for ∆ZFC

2 -definable large cardinal axioms. To go
further into this, similar to hyper-huge cardinals, it is possible by Theorem
4.5.4 to uncover a class of supercompacts while there are none in the entire
generic multiverse of V . The same is impossible for the Σ2-definable large
cardinal axioms by the Σ2-direction of Lemma 4.4.1, e.g. if κ is measurable
in M then it is in dense-many grounds.
We have seen in Theorem 4.6.1 that the large cardinal hierachy starts to
gain a bit of flexibility in our context at about the level of a weakly com-
pact (below that, a lot of large cardinals are trivially downwards absolute).
Between that and a supercompact (in the sense of direct implication), down-
wards absoluteness to M fails. The proof cannot be directly modified for
class many supercompacts.

Question 5.0.3. Is it possible that there is a class of supercompact car-
dinals, all of which are not supercompact (or not even weakly compact) in
M?

Central to our proof was the Laver indestructibility. A proof of this
generalized statement may involve a global version of Laver indestructibility.
We have seen that superstrong cardinals can fail to be superstrong in M as
well. It could not be determined in this thesis whether superstrong cardinals
satisfy the Π2-direction of Lemma 4.4.1.

Question 5.0.4. Is it possible that there is a cardinal κ superstrong in
dense-many grounds, but not in M?

By Lemma 4.4.2, it can be seen that if there is such an example, then
the minimal target jpκq of a superstrong embedding with critical point κ
must get arbitrarily large by passing to deeper and deeper grounds. A
construction answering this question positively would thus likely start with
an assumption of higher consistency strength than merely one superstrong
cardinal. Possibly, one could start with a superstrong cardinal that has
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arbitrarily large targets of the superstrong embedding, i.e. jpκq can be
made larger than any given λ. Next one could destroy the superstrongness
of κ, which is quite easy thanks to Theorem 2.5.1, and make this model
the mantle. While simultaneously forcing that model to be the mantle,
one has to revive κ with target jpκq ¡ λ one by one. How the last part
could be done is unclear. It seems difficult to revive the “larger instances”
of superstrongness while avoiding the “smaller” ones. Variations of this
questions can be investigated for other Σ2-definable large cardinals such as
huge cardinals.
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6 Addendum

In the main part of this thesis, there was a clear focus on Set-Theoretic
Geology. In order to avoid distractions, we skipped the proofs of a few
necessary results. However, as the goal of this thesis is to be as complete as
possible, we make up for this here.

6.1 A Characterization of ΣZFC
2 Formulas

In Chapters 2 and 4, we used that the satisfaction of ΣZFC
2 -formulas is

locally verifiable.

Lemma 6.1.1. [Rei06, implicit in Corollary 14] A formula ϕpxq is ΣZFC
2

if and only if

ZFC $ @x pϕpxq Ø Dα x P Vα ^ Vα |ù xψpxqyq

for some formula ψpxq.

Proposition 6.1.2. If κ is an uncountable cardinal then Hκ  1 V , that is
all Σ1-formulas with parameters in Hκ are absolute between Hκ and V .

Proof. Let ϕpy0, . . . yn�1q � Dxθpx, y0, . . . yn�1q, where θ is Σ0. We may
assume that n � 1. If a P Hκ and ϕpaq is true in Hκ then it is certainly true
in V , so assume x is such that V |ù θpx, aq. Find λ ¥ κ with x P Hλ so that
Hλ |ù θpx, aq. Let M   Hλ be an elementary substructure of size   κ with
x P M and tcptauq � M . Let N be the transitive collapse and π : M Ñ N
the corresponding collapse map. Then N |ù θpπpxq, πpaqq and by our choice
of M , πpaq � a. Furthermore, as N is transitive and of size   κ, N � Hκ.
Finally, because θ is Σ0, we can conclude that Hκ |ù θpπpxq, aq.

Proposition 6.1.3. If ϕpxq is Σ2 then

ZFC $ @x pϕpxq Ø Dκ P Cardzω1 x P Hκ ^ ϕpxq
Hκq

Proof. Write ϕpxq � Dy@z θpx, y, zq. If ϕpaq holds in V then we can find an
uncountable cardinal κ with a P Hκ so that Hκ |ù ϕpaq.
On the other hand, assume that for some uncountable cardinal κ and a P Hκ,
we have Hκ |ù ϕpaq. Find b P Hκ so that Hκ |ù @z θpa, b, zq. As Hκ  1 V ,
we now know that V |ù @z θpa, b, zq and thus ϕpaq holds in V .

Proof. (Lemma 6.1.1) “ñ” Without loss of generality, we can suppose that
ϕpxq is already Σ2. Let ψpxq � Dκ P Cardzω1 ^ x P Hκ ^ ϕpxqHκ . Since
any Vα is correct about its uncountable cardinals and whenever κ P Vα is an
uncountable cardinal we have HVα

κ � Hκ, we can conclude with Proposition
6.1.3 that ψpxq is as desired.
“ð” The formalized predicate “A |ù k” is Σ0 in A and k. The term Vα is
Π1 (in α) and hence “Dα x P Vα ^ Vα |ù xψpxqy” is Σ2.
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6.2 The Inner Model Criterion

In the Definability of Grounds Theorem, it is essential to be able to check
whether certain definable subclasses of V are models of ZFC or not in a
single first order P-formula. We will show here that this is possible. We also
used this quite simple criterion in a few other places to easily verify that a
given transitive class models ZFC. We follow [Jec03, pp. 177-183]

Definition 6.2.1. A transitive subclass M � V is an inner model of ZF pCq
if M |ù ZF pCq and contains all ordinals.

Theorem 6.2.2. [Jec03, Theorem 13.9] (The Inner Model Criterion) Sup-
pose M is a definable subclass of V from a parameter r. Then there is a
first order formula ψprq with the property that M is an inner model of ZF
if and only if V |ù ψprq.

The formula ψ will state (apart from the obvious part “M is transitive
and contains all ordinals”) that M is closed under certain very basic oper-
ations and satisfies a cover property with respect to V . We now introduce
these operations.

Definition 6.2.3. The Gödel operations pGiqi 10 are defined as follows:
G0px, yq � tx, yu G1px, yq � x� y
G2px, yq � tpu, vq|u P v P y ^ u P xu G3px, yq � xzy
G4px, yq � xX y G5pxq �

�
x

G6pxq � dompxq G7pxq � tpu, vq|pv, uq P xu
G8pxq � tpu, v, wq|pu,w, vq P xu G9pxq � tpu, v, wq|pv, w, uq P xu

One necessary ingredient we need is that closure under the Gödel op-
erations is (under a very weak fragment of ZF ) equivalent to satisfying
separation for ∆0-formulas.

Lemma 6.2.4. If φpv0, . . . , vn�1q is a ∆0-formula then there is a composi-
tion G of Gödel operations such that

Gpx0, . . . , xn�1q � tpu0, . . . , un�1q P
¹
i n

xi|φpu0, . . . , un�1qu

Proof. We proof the statement by induction over the complexity of ϕ. We
can suppose that φ is build up by only using the logical connectives  ,^
and Dvi P vj . We can do without vi � vj as we can replace this by

p@x P vi x P vjq ^ p@y P vj y P viq

and then substitute the restricted @ quantifiers by  , D as usual.

φ � vi P vj: If i � j, φ can never be satisfied and we let Gpxq � G3px, xq.
First, we assume n � 2. If i � 0, j � 1, then let G � G2. Otherwise,
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if i � 1, j � 0, set G � G7 �G2.
If n ¡ 2, there are two cases. If i, j � n�1, then by induction there is
such a compositionH for φpv0, . . . , vn�2q. In this caseGpx0, . . . , xn�1q �
G1pHpx0, . . . , xn�2q, xn�1q works. Hence suppose i � n�1 or j � n�1.
If i, j � n � 2 then by induction we can find a composition H for
φpv0, . . . , vn�3, vn�1, vn�2q and so G � G8 � H suffices. We are left
with the cases i � n � 2, j � n � 1 and i � n � 1, j � n � 2. In the
former case, let H be the following composition of G1 and G2:

Hpx0, . . . , xn�1q � G2pxn�1, xn�2q �

� ¹
i n�2

xi

�
Then G � G9 �H is as desired since

ppun�2, un�1q, pu0, . . . un�3qq � pun�2, un�1, pu0, . . . , un�3qq

and

ppu0, . . . , un�3q, un�2, un�1q � pu0, . . . , un�3, un�2, un�1q

The latter case follows from the former by applying G8.

φ �  θ: Here, we let Gpx0, . . . , xn�1q � G3p
±
i n xi, Hpx0, . . . xn�1qq where

H is the composition of Gödel operations corresponding to θ. Notice
that

±
i n xi is the result of successive nesting of G1.

φ � θ0 ^ θ1 : Find compositions H0 and H1 corresponding to θ0 and θ1 re-
spectively. The following works out:

Gpx0, . . . xn�1q � G4pH0px0, . . . , xn�1q, H1px0, . . . , xn�1qq

φ � Dvn P vi θpv0, . . . vnq: Let Hpx0, . . . , xnq be a composition correspond-
ing to

θpv0, . . . , vnq ^ vn P vi

We now have the following:

tpu0, . . . , un�1q P
¹
i n

xi|φpu0, . . . , un�1qu

� tpu0, . . . , un�1q P
¹
i n

xi|Dv P ui θpu0, . . . , un�1, vqu

� dompHpx0, . . . , xn�1,
¤
xiqq � G6pHpx0, . . . , xn�1, G5pxiqqq

Next, we define the correct cover property. The nomenclature we use
is in line with the δ-cover property defined in chapter 2. A common name
found in the literature is “almost universality”.
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Definition 6.2.5. We say that M � V has the Ord-cover property if for
any x P V , x �M there is y PM with x � y.

Proof. (Theorem 6.2.4) Let ψprq be the following statement:

“W is transitive, contains all ordinals, is closed under all

Gödel operations and has the Ord-cover property”

As the Gödel operations are absolute between transitive models, any inner
model of ZF is closed under them. Moreover, if M is an inner model and
x P V , x � M , the absoluteness of the rank function implies that x � Mα

for some α large enough. This shows that M has the Ord-cover property.

For the other direction, assume that ψprq holds. We have to show that M |ù
ZF . The extensionality and set existence axioms as well as the foundation
scheme hold in M as it is a nonempty transitive class. Pairing and union
hold as M is closed under G0 and G5 respectively. The infinity axiom holds
as ω PM .
Let us show that the separation scheme holds inM . AsM is closed under the
Gödel operations, M is also closed under all compositions of Gödel functions,
so the above lemma shows that separation holds for all ∆0-formulas. Every
φ is equivalent to a formula of the form Q0x0 . . . Qn�1xn�1ψ for ψ some
∆0-formula and Qi P tD,@u. This means we only have to show that the set
of formulas for which separation holds is closed under D and @.

φ � Dxψ: We neglect additional parameters. Given b P M , we must show

ta P b|Dx ψpa, b, xquM P M . For any a P b, if there is x P M with
ψpa, b, xqM , then there is some minimal αa with the property that
there is such a witness in Vαa . Taking α� � supaPb αa yields a uniform
α with this property. Now find y P M with Vα� X M � y using
the Ord-cover property. The key idea is that pDx ψpa, b, xqqM is now
equivalent to pDx P y ψpa, b, xqqM for all a P b. As M is closed under
G1, b� y PM . We can now use the inductive hypothesis for ψ to see
that b0 � tpa, xq P b� y|ψpa, b, xqu

M PM . We conclude:

ta P b|Dx ψpa, b, xquM � dompb0q � G6pb0q PM

φ � @xψ: Notice that separation also holds for  ψ by closure of M under
G3. Then this case follows from the D-case:

ta P b|@xψpa, b, xqu � bzta P b|Dx ψpa, b, xqu

The rest is easy now: To see that the power set axiom holds, let x PM . Then
Ppxq XM P V and Ppxq XM � M , so by the Ord-cover property, there is
y PM with PpxqXM � y. By Separation, PpxqXM � tu P y|u � xu PM .
If F is a class term such that FM is a class function in M , and x PM , then
FM rxs P V and FM rxs � M , so there is y P M with FM rxs � y. Again by
separation, FM rxs P M . Thus the replacement scheme holds true in M as
well.
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6.3 Bukovský’s Theorem

In the proof of the strong Downwards Directed Grounds Hypothesis, we
skipped the hard direction of Bukovskys Theorem, so let’s do it here. The
result was originally published in [Buk73]. We follow [FFS18] instead.

Theorem 6.3.1. (Bukovský’s Theorem) Suppose W is an inner model of
ZFC and κ is a cardinal. Then W is a ground which extends to V via a
κ-cc forcing if and only if W � V has the κ-global cover property.

Proposition 6.3.2. If W � M � V are inner models such that W � V
has the κ-global cover property, then W �M and M � V have the κ-global
cover property, too.

Proof. By Proposition 3.2.6 it is enough to show that W �M and M � V
have the pκ, θq-global cover property for every θ ¥ κ. For the first inclusion,
any function we have to consider is a member of V and so this follows from
the pκ, θq-global cover property of W � V . For the latter, if F P W is a
pκ, θq-global cover of f : θ Ñ PκpθqV , then the same is true for F PM .

First, we show that in the situation prescribed in the theorem, every set
of ordinals in V is contained in a generic extension of W .

Lemma 6.3.3. If W is an inner model of ZFC such that W � M has
the κ-global cover property and A is a set of ordinals in V , then there is a
generic extension W rGs of W with A PW rGs � V .

The proof presented here relies on infinitary logic, so we need a few tools
first.

Definition 6.3.4. Let µ be an ordinal and κ a cardinal.

piq The language Sµ consists of one unary relation symbol 9A and constant
symbols 9α for α   µ.

piiq We define a logic, that we will call Lκ, in languages that only contain
symbols for constants and unary relations. The following are the rules
of producing formulas:

paq The only atomic formulas are Rpcq for constants c and unary
relations R.

pbq  φ is a formula for any formula φ.

pcq
�

Φ is a formula for Φ a set of formulas of size   κ.

We will write c P R instead of Rpcq. We let LκpSq be the minimal set
that contains all atomic formulas and is closed under the above rules.
Since we are mainly interested in the languages Sµ, we write Lκpµq for
the set of formulas in the language Sµ.
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piiiq Let B be the canonical boolean algebra on 0, 1, which we understand as
the set of truth values. We define satisfaction Mpφq P B of φ P Lκpµq
in appropriate S structures M by induction:

paq Mpc P Rq � 1 iff cM P RM

pbq Mp φq � �Mpφq
pcq Mp

�
Φq � suptMpφq|φ P Φu

Write M |ù φ instead of Mpφq � 1.

pivq For any B � µ we can canonically define a Sµ-structure MB on µ by
putting 9αMB � α and 9AMB � B. For readability we will write B |ù φ
instead of MB |ù φ.

Remark 6.3.5. We define the conjunction
�

Φ as  
�
t φ|φ P Φu. Fur-

thermore, we let φ _ ψ abbreviate
�
tφ, ψu and similarly φ ^ ψ. As usual,

we define Ñ and Ø from _ and  .
We should also be precise for formal correctness and define Lκ-formulas as
specific sets:

piq “c P R” � xpc,Rq, 0y

piiq  φ � xφ, 1y

piiiq
�

Φ � xΦ, 2y

The key steps heavily depend on a formal deductive system for the logic
Lκ, very similar to the sequent calculus for finitary first order logic, which
we will also denote as $.

Definition 6.3.6. We define base rules for $. To make life easy, we take
all rules that follow from the sequent calculus that do not involve equality
and quantifiers (and the symbol for contradiction). In addition to this, we
introduce the following infinitary deductive rules for any set of formulas
Γ,Φ � LκpSq with Φ of size   κ:

Γ $ φ
(
�

-Introduction)
Γ $

�
Φ for any Φ with φ P Φ

Γ $ φ for all φ P Φ
(
�

-Introduction)
Γ $

�
Φ

Γ $
�
t φ|φ P Φu

(Infinite De Morgan)
Γ $  

�
Φ

We write Γ $ φ for a theory Γ and formula φ if there is a formal proof
of φ from Φ. In this context, a formal proof of φ from Φ is a sequence
xφα|α ¤ γy for some ordinal γ such that
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paq φγ � φ

pbq For each α ¤ γ, φα is either an axiom of Φ or is the result of applying
a basic rule to a subset of tφβ|β   αu.

Proposition 6.3.7. The deductive system $ has the following properties:

piq $ is correct, i.e. if Γ $ φ then M |ù φ for any S-structure M |ù Γ.

piiq $ is upwards absolute, i.e. if M � N are transitive models of ZFC
then pΓ $ φqM implies pΓ $ φqN

Proof. piq The correctness of a rule purely depends on its syntactic prop-
erties and not on the logical context and formulas allowed in that rule,
as long as satisfaction and structures are defined in the right way. In
particular, every rule that is deductible from the sequent calculus is
correct in our context, since the sequent calculus is correct. Suppose
M |ù Γ.
(
�

-Introduction) If Γ $ φ for some φ P Φ then by induction, M |ù φ
and hence M |ù

�
Φ.

(
�

-Introduction) Assume Γ $ φ for all φ P Φ. It is easy to see that
Mp
�

Φq � inftMpφq|φ P Φu. By induction M |ù φ for all φ P Φ and
so M |ù

�
Φ.

(Infinite De Morgan) Assume Γ $
�
t φ|φ P Φu. By induction

M |ù
�
t φ|φ P Φu and thus M |ù  φ for all φ P Φ. If M |ù

�
Φ

then there must be φ P Φ with M |ù φ, a contradiction. Hence
M |ù  

�
Φ.

piiq By induction on the construction of Lκ-formulas, it follows directly
that LκpSqM � LκpSqN for any appropriate language S PM . Assume
pΓ $ φqM . Let xφα|α ¤ γy be a formal proof of φ from Φ in M . By
induction on β ¤ γ we see that xφα|α ¤ βy is a formal proof in N ,
since M,N agree on what axioms are in Γ, what the basic rules of $
are and N contains all sets of formulas that are members of M .

Proof. (Lemma 6.3.3) Let A � µ be a set of ordinals in V . The idea is that
we can approximate the Lκpµq theory ofMA inside of W using the κ-global
cover property. In a natural way, A will then define a generic for the forcing
consisting of these approximations.
We will work in the logic Lp2κq� . Notice that p2κq� is the same in W and
V as a consequence of the κ-global cover property. Furthermore, Lκpµq �
Lp2κq�pµq. In V , we can find a choice function f on PpLκpµqqW ztHu so
that A |ù

�
Φ implies A |ù fpΦq. By the κ-global cover property, there is a

global cover F of f in W . We can assume that F pΦq � Φ. Let

Γ � t
ª

Φ Ñ
ª

F pΦq|Φ P dompF qu
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and notice that A |ù Γ by definition of F and f . Work in W . We define the
forcing as all Lκpµq-formulas that cannot be falsified from Γ in the deductive
system $

P � tφ P Lκpµq|Γ &  φu

ordered by φ ¤ ψ iff Γ $ φÑ ψ.

Claim 6.3.8. φ, ψ P P are compatible if and only if Γ & pφ Ñ  ψq (which
is equivalent to Γ &  pφ^ ψq).

Proof. If θ ¤ φ, ψ, then Γ $ pθ Ñ φq and Γ $ pθ Ñ ψq. Assuming Γ $
pφÑ  ψq, we can conclude Γ $  θ as we have adapted all syntactical rules
of the first order sequent calculus. But this is a contradiction to θ P P.

On the other hand, if φ, ψ P P are incompatible then φ ^ ψ R P. Thus
Γ $  pφ^ ψq.

Let’s show that P has the κ-cc. Suppose that Φ � P is an antichain.
Since F pΦq has size   κ it is enough to show Φ � F pΦq, so suppose φ P Φ.
Combining p

�
Φ Ñ

�
F pΦqq P Γ with the rule $ pφÑ

�
Φq yields

Γ $ pφÑ
ª

F pΦqq

If there is no ψ P F pΦq compatible with φ then

Γ $ pφÑ
�
F pΦqq

Γ $ pφÑ  ψq for all ψ P F pΦq
(Assumption Rule & Modus Ponens)

Γ, φ $  ψ for all ψ P F pΦq
(
�

-Introduction)
Γ, φ $

�
t ψ|ψ P F pΦquq

(Infinite De Morgan)
Γ, φ $  

�
F pΦq

(Ñ-Introduction)
Γ $ pφÑ  

�
F pΦqq

( -Introduction with line 1)
Γ $  φ

contradicting φ P P. So there is ψ P F pΦq � Φ compatible with φ, but
Φ is an antichain, so φ � ψ P F pΦq. We want to find a generic for P from
which A is definable. The canonical choice is GA � tφ P P|A |ù φu.

Claim 6.3.9. GA is a P-generic filter over W .

Proof. If φ P GA and φ ¤ ψ then Γ $ pφ Ñ ψq in W . As A |ù Γ Y tφu,
we have A |ù ψ and thus ψ P GA. If φ, ψ P GA, then A |ù pφ ^ ψq and
hence by upwards absoluteness and correctness of $ we get Γ &  pφ ^ ψq
in W and so by the above claim, φ and ψ are compatible witnessed by
φ ^ ψ P GA. This shows that GA is a filter. To show that GA is generic
over W , suppose that Φ P W is a maximal antichain of P in W . We have
already seen that |Φ|   κ so that

�
Φ P Lκpµq. In addition to this, it is

the case that
�

Φ P P: For every φ P Φ we have $ pφ Ñ
�

Φq as one of
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our deduction rules. As Γ &  φ, it follows from contraposition and modus
ponens that Γ &  

�
Φ. Moreover, Γ $

�
Φ. Otherwise,  

�
Φ P P by

elemination of double negation. Using the deductive rule $ pφ Ñ
�

Φq
again together with contraposition, it follows that  

�
Φ is incompatible

with every φ P Φ, contradicting its maximality. Finally, we can conclude
A |ù

�
Φ using A |ù Γ as well as the correctness and upwards absoluteness

$. By definition of f , A |ù fpΦq. Hence fpΦq P GA X Φ.

As GA P V , we have that W rGAs � V . Observe that “ 9α P 9A” P P if
α P A and “ 9α P 9A” P P if α R A, as this follows from upwards absoluteness
of $ from W to V , the correctness of $ and A |ù Γ. This implies

A � tα   µ|“ 9α P 9A” P GAu

and thus A PW rGAs.

Proof. (Bukovský’s Theorem)“ ð ” Using the notation of Lemma 6.3.3, it is
enough to show that there is an A with W rGAs � V . Let A be a set of ordin-
als that codes p κ

�
2qV . Then A PW rGAs � V and p κ

�
2qW rGAs � p κ

�
2qV .

Now W rGAs � V still has the κ-global cover property by Proposition 6.3.2.
A consequence of this is that W rGAs and V have the same cardinals above
κ. Otherwise, there is a surjection f : γ Ñ λ for some γ   λ cardinals
in W rGAs. Now we can find a κ-global cover F P W rGAs of f . But then
λ � F rκs, contradicting |F rγs|W rGAs ¤ γ � κ   λ. In particular, κ�� is
absolute between W rGAs and V . Combining Lemma 3.2.7 with Proposition
3.2.6 yields that W rGAs � V has the κ�-cover and approximation proper-
ties for all sets of ordinals, and thus the full properties. This was the last
ingredient we need to conclude W rGAs � V using Lemma 2.1.9.

The quotient lemma, that we have also used in a prior chapter, is a nice
consequence of the above:

Corollary 6.3.10. Suppose that W is a ground and M an inner model such
that W � M � V . Then W is a ground of M and M is a ground of V .
Moreover, if λ is (strongly) inaccessible and W is a λ-ground of V then so
is M .

Proof. One can see that W is a ground of M and M is a ground of V by
combining Proposition 6.3.2 with Bukovský’s Theorem. For the second part,
find G PWλ such that W rGs � V . Code G as a bounded subset A of λ. By
applying Lemma 6.3.3 inside Vλ, we find that there is a forcing P PMλ and
GA P Vλ P-generic over Mλ such that A P MλrGAs. As M and Mλ contain
the same subsets of P, GA is P-generic over M . Thus A PM rGAs and hence
by decoding, G P M rGAs. As W � M , V � W rGs � M rGAs � V . We
conclude that M is a λ-ground.
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Remark 6.3.11. As this result is in some way the dual of the product
lemma and since the standard way to proof it, is to show that if W extends
to V via a separative forcing P, then M extends to V via a quotient of the
unique boolean algebra that P can be densely embedded into, it is referred
to as the quotient lemma in this thesis. The result is originally due to Serge
Grigorieff [Gri75]. By proving it with boolean algebras, it is not necessary
to assume that λ is inaccessible. With a more thorough analysis of inner
models that satisfy the κ-global cover property it is also possible to eliminate
this assumption without using boolean algebras.

6.4 Laver Indestructibility

In this section we will prove the following result:

Theorem 6.4.1. If κ is supercompact then there is a forcing extension in
which κ is Laver indestructible.

The result is due to Laver [Lav78], hence the name. We follow [Cum10,
Chapter 24]. We will make quite extensive use of the ultrafilter definition of
a supercompact cardinal.

Definition 6.4.2. Suppose κ ¤ λ and U is an ultrafilter on Pκpλq.

piq U is called uniform if tX P Pκpλq|Y � Xu P U for all Y P Pκpλq.

piiq U is normal if it is   κ-complete, uniform and moreover, for any
sequence pAαqα λ in U , the diagonal intersection

4α λAα � tX P Pκpλq|X P
�
αPX Aαu

is again in U .

Fact 6.4.3. [Kan09, Theorem 22.7] For any cardinals κ ¤ λ, κ is λ-
supercompact if and only if there is a normal ultrafilter on Pκpλq.

The proof of the above fact proceeds as follows: If there is a normal
ultrafilter U on Pκpλq, then we may build the ultrapower embedding jU :
V ÑM � UltpV,Uq. As usual, M is wellfounded and will be identified with
its transitive collapse. The fineness condition implies that jU is non-trivial
and one can compute that critpjq � κ. Using the normality condition, one
can show that jU rλs PM and thus (similar to Lemma 1.4.10) that λM �M .
On the other hand, given an elementary embedding j : V ÑM with critical
point κ and λM �M , it is not difficult to prove that

U � tX � Pκpλq|jrλs P jpXqu

is a normal ultrafilter. Below, we will take advantage of the above argu-
ments.
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Lemma 6.4.4. If κ is supercompact then there is a function f : κÑ Vκ so
that for any λ ¥ κ and x P Hλ� there is a normal ultrafilter on Pκpλq such
that if jU is the associated elementary embedding then jpfqpκq � x.

Proof. We take a “least counterexample” approach. Let   be a wellorder
of Vκ. Define f by induction on α   κ. Suppose f æ α is already defined.
If there is some α ¤ λ   κ and x P Hλ� � Vκ so that there is no normal
ultrafilter U on Pαpλq so that with jU pf æ αqpαq � x then we let fpαq be
the  -least such x. Otherwise fpαq � 0.
Suppose that f does not have the desired property. Let λ ¥ κ and x P Hλ�

so that there is no normal ultrafilter U on Pκpλq with jU pfqpκq � x. Let

δ � 2p2
λq and find a δ-supercompactness embedding

j : V ÑM

with critical point κ. The closure condition of M yields that pHλ�q
M � Hλ�

and PpPκpλqqM � PpPκpλqq. By assumption, M and j are definable in
V and since V is definable in every extension by a forcing in M , M and
its corresponding extension are two, as well as all further embeddings we
construct.

Claim 6.4.5. M believes that there is no normal ultrafilter U on Pκpλq with
jU pfqpκq � x.

Proof. Suppose otherwise that there is such a U . Then U is a normal ultra-
filter in V , too. We thus may construct embeddings jK : K Ñ UltpK,Uq
for K � V,M and compare the two. Since M is closed under sequences of
length δ, there are the same functions Pκpλq Ñ Hλ� . Furthermore, if g, h
are such functions then

V |ù g �U hôM |ù g �U h

and hence the embeddings jU and jM coincide on Hλ� . In particular,
jV pfq � jM pfq and even more, jV pfqpκq � jM pfqpκq � x, a contradic-
tion.

By elementarity, jpfq is defined in M over the same induction as in V ,
only with parameters replaced by their images under j. Since jpfq æ κ � f ,
jpfq is defined non-trivially at κ in M . We now find the value of jpfqpκq.
Let µ be minimal so that there is y P Hµ� so that for no normal ultrafilter
U on Pκpµq we have jU pfqpκq � y. Notice that necessarily µ ¤ λ and
thus y P HM

µ� . Let z be the jp q-minimal such y. As in the above claim,

M , too, is of the opinion that for no normal measure U on Pκpµq we have
jU pfqpκq � y. Thus in the inductive definition of jpfq, jpfqpκq � z. We
define a filter on Pκpµq:

U � tX � Pκpµq|jrµs P jpXqu
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The standard arguments show, using µM �M , that U is a normal ultrafil-
ter. Let

i : V Ñ UltpV,Uq � N

be the induced elementary embedding. We now need to be able to go from
N to M , therefore we define the following map:

k : N ÑM, kprgsU q � jpgqpjrµsq

k is well-defined since if g �U h then jpgq and jphq coincide on input jrµs.

Claim 6.4.6. k has the following properties:

piq k is elementary.

piiq k � i � j

piiiq jrµs P ranpkq

pivq k æ Hµ� � idHµ�

Proof. piq Let ϕpx0, . . . , xn�1q be a formula. We may suppose that n � 1
and let rgsU PM . Using  Loś’s Theorem, we compute:

N |ù ϕprgsU q ñ X :� ts P Pκpµq|ϕpgpsqqu P U ñ jrµs P jpXq

ñM |ù ϕpjpgqpjrµsqq ñM |ù ϕpkprgsU qq

Thus k is elementary.

piiq If a P V , then kpipaqq � kprcasU q � jpcaqpjrµsq � jpaq where ca is the
constant function on Pκpµq with value a. Thus k � i � j.

piiiq Let g be the identity on Pκpµq. Then kpgq � jpgqpjrµsq � jrµs by
elementarity of j.

pivq We will show that Hµ� � ranpkq. If we have this, then k “cannot skip
a set in Hµ�” and we can see easily by induction that the claim holds.
Since we can code every A P Hµ� as a subset of µ in an absolute way,
it is enough to show Ppµq � ranpkq. Given X � µ, we will show that

X � totppγ X jrµsq|γ P jrµs X jpXqu

First, suppose α P X. Then j�1 : jpαq X jrµs Ñ α is the transitive
collapse and hence α � otppjpαq X jrµsq. On the other hand, if γ P
jrµs X jpXq we can write γ � jpαq for some α P X. By piq, piiq and
piiiq, the above representation of X shows that X P ranpkq.
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In particular, kpzq � z and kpκq � κ and thus:

kpipfqpκqq � k � ipfqpkpκqq � jpfqpκq � z

and by applying pivq, we have kpipfqpκqq � ipfqpκq as z P Hµ� But then
ipfqpκq � z, a contradiction to the choice of z and µ.

With such a so called Laver function f , we can prove the main theorem.

Proof. (Theorem 6.4.1) Let f be a Laver function for κ. We define a Easton
supported iteration pxP α|α   κy, x 9Qα|α   κyq by induction on α. Suppose
P α is already defined. Assume the following conditions are met:

piq fpαq is a pair of the form pγ, 9Qq where 9Q is a P α-name for a   α-
directed closed forcing.

piiq For all β   α, if fpβq is a pair with first coordinate an ordinal δ, then
δ   γ.

In this case, let 9Qα � 9Q. Otherwise, 9Qα is the name for the trivial forcing.
f acts as a bookkeeping function. We use the first coordinates to make sure
that we have large intervals at which the forcing is trivial. This will come
in handy later on.
We must show that P � P κ forces κ to be Laver indestructible. Let G
be P-generic and suppose that Q P V rGs is a   κ-directed closed forcing.
Find a P-name 9Q for Q in V . Suppose g is Q-generic over V rGs. It is
enough to show that κ is λ-supercompact in V rGsrgs for all cardinals λ large

enough so that 9Q P HV
λ . Set δ � 2p2

λq and let U be a normal ultrafilter on
Pδpκq so that the induced embedding j : V Ñ UltpV,Uq � M satisfies
jpfqpκq � pµ, 9Qq. Again, jpfq æ κ � f and since ranpfq � Vκ, the first
coordinate of jpfqpαq � fpαq so that this is a pair with first coordinate an
ordinal, is less than µ. Notice that jpPq is an iteration of length jpκq ¡ κ
with jpPq κ � P and thus by elementarity, 9Q is the forcing in jpPq at stage
κ. We can find a canonical name 9R so that P� 9Q� 9R � jpPq and let R be the
evaluation of 9R in V rG � gs. Suppose H is 9R-generic over V rG � gs. Since P
is Easton supported and κ inaccessible in V , we see that P � Vκ (recall that
ranpfq � Vκ) and hence jrGs � G � G � g �H. Lemma 1.4.2 shows that we
may lift j to

j� : V rGs ÑM rG � g �Hs

Next up, we have to further lift j� to an embedding with domain V rG � gs.

Claim 6.4.7. There is h a j�pQq-generic filter over V rG � g � Hs so that
j�rgs � h.
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Proof. Notice that exactly as in the proof of Proposition 4.3.8, we can proof
that

µM rGs �M rGs

from the perspective of V rGs and

µM rG � gs �M rG � gs

from the perspective of V rG � gs and last but not least,

µM rG � g �Hs �M rG � g �Hs

from the perspective of V rG�g�Hs. In particular, already M rGs can see that
Q is of size   λ and j æ Q PM rG�g�Hs. Now we have j�rgs PM rG�g�Hs
and moreover, j�rgs is directed there and of size   j�pκq. By elementarity,
j�pQq is   j�pκq-directed closed in M rG�g�Hs and thus there is a condition
p P j�pQq below j�rgs. Thus any j�pQq-generic filter with p P h suffices.

In V rG � g �H � hs, we may lift j� to

j�� : V rG � gs ÑM rG � g �H � hs

The problem that we have to deal with is that j�� lives in V rG � g �H � hs
as opposed to V rG � gs. To solve this, work in V rG � g �H � hs and let

U 1 � tX P PpPκpλqqV rG�gs|j��rλs P j��pXqu

If we are able to show U 1 P V rG � gs then we are done as U 1 would be
a λ-normal ultrafilter there. Our strategy will be to show that the two
further forcings we have used to get from V rG � gs to V rG � g �H � hs are
sufficiently closed so they could not have added U 1. First, we deal with the
later extension. Observe that jpQq � j�pQq is   µ-closed in M rG�g�Hs by
elementarity of j� and thus also has this property in V rG�h�Hs since they
have the same sequences of length µ. This shows that this extension did
not add new subsets of PpPκpλqq. In particular not U 1. Now, we can finally
make use of jpfqpκq having first coordinate µ. This implies that the stages
in the interval pκ, µs in jpPq are all trivial and since all stages after that
are at least   µ-closed, R could not have added U 1, too. We can conclude
U 1 P V rG � gs and hence κ is λ-supercompact in V rG � gs.

6.5 Preserving n-Superhuge Cardinals

We follow section 6 in [Tsa16]. Let P be the canonical Easton supported
class iteration that forces GCH. The goal of this section is to prove the
following theorem:
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Theorem 6.5.1. After forcing with P, any pn � 1q-superhuge cardinal re-
mains n-superhuge.

We lose one degree of superhugeness in the proof as we isolate a prop-
erty P pκ, nq that is implied by pn� 1q-superhugeness, but itself only entails
n-superhugeness of κ. Our strategy will be to show that P preserves the
property P pκ, nq. It is an open question whether or not one degree of su-
perhugeness can possibly be lost, i.e. if P can destroy the n-superhugeness
of a n-superhuge cardinal.

Lemma 6.5.2. Suppose κ is a cardinal.

piq If κ is pn � 1q-superhuge then for all λ ¡ κ there is an elementary
embedding

j : Hjnpκq� Ñ Hjn�1pκq�

with critical point κ and jpκq ¡ λ.

piiq If n ¥ 1 and the conclusion of piq holds then κ is n-superhuge.

Proof. piq Suppose κ is pn�1q-superhuge. Let λ ¡ κ. Find an embedding

j : V ÑM

for a transitive inner model M with critpjq � κ, jpκq ¡ λ and
jn�1pκqM � M . Let k be the restriction of j to Hjnpκq� . As a con-
sequence of the elementarity of j,

k : Hjnpκq� Ñ
�
Hjn�1pκq�

�M
is an elementary embedding with critical point κ and jpκq ¡ λ. Now
notice that the closure condition of M implies that M computes the
successor of jn�1pκq correctly and contains all transitive sets of size
jn�1pκq. Thus: �

Hjn�1pκq�
�M

� Hjn�1pκq�

As moreover kipκq � jipκq for all i ¤ n� 1, k is as desired.

piiq Let λ ¡ κ and suppose that

j : Hjnpκq� Ñ Hjn�1pκq�

is an elementary embedding with critical point κ and jpκq ¡ λ. For
notational ease, we let θ � jnpκq. As in the case of elementary em-
beddings from the universe into a transitive class, we can build E the
pκ, jpθqq-extender derived from j. Note that not just the induced em-
beddings

UltpHθ� , Eaq Ñ UltpHθ� , Ebq
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are directed for a � b P jpθq ω, but so are

jab : UltpV,Eaq Ñ UltpV,Ebq

We thus can construct the extender embedding

jE : V ÑME

as the directed limit of this system. We denote by E the element
relation on ME .

Claim 6.5.3. xME , Ey is wellfounded.

Proof. Observe that for any a P jpθq ω, UltpV,Eaq is wellfounded as
Ea is countably closed. Suppose that there is a decreasing sequence
pxnqn ω with xn�1Exn for all n   ω. Note that Fact 1.4.6 piq is still
true in our case so that we can find an P jpθq

 ω and functions fn :
θ|an| Ñ V so that jEpfnqpanq � xn. Since jEpfnqpanq � janEprfnsEan q,
this implies that for all n   ω we have

rfn�1sEan�1
P janan�1prfnsEan q

and thus:

An :� tc P θ|an�1||fn�1pcq P fn � πanan�1pcqu P Ean�1

Observe that the existence of a sequence of functions pgnqn ω with

An � tc P θ
|an�1||gn�1pcq P gn � πanan�1pcqu

is a Σ1-statement with parameters pAnqn ω, panqn ω P Hθ� . Propos-
ition 6.1.2 shows that there is such a sequence pgnqnPω in Hθ� . The
elementarity of j together with the definition of the extender ultrafil-
ters gives

jpgn�1qpan�1q P jpgn � πanan�1qpan�1q

or equivalently
jpgn�1qpan�1q P jpgnqpanq

for all n   ω, a contradiction.

Thus we may assume that ME is transitive and E �P XpME �MEq.

Claim 6.5.4. jrθs PME
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Proof. We compare jE to the derived embedding

j1E : Hθ� ÑM 1
E

on the domain of j.

It is standard to see that

j1a : Hθ� Ñ UltpHθ� , Eaq

is the restriction of
ja : V Ñ UltpV,Eaq

to Hθ� for any a P θ ω. By going to directed limits, it follows that j1E
is the restriction of jE to Hθ� . Since κ is strongly inaccessible, Hjpθq�

believes that jpθq is strongly inaccessible and thus it is really strongly
inaccessible. Let δ � sup jrλs. Since jpθq is regular, δ   jpθq. Now,
it follows from Fact 1.4.6 piiq that jrθs P Vδ�1 �M 1

E . Find a P jpθq ω

and f : θ|a| Ñ Hθ� so that jrθs � j1Epfqpaq. Then as j1Epfq � jEpfq,
we have

jrθs � jEpfqpaq PME

Now the same argument as in the above claim shows that Fact 1.4.6
piiq implies

jpxq � j1Epxq � jEpxq

holds for any x P Hjpθq � Vjpθq. In particular, jiEpκq � jipκq for
all i ¤ n and jE rθs � jrθs P ME so that Proposition 1.4.10 yields
θME �ME . Thus κ is n-superstrong.

The following proof is a slight modification of the argument in [Tsa16]
where the above theorem was proven for n � 2 since this was the only
instance relevant for the main interest of that paper. In contrast to this,
we applied it with n � 3 and thus will go ahead and show it for all n   ω.
By �i n we will denote the operator for iterated two step iterations. We
will make use of the weak homogeneity of Addpκ, 1q. This property means
that for any p, q there is an automorphism f of the forcing so that fppq is
compatible with q. For Addpκ, 1q, this can be seen by finding a suitable
permutation of κ such that the image of domppq is disjoint from dompqq and
taking the induced automorphism on Addpκ, 1q. It is not hard to see that
this weak homogeneity property still holds for (every inital segment of) P.
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Proof. (Theorem 6.5.1) Suppose κ is pn� 1q-superhuge and G is P-generic.
We wand to show that the conclusion of Lemma 6.5.2 piq holds. We know
that it holds in V . So given λ ¡ κ, let

j : Hjnpκq� Ñ Hjn�1pκq�

be an elementary embedding with critical point κ and jpκq ¡ λ.

We want to apply Lemma 1.4.2 to j. Note that the exact same proof works
out in the present setting even though the domain of j is only a model of
ZFC�. Basically, the only additional thing we need there is that we can
apply the forcing theorem in both the domain and the target model which
holds true by Fact 1.5.3. Later on, we will apply that result to elementary
embeddings whose domain and target models are the Hδ of some interme-
diate forcing extension of V and V rGs, however not of the same one. It is
not difficult to see that we still may apply this lemma in that situation.

For notational simplicity we let κi � jipκq for i ¤ n (where κ0 � κ). For ∆
an interval of ordinals with minimum α, we denote by 9P∆ the P α-name for
the iteration with stages in ∆. P∆ denotes the evaluation of 9P∆ in V rG αs.
We let ∆i � rκi, κi�1q. Factor P as

P κ �
�
�
i n

9P∆i



� 9P¥κn

and the generic accordingly. We construct elementary embeddings pjiqi¤n
by induction on i. Since P is Easton supported and κ inaccessible, P κ � Vκ
and so jrG κs � G κ � G κ1 and thus we can lift j to

j0 : Hκ�n
rG κs Ñ Hjpκnq�rG κ1s

Now suppose that the embedding

jm : Hκ�n

�
G κ

��
�
i m

G∆i

�
Ñ Hjpκnq�

�
G κ1

��
�
i m

G∆i�1

�
is already constructed for some m   n. The strategy is the following: Notice
that Am � jrG∆ms P Hκ�n

is directed and of size κm�1 which is a consequence
of κm�1 being strongly inaccessible and P being Easton supported. Since

jpP∆mq � P∆m�1

is ¤ jm�1pκq-directed closed, there is a condition pm below Am. However,
pm need not be in the generic G∆m�1 . We will be able to solve this problem
using the weak homogeneity of the forcing P∆m�1 in

Hjpκnq�

�
G κ1

��
�
i m

G∆i�1

�
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That is, the conditions q for which there is an automorphism f of the for-
cing, so that fpqq ¤ pm is dense. Hence there must be such a q in G∆m�1

witnessed by some automorphism f . Let H be the generic filter generated
by f rG∆m�1s. Now, pm P H which implies

jmrG∆ms � H

and thus we may lift jm:

jm�1 : Hκ�n

�
G κ

��
�

i m�1
G∆i

�
Ñ Hjpκnq�

�
G κ1

��
�
i m

G∆i�1

��
H
�

Observe that

Hjpκnq�

�
G κ1

��
�
i m

G∆i�1

��
H
�
� Hjpκnq�

�
G κ1

��
�

i m�1
G∆i�1

�
since the latter can compute H using the automorphism f and the former
G∆m�1 using f�1.
In the end, we have an embedding

jn : Hκ�n

�
G κ

��
�
i n

G∆i

�
Ñ Hjpκnq�

�
G κ1

��
�
i n

G∆i�1

�
which is in fact of the desired form, as the domain of jn is already H

V rGs

κ�n

and the target is H
V rGs

κ�n
as the tail of the iteration is sufficiently closed.
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