The Problem with Exercise 34.5 Or Why Collapses Don't Fit Together

Andreas Lietz

Abstract

In this short note we address a problem with Exercise 34.5 in [Jec03] and fix the proof of Theorem 34.6. Furthermore we show that for regular uncountable λ and inaccessible $\kappa > \lambda$, $\operatorname{Col}(\omega, \lambda) \times \operatorname{Col}(\lambda, <\kappa)$ and $\operatorname{Col}(\omega, <\kappa)$ are not forcing equivalent.¹

Let \mathbb{B} be an atomless complete Boolean algebra and κ an inaccesible cardinal. To keep notation consistent with [Jec03], we call the following property (34.6):

(i) \mathbb{B} has the κ -cc

(*ii*)
$$\mathbb{B} = \bigcup_{\alpha < \kappa} \mathbb{B}_{\alpha}$$
 where $\mathbb{B}_{\alpha} <_{\text{reg}} \mathbb{B}_{\beta}$ and $|\mathbb{B}_{\alpha}| < \kappa$ for $\alpha < \beta < \kappa$

(iii) every $\gamma < \kappa$ is countable in $V^{\mathbb{B}_{\alpha}}$ for some $\alpha < \kappa$

Note that the property (34.6) doesn't change if one requires all the \mathbb{B}_{α} to be complete subalgebras of \mathbb{B} and as usual it is convenient to assume that this is the case.

Exercise 34.5 states that (34.6) implies that $\mathbb{B} \cong \operatorname{Col}(\omega, \langle \kappa \rangle)$ and this is again used in the proof of Theorem 34.6. We will show that, as stated, this is not quite true. To conclude $\mathbb{B} \cong \operatorname{Col}(\omega, \langle \kappa \rangle)$, one further continuity assumption on \mathbb{B} is sufficient, and necessary as well:

Lemma 1. Suppose \mathbb{B} satisfies (34.6) and that $\mathbb{\vec{B}}$ witnesses this. Then $\mathbb{B} \cong \operatorname{Col}(\omega, <\kappa)$ if and only if

$$\Delta(\vec{\mathbb{B}}) = \{\beta < \kappa \mid \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha} <_{\mathrm{reg}} \mathbb{B}\} = \{\beta < \kappa \mid \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha} <_{\mathrm{reg}} \mathbb{B}_{\beta}\}$$

contains a club.

 $^{^1\}mathrm{Thanks}$ to Stefan Hoffelner for valuable discussions on this topic

Remark 2. In this note, $\operatorname{Col}(\omega, \alpha)$ refers to the Boolean completion of the partial order $_{\alpha}^{<\omega}$ ordered by reverse inclusion. Similarly, $\operatorname{Col}(\omega, <\alpha)$ refers to the Boolean completion of the partial order consisting of finite partial functions

$$p:\omega\times\alpha\to\alpha$$

satisfying $p(n,\gamma) < \gamma$ whenever $(n,\gamma) \in \text{dom}(p)$, ordered by reverse inclusion.

Proof. " \Leftarrow ": Suppose π : $\mathbb{B} \to \operatorname{Col}(\omega, <\kappa)$ is an isomorphism. We can write $\operatorname{Col}(\omega, <\kappa) = \bigcup_{\alpha < \kappa} \mathbb{C}_{\alpha}$ so that each \mathbb{C}_{α} is isomorphic to $\operatorname{Col}(\omega, \alpha)$ and $\Delta(\vec{\mathbb{C}}) = \kappa$. Now there must be a club C of $\beta < \kappa$ such that π restricts to an isomorphism

$$\pi \upharpoonright \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha} : \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha} \to \bigcup_{\alpha < \beta} \mathbb{C}_{\alpha}$$

Now we have $\bigcup_{\alpha < \beta} \mathbb{C}_{\alpha} <_{\text{reg}} \operatorname{Col}(\omega, <\kappa)$. But as π is an iso, this must mean that $\bigcup_{\alpha < \beta} \mathbb{B}_{\alpha} <_{\text{reg}} \mathbb{B}$ as well, so that:

$$C \subseteq \Delta(\vec{\mathbb{B}})$$

" \Rightarrow ": As remarked before, we can assume wlog that all \mathbb{B}_{α} are complete subalgebras of \mathbb{B} . Since $\Delta(\vec{\mathbb{B}})$ is a club, we may as well rename $\vec{\mathbb{B}}$ so that $\Delta(\vec{\mathbb{B}}) = \kappa$. To ease notation, we will define

$$\mathbb{B}_{<\beta} = \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha}$$

for any $\beta < \kappa$. I claim that we may assume that wlog for all $\alpha < \kappa$, $\mathbb{B}_{\alpha} \cong \operatorname{Col}(\omega, \gamma_{\alpha})$ for some $\gamma_{\alpha} < \kappa$. To see this, we show that there are unboundedly many $\beta < \kappa$ so that the completion of $\mathbb{B}_{<\beta}$ is $\operatorname{Col}(\omega, \gamma)$ for some γ . So let $\alpha_0 < \kappa$ be given. Define $\alpha_{n+1} > \alpha_n$ so that $|\mathbb{B}_{\alpha_n}|$ is countable in $V^{\mathbb{B}_{\alpha_{n+1}}}$. Let $\beta = \sup_{n < \omega} \alpha_n$. Then $\mathbb{B}_{<\beta}$ has size $|\beta|$ and collapses $|\beta|$ and hence its completion is isomorphic to $\operatorname{Col}(\omega, |\beta|)$. As $\mathbb{B}_{<\beta} <_{\operatorname{reg}} \mathbb{B}$, its completion is a complete subalgebra of \mathbb{B} .

The above also shows that we may as well assume that at all limit $\beta < \kappa$, \mathbb{B}_{β} is just the completion of $\mathbb{B}_{<\beta}$.

Now with this out of the way, we will do a zig-zag argument using the lifting property of the collapse forcing $\operatorname{Col}(\omega, \gamma)$. As before we write $\operatorname{Col}(\omega, <\kappa) = \bigcup_{\alpha < \kappa} \mathbb{C}_{\alpha}$.

Claim 3. For any complete embedding $\pi : \mathbb{B}_{\beta} \to \operatorname{Col}(\omega, <\kappa)$ and $\delta < \kappa$, there is a $\beta < \beta' < \kappa$ and a complete embedding

$$\pi^+: \mathbb{B}_{\beta'} \to \operatorname{Col}(\omega, <\kappa)$$

that extends π so that $\mathbb{C}_{\delta} \subseteq \operatorname{ran}(\pi^+)$.

Proof. We can find $\delta \leq \gamma < \kappa$ so that $\operatorname{ran}(\pi \upharpoonright \mathbb{B}_{\beta}) \subseteq \mathbb{C}_{\gamma}$. Furthermore we can find some $\beta < \beta' < \kappa$ of size larger than $|\mathbb{B}_{\beta}|$. Now π^{-1} is a complete embedding of a complete subalgebra of $\mathbb{C}_{\gamma_{\beta}}$ into $\mathbb{B}_{\beta'}$. As $\mathbb{B}_{\beta'}$ is isomorphic to a collapse forcing, by the lifting property of collapses (Lemma 26.9 in [Jec03]), there is a complete embedding

$$\eta: \mathbb{C}_{\gamma} \to \mathbb{B}_{\beta'}$$

that extends π^{-1} . Essentially the same argument shows that we can find a complete embedding

$$\pi^+ : \mathbb{B}_{\beta'} \to \operatorname{Col}(\omega, <\kappa)$$

that extends η^{-1} (and thus π).

Using this, we inductively construct a club sequence $\langle \beta_{\gamma} \mid \gamma < \kappa \rangle$ and complete embeddings

$$\pi_{\gamma}: \mathbb{B}_{\beta_{\gamma}} \to \operatorname{Col}(\omega, <\kappa)$$

such that $\operatorname{ran}(\pi_{\gamma}) \supseteq \mathbb{C}_{\gamma}$. The successor step is handled by the above claim. At limit steps, let $\beta_{\gamma} = \sup_{\alpha < \gamma} \beta_{\alpha}$. we already have

$$\bigcup_{\alpha < \gamma} \pi_{\alpha} : \mathbb{B}_{<\gamma} \to \operatorname{Col}(\omega, <\kappa)$$

and this is a complete complete embedding as the construction gives that for some $\delta < \kappa$ we have $\bigcup_{\alpha < \gamma} \operatorname{ran}(\pi_{\alpha}) = \mathbb{C}_{<\delta} <_{\operatorname{reg}} \operatorname{Col}(\omega, <\kappa)$. As \mathbb{B}_{γ} is just the completion of $\mathbb{B}_{<\gamma}$, (so that consequently $\mathbb{B}_{<\gamma}$ is dense in \mathbb{B}_{γ}) there is a unique extension of $\bigcup_{\alpha < \gamma} \pi_{\alpha}$ to a complete embedding

$$\pi_{\gamma}: \mathbb{B}_{\gamma} \to \operatorname{Col}(\omega, <\kappa)$$

Thus finally,

$$\pi := \bigcup_{\gamma < \kappa} \pi_{\gamma} : \mathbb{B} \cong \operatorname{Col}(\omega, < \kappa)$$

is an isomorphism.

The proof of Theorem 34.6 can be saved though. With the notation from there, Exercise 34.5 is used to infer that

$$V^{P*Q} \simeq V^{\operatorname{Col}(\omega, <\kappa)}$$

which is not quite true. If we let $\mathbb{B} = \mathbb{B}(P * Q)$, then \mathbb{B} satisfies (34.6), but there is no hope that $\Delta(\vec{\mathbb{B}})$ contains a club. Anyhow, κ is weakly compact and as

$${}^{*}\mathbb{B} = \bigcup_{\alpha < \kappa} \mathbb{B}_{\alpha} \text{ is } \kappa \text{-cc}"$$

is a Π_1^1 -statement over $(V_{\kappa}, \in, \mathbb{B}, \mathbb{B})$, the weak compactness of κ gives that $\Delta(\mathbb{B})$ is stationary. Thus we can force a club through there in V^{P*Q} , where κ is ω_1 ; call that forcing R. If $H = H_0 * H_1 * H_2$ is P * Q * R-generic, then V[H] has the same reals as $V[H_0 * H_1]$ and we can check that in V[H] there is an isomorphism of \mathbb{B} and $\operatorname{Col}(\omega, <\kappa)^V$ and thus a filter G that is V-generic filter for the latter forcing such that V[G] has all the reals of $V[H_0 * H_1]$. Thus after all there is still an elementary embedding

$$j: L(\mathbb{R})^V \to L(\mathbb{R})^{V[G]}$$

A further example where $\vec{\mathbb{B}}$ witnesses that \mathbb{B} satisfies (34.6), yet is not isomorphic to $\operatorname{Col}(\omega, <\kappa)$ is

$$\mathbb{B} = \operatorname{Col}(\omega, \lambda) \oplus \operatorname{Col}(\lambda, <\kappa)$$

with

$$\mathbb{B}_{\alpha} = \operatorname{Col}(\omega, \lambda) \oplus \operatorname{Col}(\lambda, <\alpha)$$

Here $\lambda < \kappa$ is a regular uncountable cardinal. Then

$$\Delta(\mathbb{B}) \cap \text{Lim} = \{ \alpha < \kappa \mid \text{cof}(\alpha) \ge \lambda \}$$

does not contain a club. Hence there is no dense embedding from \mathbb{B} into $\operatorname{Col}(\omega, <\kappa)$. One can check that if \mathbb{B} and $\operatorname{Col}(\omega, <\kappa)$ were forcing equivalent, there would be such a dense embedding and hence they are not. This results in a headache in some lifting arguments.

References

[Jec03] Thomas Jech. *Set theory*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.