The Problem with Exercise 34.5
 Or Why Collapses Don't Fit Together

Andreas Lietz

Abstract

In this short note we address a problem with Exercise 34.5 in [Jec03] and fix the proof of Theorem 34.6. Furthermore we show that for regular uncountable λ and inaccessible $\kappa>\lambda, \operatorname{Col}(\omega, \lambda) \times \operatorname{Col}(\lambda,<\kappa)$ and $\operatorname{Col}(\omega,<\kappa)$ are not forcing equivalent. ${ }^{1}$

Let \mathbb{B} be an atomless complete Boolean algebra and κ an inaccesible cardinal. To keep notation consistent with [Jec03], we call the following property (34.6):
(i) \mathbb{B} has the κ-cc
(ii) $\mathbb{B}=\bigcup_{\alpha<\kappa} \mathbb{B}_{\alpha}$ where $\mathbb{B}_{\alpha}<_{\text {reg }} \mathbb{B}_{\beta}$ and $\left|\mathbb{B}_{\alpha}\right|<\kappa$ for $\alpha<\beta<\kappa$
(iii) every $\gamma<\kappa$ is countable in $V^{\mathbb{B}_{\alpha}}$ for some $\alpha<\kappa$

Note that the property (34.6) doesn't change if one requires all the \mathbb{B}_{α} to be complete subalgebras of \mathbb{B} and as usual it is convenient to assume that this is the case.
Exercise 34.5 states that (34.6) implies that $\mathbb{B} \cong \operatorname{Col}(\omega,<\kappa)$ and this is again used in the proof of Theorem 34.6. We will show that, as stated, this is not quite true. To conclude $\mathbb{B} \cong \operatorname{Col}(\omega,<\kappa)$, one further continuity assumption on $\overrightarrow{\mathbb{B}}$ is sufficient, and necessary as well:

Lemma 1. Suppose \mathbb{B} satisfies (34.6) and that $\overrightarrow{\mathbb{B}}$ witnesses this. Then $\mathbb{B} \cong$ $\operatorname{Col}(\omega,<\kappa)$ if and only if

$$
\Delta(\overrightarrow{\mathbb{B}})=\left\{\beta<\kappa \mid \bigcup_{\alpha<\beta} \mathbb{B}_{\alpha}<_{\text {reg }} \mathbb{B}\right\}=\left\{\beta<\kappa \mid \bigcup_{\alpha<\beta} \mathbb{B}_{\alpha}<_{\text {reg }} \mathbb{B}_{\beta}\right\}
$$

contains a club.

[^0]Remark 2. In this note, $\operatorname{Col}(\omega, \alpha)$ refers to the Boolean completion of the partial order ${ }_{\alpha}^{<\omega}$ ordered by reverse inclusion. Similarly, $\operatorname{Col}(\omega,<\alpha)$ refers to the Boolean completion of the partial order consisting of finite partial functions

$$
p: \omega \times \alpha \rightarrow \alpha
$$

satisfying $p(n, \gamma)<\gamma$ whenever $(n, \gamma) \in \operatorname{dom}(p)$, ordered by reverse inclusion.

Proof. " \Leftarrow ": Suppose $\pi: \mathbb{B} \rightarrow \operatorname{Col}(\omega,<\kappa)$ is an isomorphism. We can write $\operatorname{Col}(\omega,<\kappa)=\bigcup_{\alpha<\kappa} \mathbb{C}_{\alpha}$ so that each \mathbb{C}_{α} is isomorphic to $\operatorname{Col}(\omega, \alpha)$ and $\Delta(\overrightarrow{\mathbb{C}})=\kappa$. Now there must be a club C of $\beta<\kappa$ such that π restricts to an isomorphism

$$
\pi \upharpoonright \bigcup_{\alpha<\beta} \mathbb{B}_{\alpha}: \bigcup_{\alpha<\beta} \mathbb{B}_{\alpha} \rightarrow \bigcup_{\alpha<\beta} \mathbb{C}_{\alpha}
$$

Now we have $\bigcup_{\alpha<\beta} \mathbb{C}_{\alpha}<_{\text {reg }} \operatorname{Col}(\omega,<\kappa)$. But as π is an iso, this must mean that $\bigcup_{\alpha<\beta} \mathbb{B}_{\alpha}<_{\text {reg }} \mathbb{B}$ as well, so that:

$$
C \subseteq \Delta(\overrightarrow{\mathbb{B}})
$$

$" \Rightarrow$ ": As remarked before, we can assume wlog that all \mathbb{B}_{α} are complete subalgebras of \mathbb{B}. Since $\Delta(\overrightarrow{\mathbb{B}})$ is a club, we may as well rename $\overrightarrow{\mathbb{B}}$ so that $\Delta(\overrightarrow{\mathbb{B}})=\kappa$. To ease notation, we will define

$$
\mathbb{B}_{<\beta}=\bigcup_{\alpha<\beta} \mathbb{B}_{\alpha}
$$

for any $\beta<\kappa$. I claim that we may assume that wlog for all $\alpha<\kappa$, $\mathbb{B}_{\alpha} \cong \operatorname{Col}\left(\omega, \gamma_{\alpha}\right)$ for some $\gamma_{\alpha}<\kappa$. To see this, we show that there are unboundedly many $\beta<\kappa$ so that the completion of $\mathbb{B}_{<\beta}$ is $\operatorname{Col}(\omega, \gamma)$ for some γ. So let $\alpha_{0}<\kappa$ be given. Define $\alpha_{n+1}>\alpha_{n}$ so that $\left|\mathbb{B}_{\alpha_{n}}\right|$ is countable in $V^{\mathbb{B}_{\alpha_{n+1}}}$. Let $\beta=\sup _{n<\omega} \alpha_{n}$. Then $\mathbb{B}_{<\beta}$ has size $|\beta|$ and collapses $|\beta|$ and hence its completion is isomorphic to $\operatorname{Col}(\omega,|\beta|)$. As $\mathbb{B}_{<\beta}<_{\text {reg }} \mathbb{B}$, its completion is a complete subalgebra of \mathbb{B}.
The above also shows that we may as well assume that at all limit $\beta<\kappa$, \mathbb{B}_{β} is just the completion of $\mathbb{B}_{<\beta}$.
Now with this out of the way, we will do a zig-zag argument using the lifting property of the collapse forcing $\operatorname{Col}(\omega, \gamma)$. As before we write $\operatorname{Col}(\omega,<\kappa)=$ $\bigcup_{\alpha<\kappa} \mathbb{C}_{\alpha}$.

Claim 3. For any complete embedding $\pi: \mathbb{B}_{\beta} \rightarrow \operatorname{Col}(\omega,<\kappa)$ and $\delta<\kappa$, there is a $\beta<\beta^{\prime}<\kappa$ and a complete embedding

$$
\pi^{+}: \mathbb{B}_{\beta^{\prime}} \rightarrow \operatorname{Col}(\omega,<\kappa)
$$

that extends π so that $\mathbb{C}_{\delta} \subseteq \operatorname{ran}\left(\pi^{+}\right)$.

Proof. We can find $\delta \leqslant \gamma<\kappa$ so that $\operatorname{ran}\left(\pi \upharpoonright \mathbb{B}_{\beta}\right) \subseteq \mathbb{C}_{\gamma}$. Furthermore we can find some $\beta<\beta^{\prime}<\kappa$ of size larger than $\left|\mathbb{B}_{\beta}\right|$. Now π^{-1} is a complete embedding of a complete subalgebra of $\mathbb{C}_{\gamma_{\beta}}$ into $\mathbb{B}_{\beta^{\prime}}$. As $\mathbb{B}_{\beta^{\prime}}$ is isomorphic to a collapse forcing, by the lifting property of collapses (Lemma 26.9 in [Jec03]), there is a complete embedding

$$
\eta: \mathbb{C}_{\gamma} \rightarrow \mathbb{B}_{\beta^{\prime}}
$$

that extends π^{-1}. Essentially the same argument shows that we can find a complete embedding

$$
\pi^{+}: \mathbb{B}_{\beta^{\prime}} \rightarrow \operatorname{Col}(\omega,<\kappa)
$$

that extends η^{-1} (and thus π).
Using this, we inductively construct a club sequence $\left\langle\beta_{\gamma}\right| \gamma\langle\kappa\rangle$ and complete embeddings

$$
\pi_{\gamma}: \mathbb{B}_{\beta_{\gamma}} \rightarrow \operatorname{Col}(\omega,<\kappa)
$$

such that $\operatorname{ran}\left(\pi_{\gamma}\right) \supseteq \mathbb{C}_{\gamma}$. The successor step is handled by the above claim. At limit steps, let $\beta_{\gamma}=\sup _{\alpha<\gamma} \beta_{\alpha}$. we already have

$$
\bigcup_{\alpha<\gamma} \pi_{\alpha}: \mathbb{B}_{<\gamma} \rightarrow \operatorname{Col}(\omega,<\kappa)
$$

and this is a complete complete embedding as the construction gives that for some $\delta<\kappa$ we have $\bigcup_{\alpha<\gamma} \operatorname{ran}\left(\pi_{\alpha}\right)=\mathbb{C}_{<\delta}<_{\text {reg }} \operatorname{Col}(\omega,<\kappa)$. As \mathbb{B}_{γ} is just the completion of $\mathbb{B}_{<\gamma}$, (so that consequently $\mathbb{B}_{<\gamma}$ is dense in \mathbb{B}_{γ}) there is a unique extension of $\bigcup_{\alpha<\gamma} \pi_{\alpha}$ to a complete embedding

$$
\pi_{\gamma}: \mathbb{B}_{\gamma} \rightarrow \operatorname{Col}(\omega,<\kappa)
$$

Thus finally,

$$
\pi:=\bigcup_{\gamma<\kappa} \pi_{\gamma}: \mathbb{B} \cong \operatorname{Col}(\omega,<\kappa)
$$

is an isomorphism.

The proof of Theorem 34.6 can be saved though. With the notation from there, Exercise 34.5 is used to infer that

$$
V^{P * Q} \cong V^{\mathrm{Col}(\omega,<\kappa)}
$$

which is not quite true. If we let $\mathbb{B}=\mathbb{B}(P * Q)$, then \mathbb{B} satisfies (34.6), but there is no hope that $\Delta(\overrightarrow{\mathbb{B}})$ contains a club. Anyhow, κ is weakly compact and as

$$
" \mathbb{B}=\bigcup_{\alpha<\kappa} \mathbb{B}_{\alpha} \text { is } \kappa \text {-cc" }
$$

is a Π_{1}^{1}-statement over $\left(V_{\kappa}, \in \mathbb{B}, \overrightarrow{\mathbb{B}}\right)$, the weak compactness of κ gives that $\Delta(\overrightarrow{\mathbb{B}})$ is stationary. Thus we can force a club through there in $V^{P * Q}$, where κ is ω_{1}; call that forcing R. If $H=H_{0} * H_{1} * H_{2}$ is $P * Q * R$-generic, then $V[H]$ has the same reals as $V\left[H_{0} * H_{1}\right]$ and we can check that in $V[H]$ there is an isomorphism of \mathbb{B} and $\operatorname{Col}(\omega,<\kappa)^{V}$ and thus a filter G that is V-generic filter for the latter forcing such that $V[G]$ has all the reals of $V\left[H_{0} * H_{1}\right]$. Thus after all there is still an elementary embedding

$$
j: L(\mathbb{R})^{V} \rightarrow L(\mathbb{R})^{V[G]}
$$

A further example where $\overrightarrow{\mathbb{B}}$ witnesses that \mathbb{B} satisfies (34.6), yet is not isomorphic to $\operatorname{Col}(\omega,<\kappa)$ is

$$
\mathbb{B}=\operatorname{Col}(\omega, \lambda) \oplus \operatorname{Col}(\lambda,<\kappa)
$$

with

$$
\mathbb{B}_{\alpha}=\operatorname{Col}(\omega, \lambda) \oplus \operatorname{Col}(\lambda,<\alpha)
$$

Here $\lambda<\kappa$ is a regular uncountable cardinal. Then

$$
\Delta(\overrightarrow{\mathbb{B}}) \cap \operatorname{Lim}=\{\alpha<\kappa \mid \operatorname{cof}(\alpha) \geqslant \lambda\}
$$

does not contain a club. Hence there is no dense embedding from \mathbb{B} into $\operatorname{Col}(\omega,<\kappa)$. One can check that if \mathbb{B} and $\operatorname{Col}(\omega,<\kappa)$ were forcing equivalent, there would be such a dense embedding and hence they are not. This results in a headache in some lifting arguments.

References

[Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.

[^0]: ${ }^{1}$ Thanks to Stefan Hoffelner for valuable discussions on this topic

