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Abstract

We answer a question of Woodin by showing that “NSω1 is ω1-
dense” holds in a stationary set preserving extension of any universe
with a cardinal κ which is a limit of ăκ-supercompact cardinals. We
do so by introducing a forcing axiom we call Q-Maximum, prove it
consistent from large cardinals and show that it implies the version of
Woodin’s p˚q-axiom for Qmax. Along the way we produce a number of
other new instances of Asperó-Schindler’s result MM``

ñ p˚q.
In the second part, we show that the κ-mantle, i.e. the intersection of
all grounds which extend to V via forcing of size ăκ, may fail to be
a model of AC for various instances of κ. This answers a question of
Usuba.
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Preface
Kurt Gödel’s incompleteness theorems shattered David Hilbert’s dream of
a framework of mathematics which is complete, consistent and powerful
all at once. The axiom system ZFC is the leading compromise on these
three factors. It is powerful enough so that (almost) all arguments of the
mathematical practice can be carried out within it and it is believed to be
consistent by most mathematicians. Unfortunately, it turns out to come
short in terms of completeness. The holy grail of set theory is finding a
canonical extension of ZFC which is complete “for all intents and purposes”,
that is it should answer at least all natural questions of mathematics. This
is, of course, a vague endeavour, nonetheless significant progress has been
made toward this goal. The interesting undecidable statements come in two
flavours:

piq Statements about the height of the universe, typical examples are the
existence of large cardinals.

piiq Questions on the width of the universe, e.g. CH or Suslin’s hypothe-
sis1.

The statements of the second type are typically the ones that can be attacked
by Paul Cohen’s method of forcing and leave set theorists with control over
them. In fact, inner model theory has produced a number of theories decid-
ing all interesting statements of this latter type2, for example ZFC`V “ L.
Unfortunately, models of these theories, at least of the ones we have a good
understanding of, are too small to contain large enough large cardinals and
are deemed unsatisfactory on these grounds. For example, there are no
measurable cardinals in L. Another approach is building canonical theories
“level by level” along the H-hierarchy. A good indicator of canonicity for a
sentence is resistance against a change of truth by forcing. For Hω, there is
not much to argue about, all transitive models of ZFC have the same Hω.
For Hω1 , the situation is already more complicated since Hω1 and its theory
can be changed significantly by forcing over “small” models of ZFC. The
picture changes when large cardinals are involved:

Theorem (Woodin) Assume there is a proper class of Woodin cardinals.
Then the theory of Hω1 (in fact that of LpRq), even with ground model reals
as parameters, cannot be changed by forcing.

This is strong evidence for the canonicity of the theory of Hω1 , indeed
of LpRq, assuming enough large cardinals exist.

1Suslin’s hypothesis states that every complete dense c.c.c. linear order without end-
points is isomorphic to R.

2This is only an empirical observation rather than a mathematical fact.
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When moving higher up to Hω2 , one cannot expect an exact analog of
Woodin’s result above since CH can be expressed by a Σ2-formula over
Hω2 and can be changed at will3. Instead, one might ask for less: Is it
possible that the Σ1-theory of Hω2 with ground model parameters cannot
be changed by forcing? This is also quickly refuted as ω1 can be collapsed
and moreover, stationary sets can be killed by forcing and doing so intro-
duces a new Σ1 fact over Hω2 . This suggests to only consider stationary set
preserving extensions and to be more generous and look at the structure

`

Hω2 ; P,NSω1

˘

with an additional relation for the nonstationary ideal on ω1 instead. De-
manding Σ1-absoluteness for this structure to stationary set preserving ex-
tensions is exactly the forcing axiom BMM`` and is consistent modulo large
cardinals. Two almost disjoint sets of tools have been developed in an effort
to establish independence of such axioms and many others regarding the
structure pHω2 ; P,NSω1q.

The first set begins starts with finite support iterations of c.c.c. forcings
and then flourished with Shelah’s theory of proper and semiproper forcing.
This world is governed by forcing iteration theorems of the form “if P is
a countable support(-style) iteration of forcings (forced to be) in a class Γ
then P is in Γ”. These are used in practice to make sure that an iteration
of forcings one is interested in at the moment hopefully preserves basic
structure, namely

`

Hω2 ; P,NSω1

˘V
ăΣ0

`

Hω2 ; P,NSω1

˘V P
.

We will call this area the “iterated forcing world”.

The second set of tools has its roots in Steel-Van Wesep’s proof of con-
sistency of “NSω1 is saturated” from strong determinacy assumptions and
was then developed much further by Woodin into the theory of Pmax and
its variations resulting in the book [Woo10]. Here, ground models are mod-
els of determinacy, and the building blocks of the forcings are countable
transitive models M together with an ideal I on ωM1 , which are generically
iterable. That means that taking an ultrapower of M by an M -ultrafilter
which “generically” completes the dual filter associated to I results in a
wellfounded model and further, this procedure can be iterated transfinitely
and only produces wellfounded models. The power of AD is used to (and is
necessary to) produce many “well-behaved” such structures. We will refer
to this set of techniques as the“generic iterations world”.

It has been observed empirically that if a problem can be solved using
the tools from one of these worlds then often it is possible to give a solution
using tools of the other world instead. Examples include the problems of
finding models of ZFC in which e.g.

3CH is really the main perpetrator by Woodin’s Σ2
1-absoluteness theorem.
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(iq NSω1 is saturated,

(iiq Cichoń’s diagram takes a specific set of values,

(iiiq Borel’s conjecture4 holds,

(ivq lω2 fails or

(vq Club Bounding5 holds.

In fact, (iq, (ivq and (vq are all consequences of the canonical maximal
forcing axiom MM`` of the iterated forcing world, but also hold in the Pmax

extension of LpRq, assuming ADLpRq. Recently, Asperó-Schindler have build
a rigorous bridge between these two worlds: They proved MM`` ñ p˚q, the
latter being the natural maximality axiom of the generic iterations world6.

The goal of this thesis is to add details to this bridge and present more
ways in which these worlds are connected. A number of consistency proofs
within the world of generic iterations were not yet replicated in the world
of iterated forcing. A prominent offender here was the statement “NSω1 is
ω1-dense”7. Using a variation on the Pmax-method, Woodin has produced
generic extensions of canonical models of determinacy in which this princi-
ple holds. We will show that this can be forced from large cardinals over
otherwise arbitrary models of ZFC as well. Our argument will naturally
prove a new implication of the form MM`` ñ p˚q.

Translating arguments from one world into the other is valuable for a
number of reasons. First of all, it leads to the development of new methods
which can be useful for further research. In this case, our methods But also,
each world comes with its own restrictions. For example, the Pmax-method
is tied to well-behaved models of determinacy and usually does not provide a
way to extend, in principle, any model of ZFC (with sufficiently many large
cardinals) into a model of the theory in question. Moreover, usually the
large cardinal assumptions seemingly necessary to carry out the arguments
in the two worlds respectively differ, so one might provide a more optimal
solution consistency-wise than the other. For example, we will make use of
an inaccessible limit of supercompact cardinals to force “NSω1 is ω1-dense”,
while Woodin’s method makes use of the optimal assumption of ZF ` AD.
To give an example of the flip side of this, Paul Larson answered a question
of Shelah-Zapletal using a variation of Pmax under the assumption ZF`AD
and we will provide an analogous argument in the iterate forcing world mak-
ing use of the weaker and optimal assumption of ZFC` “there is a Woodin

4This states that all strong measure zero sets are countable.
5That is, every map f : ω1 Ñ ω1 is bounded by a canonical function on a club.
6They even proved an equivalence of p˚q with a fragment of MM`` assuming a proper

class of Woodin cardinals exists.
7An ideal I on ω1 is ω1-dense if pPpω1q{Iq

` has a dense subset of size ω1.
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cardinal”.
Along the way to force “NSω1 is ω1-dense” from large cardinals, we will fre-
quently take time to explore the surrounding area. Among other things, we
will prove multiple new instances of MM`` ñ p˚q with a unified approach.
For example we will introduce and prove consistent from large cardinals a
forcing axiom which implies the p˚q-axiom for Woodin’s Smax. This gives
another translation between the two worlds: Smax forces the statement Ψ`

S

over LpRq, assuming ADLpRq and to the best of the authors knowledge, this
has not been replicated before in the world of iterated forcing.
Another byproduct of our approach is the construction of a model in which
Todorčević’s Strong Reflection Principle holds, but Moore’s Mapping Re-
flection Principle fails.

The second part of this thesis presents some contributions toward Set-
Theoretic Geology. This area of set theory reverses the usual perspective
on forcing: In practice, forcing is used as a tool to bring certain structure
into existence which may not have been there before, so there is a clear
underlying upward direction. Instead, Set-Theoretic Geology shifts this and
looks down instead and analyzes the structure of the collection of all forcing
grounds, i.e. models of ZFC which extend to V via forcing. One of the
central objects here is that of the mantle M, the intersection of all grounds.
Toshimichi Usuba [Usu17] showed that M is always a model of ZFC, solving
the most important open problem of Set-Theoretic Geology at that time.
There is a number of ways to define variations of the mantle by intersecting
only over a subcollection of all grounds. Perhaps the most natural variation
on the mantle is the following: Let κ be a cardinal and define the κ-mantle
Mκ as the intersection of all grounds which extend to V via a forcing of size
ăκ. The κ-mantle has its origins in Usuba’s proof of the Bedrock Axiom8

from an extendible cardinal. It also appears naturally in the computation of
the mantle in certain canonical inner models, which lead to the Varsovian
models which have been studied by Grigor Sargsyan, Ralf Schindler and
later Farmer Schlutzenberg, see [SS18], [SSS21] and [Sch22b].
Usuba has shown that assuming κ to be merely a strong limit cardinal
implies that Mκ |ù ZF.

Question (Usuba,[Usu18]). Is Mκ always a model of ZFC?

We will answer this question negatively by constructing models of ZFC
in which Mκ fails to satisfy the axiom of choice for three different types of
cardinals κ.

8The Bedrock Axiom asserts the existence of a minimal ground w.r.t. inclusion.
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4.2 Asperó-Schindler p˚q-forcing . . . . . . . . . . . . . . . . . . . 68
4.3 ♢-iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 ♢-p˚q-forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 The first blueprint . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 The second blueprint . . . . . . . . . . . . . . . . . . . . . . . 89

5 Instances of MM``pfq 96
5.1 B “ t1u is the trivial forcing and p˚q . . . . . . . . . . . . . . 96
5.2 B “ Colpω, ω1q and Cmax-p˚q . . . . . . . . . . . . . . . . . . 97
5.3 Split witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 B is Cohen forcing and weakly Lusin sequences . . . . . . . . 104
5.5 Uniform sequences of witnesses . . . . . . . . . . . . . . . . . 113
5.6 B is a Suslin tree and STmax-p˚q . . . . . . . . . . . . . . . . . 114

6 Suslin’s Minimum 120
6.1 Forcing SM`` . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 SM`` implies Smax-p˚q . . . . . . . . . . . . . . . . . . . . . . 124

1



7 A Forcing Axiom That Implies “NSω1 Is ω1-Dense” 126
7.1 Q-Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Q-iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 The Qmax-variation Q´

max . . . . . . . . . . . . . . . . . . . . 143
7.4 Consistency of QM and forcing “NSω1 is ω1-dense” . . . . . . 149
7.5 QM implies Qmax-p˚q . . . . . . . . . . . . . . . . . . . . . . . 154

8 The Pmax-Variation Fmax 155
8.1 The Fmax-extension of LpRq . . . . . . . . . . . . . . . . . . . 157

9 Maximal Models of d “ ℵ1 161
9.1 The forcing axiom MM``pd “ ℵ1q . . . . . . . . . . . . . . . 163
9.2 Pd“ℵ1

max -p˚q-forcing . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.3 MM``pd “ ℵ1q implies Pd“ℵ1

max -p˚q . . . . . . . . . . . . . . . . 170

10 Maximal Models of b “ ℵ1 171
10.1 The forcing axiom MM``pb “ ℵ1q . . . . . . . . . . . . . . . 172
10.2 Pb“ℵ1

max -p˚q-forcing . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.3 MM``pb “ ℵ1q implies Pb“ℵ1

max -p˚q . . . . . . . . . . . . . . . . 177

11 Appendix 178
11.1 A version of Martin’s axiom conditioned on ♢pBq . . . . . . . 178
11.2 More consequences of PFApfq . . . . . . . . . . . . . . . . . . 181
11.3 When is Namba forcing f -semiproper? . . . . . . . . . . . . . 190
11.4 The MM``pfq-Fmax-p˚q diagram . . . . . . . . . . . . . . . . 195
11.5 Disrespectful forcing and p;q . . . . . . . . . . . . . . . . . . . 204

II The Axiom of Choice in the κ-Mantle 211

12 Introduction 213
12.1 Set-theoretic geology . . . . . . . . . . . . . . . . . . . . . . . 213
12.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

13 The Axiom of Choice May Fail in Mκ 216
13.1 The case “κ is Mahlo” . . . . . . . . . . . . . . . . . . . . . . 216
13.2 The ω1-mantle . . . . . . . . . . . . . . . . . . . . . . . . . . 222
13.3 The successor of a regular uncountable cardinal case . . . . . 226
13.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

14 References 233

Index 239

2



Part I

Forcing “NSω1 Is ω1-Dense” From
Large Cardinals

3





Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

0 Introduction

0.1 History of “NSω1 is ω1-dense”

In 1930, Stanislaw Ulam published an influential paper [Ula30] dealing with
a question of Stefan Banach generalizing the measure problem of Lebesgue.
He proved the following theorem:

Theorem 1 (Ulam). Suppose κ is an uncountable cardinal and there is a
σ-additive real-valued measure on κ which

piq measures all subsets of κ and

piiq vanishes on points.

Then there is a weakly inaccessible cardinal ď κ.

Ulam noticed that he could strengthen his conclusion if he replaces real-
valued by 0-1-valued. In more modern terminology, his second result reads:

Theorem 2 (Ulam). Suppose κ is an uncountable cardinal and there is a
nonprincipal σ-complete ultrafilter on κ. Then there is a (strongly) inacces-
sible cardinal ď κ.

These theorems gave birth to what are now known as real-valued mea-
surable cardinals and measurable cardinals respectively. In the interest of
having all subsets of some cardinal κ be measured in some sense, instead of
increasing the size of κ, it is also possible to increase the number of allowed
filters that measure. Henceforth Ulam considered the following question:

Question 3. Suppose κ is an uncountable cardinal below the least inaccessi-
ble. What is the smallest possible size of a family F of σ-closed nonprincipal
filters on κ so that every subset of κ is measured by some filter in F?

Let us call the cardinal in question the Ulam number of κ, Ulampκq.
Ulam’s second theorem above can be rephrased as “Ulampκq ą 1”. Indeed,
Ulam proved in unpublished work that Ulampκq ě ω. At some point, Ulam
proposed this question to Paul Erdős, who, together with Leonidas Alaoglu,
improved Ulam’s result to “Ulampκq ě ω1” [Erd50]. The problem, this time
in the special case κ “ ω1, was apparently revitalized by appearing in the
1971 collection of unsolved problems in set theory popularized by Erdős
and Hajnal [EH71]: Shortly after, Karel Prikry [Pri72] produced a model
in which Ulampω1q “ 2ω1 “ ω2, and did the same again with a different
method in [Pri76].
A critical step towards a model in which Ulampω1q “ ω1 was taken by Alan
D. Taylor: Building on earlier work of Baumgartner-Hajnal-Maté [BHM75],
Taylor provided [Tay79] an impressive amount of statements equivalent to
a natural strengthening of “Ulampω1q “ ω1”, here is a shortened list.
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0. Introduction

Theorem 4 (Taylor). The following are equivalent:

piq There is a family of normal filters witnessing Ulampω1q “ ω1.

piiq There is a σ-closed uniform ω1-dense ideal on ω1.

piiiq There is a normal uniform ω1-dense ideal on ω1.

The formulation piiiq is much better suited for set-theoretical arguments.
We also mention that Taylor proved that all the above statements fail under
MAω1 .
Thus what remains of Ulam’s original question was reduced to: Is the exis-
tence of a normal uniform ω1-dense ideal on ω1 consistent with ZFC? This
was answered positively by W. Hugh Woodin in three different ways. The
first was by forcing over a model of ADR+“Θ is regular”, already in the fall
of 1978. (unpublished). At that time, this theory was not yet known to be
consistent relative to large cardinals. Naturally, somewhat later he did so
from large cardinals:

Theorem 5 (Woodin, unpublished9). Assume there is an almost-huge car-
dinal κ. Then there is a forcing extension in which there is a normal uniform
ω1-dense ideal on ω1 “ κ.

This finally resolved the question relative to large cardinals. But can
the canonical normal uniform ideal, namely NSω1 , have this property? It is
known that NSω1 behaves a little different in this context.

Theorem 6 (Shelah, [She86]). If NSω1 is ω1-dense then 2ω “ 2ω1. In
particular CH fails.

This is not true for other normal uniform ideals on ω1, for example CH
holds in the model Woodin constructs from an almost huge cardinal. One
can also ask about the exact consistency strength of the existence of such a
normal uniform ω1-dense ideal on ω1. Both these questions were answered
in subsequent work by Woodin, building on his Pmax-technique.

Theorem 7 (Woodin, [Woo10, Corollary 6.150]). The following theories
are equiconsistent:

piq ZFC` “There are infinitely many Woodin cardinals.”

piiq ZFC` “NSω1 is ω1-dense.”

piiiq ZFC` “There is a normal uniform ω1-dense ideal on ω1.”

9A proof can be found in Foreman’s handbook article [For10].
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

The direction piiiq ñ piq makes use of Woodin’s core model induction
technique, the argument is unpublished. We refer the interested reader to
[RS14] where part of this is proven. Woodin’s method for piq ñ piiq is by
forcing over LpRq, assuming AD there, with the Pmax-variation Qmax. This
approach has one downside: It is a forcing construction over a canonical
determinacy model. LpRq can be replaced by larger determinacy models, but
Qmax relies on a good understanding of the model in question. In practice,
this is akin to an anti large cardinal assumption and leaves open questions
along the lines of: Is “NSω1 is ω1-dense” consistent together with all natural
large cardinals, e.g. supercompact cardinals? Is it consistent with powerful
combinatorial principles, for example SRP?
Woodin’s original motivation for these results was in fact the question of
generic large cardinal properties of ω1: For example ω1 is not measurable
by Ulam’s theorem, but there can be a generic extension of V with an
elementary embedding j : V ÑM with transitive M and critical point ωV1 .
This leads to precipitous ideals on ω1.

Definition 8. A uniform ideal I on ω1 is precipitous if, whenever G is
generic for pPpω1q{Iq

` then UltpV,UGq is wellfounded10.

The existence of an ω1-dense ideal is a much stronger assumption than
the existence of a precipitous ideal. There is a natural well-studied interme-
diate principle.

Definition 9. A uniform ideal I on ω1 is saturated if pPpω1q{Iq
` is ω2-c.c..

Here is a short history of similar result for these principles:

piq Mitchell forces a precipitous ideal on ω1 from a measurable in the mid
70s, see [JMMP80].

piiq Magidor forces “NSω1 is precipitous” from a measurable, published in
[JMMP80].

piiiq Kunen [Kun78] forces a saturated ideal on ω1 from a huge cardinal,
which he invented for this purpose.

pivq Steel-Van Wesep [SVW82] force “NSω1 is saturated” over a model of11

AD`ACR.

pvq Foreman-Magidor-Shelah [FMS88] force “NSω1 is saturated” from a
supercompact with semiproper forcing. Later reduced to one Woodin
cardinal by Shelah12.

10UG denotes the V -ultrafilter induced by G.
11Woodin [Woo83] subsequently reduced the assumption to just AD .
12The main ideas for the argument are in [She98, XVI], a write-up by Schindler can be

found in [Sch11].

7



0. Introduction

Woodin’s results continue this line of research for ω1-dense ideals. But
the analog of the step from pivq to pvq for ω1-dense ideals was missing.
Accordingly, Woodin posed the following question:

Question 10 (Woodin, [Woo99, Chapter 11 Question 18 b)]). Assuming the
existence of some large cardinal: Must there exist some semiproper partial
order P such that

V P |ù “NSω1 is ω1-dense” ?

We will answer this positively in this thesis.

Theorem 11. Assume there is an inaccessible cardinal κ which is the limit
of cardinals which are ăκ-supercompact. Then there is a stationary set
preserving forcing P so that

V P |ù “NSω1 is ω1-dense”.

If there is an additional supercompact cardinal below κ, we can find such P
that is semiproper.

On a different note, there has been significant interest recently into the
possible ∆1-definability of NSω1 (with parameters), in particular in the pres-
ence of forcing axioms. Note that NSω1 is trivially Σ1pω1q-definable, but it
is independent of ZFC whether NSω1 is Π1-definable. Hoffelner-Larson-
Schindler-Wu [HLSW22] show:

piq If BMM holds and there is a Woodin cardinal then NSω1 is not ∆1-
definable.

piiq If p˚q holds then NSω1 is not ∆1-definable.

piiiq Thus by Asperó-Schindler [AS21], if MM`` holds, NSω1 is not ∆1-
definable.

pivq It is consistent relative to large cardinals that BPFA holds and NSω1

is ∆1-definable.

There is also a forthcoming paper by Ralf Schindler and Xiuyuan Sun
[SS22] showing that in piiiq, MM`` can be relaxed to MM.
If NSω1 is ω1-dense then NSω1 is automatically ∆1-definable: If S is a set of
ω1-many stationary sets witnessing the density, then T Ď ω1 is stationary
iff

DC Ď ω1 a club, DS P S C X S Ď T.

This was first observed by Friedman-Wu-Zdomskyy [FWZ15]. In this con-
text, two interesting points arise from our results here: First, we isolate for
the first time a forcing axiom which implies “NSω1 is ∆1-definable”. Sec-
ond, it is well known that many of the structural consequences of MM follow

8
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already from SRP, for example “NSω1 is saturated”, 2ω “ ω2, SCH, etc. In
contrast, in the result of Schindler-Sun, MM cannot be replaced by SRP:
If appropriate large cardinals are consistent, then so is SRP together with
“NSω1 is ∆1-definable”.

0.2 Overview

In Section 2, we introduce a combinatorial principle central to our approach,
called ♢pBq. It is a certain diamond-style principle that guesses filters for a
forcing B of size ω1.

In Section 3, we present the theory of ♢-forcing which generalizes the
notions of complete, proper and semiproper forcing respectively to their
natural variants which preserve a distinguished witness f of ♢pBq. We prove
iteration theorems for these classes which naturally generalize the iteration
theorems for complete, proper and semiproper13 forcings respectively. This
allows us to formulate and prove consistent from a supercompact cardinal
the principles MMpfq and MM``pfq for a witness f of ♢pBq in Section 3.7.
These are the variants of MM and MM`` with stationary sets replaced by
f -stationary sets, a natural version of stationary sets in the present context.
We will show that SRP is a consequence of MMpfq, so in particular 2ω “ ω2

and “NSω1 is saturated” follow.

In Section 4, we work with general abstract Pmax-variations and mod-
ifying the methods of Asperó-Schindler [AS21], ultimately arriving at two
results we call “Blueprint Theorems” that allow us to prove a variety of
implications analogous to “MM`` ñ p˚q” later. A key tool we introduce
here is that of a ♢-iteration.

In Section 5, we apply the theory developed so far for different instances
of the forcing B and find an instance of MM`` ñ p˚q in each case. For
B “ t1u, i.e. the trivial forcing, we indeed exactly recover the MM`` ñ p˚q

picture as well as the iteration theorem for semiproper forcings, but with
nice supports. In the case of B “ Colpω, ω1q, we end up with models in
which NSω1 is saturated and there is a complete embedding Colpω, ω1q Ñ

pP pω1q{NSω1q
`, partial progress towards “NSω1 is ω1-dense”. In case B is

Cohen forcing, we recover the notion of weakly Lusin sequences introduced
by Shelah-Zapletal in [SZ99]. We also reduce the consistency assumption
used in an answer of Paul Larson to a question of the aforementioned paper
by translating Larson’s argument which makes use of a Pmax-variation into
a forcing iteration. Finally, in case B is a Suslin tree, we obtain iteration
theorems by Miyamoto for proper forcings [Miy93] and semiproper forcings
[Miy02] preserving a distinguished Suslin tree respectively. Moreover, we

13Though we will make use of Miyamoto’s nice support instead of RCS support in the
case of f -semiproper forcings.

9
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show that if T is a strongly homogeneous Suslin tree then MM``pT q implies
the variant of the p˚q-axiom for STmax, a Pmax- (or Smax-) variation for a single
Suslin tree due to Paul Larson.

Section 6 deals with a new MM``-style forcing axiom Suslin’s Minimum``.
Roughly speaking, it is MM`` restricted to forcings which also preserve all
Suslin trees and the partially generic filter that is postulated to exist addi-
tionally evaluates ω1-many names for Suslin trees to Suslin trees in V . We
prove this axiom consistent from a supercompact cardinal and argue that it
implies the version of the p˚q-axiom for Woodin’s Pmax-variation Smax.

We are finally ready to answer Question 10 in Section 7. We introduce
yet another forcing axiom QM and prove that it implies “NSω1 is ω1-dense”.
We then prove a new iteration theorem for so called Q-iterations. This
allows us to force QM from a supercompact limit of supercompact cardinals
via semiproper forcing. We can lower the large cardinal assumption a bit
if we weaken the conclusion of forcing QM to “NSω1 is ω1-dense”. We also
show that QM implies the version of p˚q for Woodin’s Qmax.

Section 8 briefly introduces a quite general Pmax-variation we denote
by Fmax and analyzes the extension of LpRq by Fmax assuming ADLpRq.
This approach treats the Pmax-variations associated with the forcing axioms
MM``pfq uniformly in the same way MM``pfq treats a number of concrete
forcing axioms uniformly.

In Section 9, we investigate maximal models of d “ ℵ1. Shelah-Zapletal
introduced a Pmax-variation Pd“ℵ1 and showed that the extension of LpRq
by Pd“ℵ1 is a canonical model of d “ ℵ1. We use yet another iteration
theorem by Miyamoto to prove consistent from a supercompact the axiom
MM``pd “ ℵ1q, which is MM`` conditioned to the existence of a dominat-
ing family of size ℵ1. We once again prove that MM``pd “ ℵ1q implies the
p˚q-axiom associated to Pd“ℵ1 . Section 10 achieves the same picture, but
for b “ ℵ1.

In the appendix, Section 11, we provide some more related results.
Among them, we show that MRP is not a consequence of SRP. We go
on to prove some structural consequences of PFA from PFApfq, the natural
variant of PFA for a witness f of ♢pBq, instead. This is hampered by the
fact that both MRP and the P -ideal dichotomy may fail. We also charac-
terize exactly when Namba forcing is f -semiproper and doing so generalize
a result of Shelah [She98, XII] in the classical semiproper case.

A reader mainly interested in forcing “NSω1 is ω1-dense” from large
cardinals may choose to only read Sections 2-4, optionally Subsection 5.2,
but definitely Section 7.

10
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1 Notation

First, we fix some notation. We will extensively deal with countable elemen-
tary substructures X ă Hθ for large regular θ. We will make frequent use
of the following notation:

Definition 1.1. Suppose X is any extensional set.

piq MX denotes the transitive isomorph of X.

piiq πX : MX Ñ X denotes the inverse collapse.

piiiq δX :“ ω1 XX.

In almost all cases, we will apply this definition to a countable elementary
substructure X ă Hθ for some uncountable cardinal θ. In some cases, the
X we care about lives in a generic extension of V , even though it is a
substructure of HV

θ . In that case, δX will always mean X X ωV1 .

We will also sometimes make use of the following convention in order to
“unclutter” arguments.

Convention 1.2. If X ă Hθ is an elementary substructure and some object
a has been defined before and a P X then we denote π´1

X paq by ā.

We will make use of this notation only if it is unambiguous.

Definition 1.3. If X,Y are sets then X Ď Y holds just in case

piq X Ď Y and

piiq δX “ δY .

We use the following notions of clubs and stationarity on rHθs
ω:

Definition 1.4. Suppose A is an uncountable set.

piq rAsω is the set of countable subsets of A.

piiq C Ď rAsω is a club in rAsω if

aq for any X P rAsω there is a Y P C with X Ď Y and

bq if xYn | n ă ωy is a Ď-increasing sequence of sets in C then
Ť

năω Yn P C.

piiiq S Ď rAsω is stationary in rAsω if S X C ‰ H for any club C in rAsω.

Next, we explain our notation for forcing iterations.

Definition 1.5. Suppose P “ xPα, 9Qβ | α ď γ, β ă γy is an iteration and
β ď γ. We consider elements of P as functions of domain (or length) γ.

11



1. Notation

piq If p P Pβ then lhppq “ β.

piiq If G is P-generic then Gβ denotes the restriction of G to Pβ, i.e.

Gβ “ tp æ β | p P Gu.

Moreover, 9Gβ is the canonical P-name for Gβ.

piiiq If Gβ is Pβ-generic then Pβ,γ denotes (by slight abuse of notation) the
remainder of the iteration, that is

Pβ,γ “ tp P Pγ | p æ β P Gβu.

9Pβ,γ denotes a name for Pβ,γ in V .

pivq If G is P-generic and α ă β then Gα,β denotes the projection of G
onto Pα,β.

There will be a number of instances were we need a structure to satsify a
sufficiently large fragment of ZFC. For completeness, we make this precise.

Definition 1.6. Sufficiently much of ZFC is the fragment ZFC´`“ω1 exists”.
Here, ZFC´ is ZFC without the powerset axiom and with the collection
scheme instead of the replacement scheme.

We will frequently deal with forcing axioms. Our notations for the clas-
sical forcing axioms is as follows:

Definition 1.7. Suppose Γ is a class of forcings.

piq FApΓq holds if for any for any P P Γ and any collection D of ω1-many
dense subsets of P, there is a filter g Ď P with gXD ‰ H for all D P D.

piiq FA``pΓq holds if for any P P Γ and any collections

• D of ω1-many dense subsets of P and

• S of ω1-many P-names for stationary subsets of ω1

there is a filter g Ď P with

pg.iq g XD ‰ H for all D P D and

pg.iiq 9Sg “ tα ă ω1 | Dp P g p , α̌ P 9Su is stationary for all 9S P S.

Now assume additionally that X Ď R.

piiiq X-BFApΓq holds if X is 8-universally Baire and for any P P Γ we have

pHω2 ; P, XqV ăΣ1 pHω2 ; P, X˚qV
P

where X˚ denotes the reinterpretation of X in V P.

12
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pivq X-BFA``pΓq holds if X is 8-universally Baire and for any P P Γ we
have

pHω2 ; P,NSω1 , Xq
V ăΣ1 pHω2 ; P,NSω1 , X

˚qV
P
.

BFApΓq (resp. BFA``pΓq) is short for H-BFApΓq (resp. H-BFA``pΓq).
Also, if ∆ Ď PpRq is nonempty then ∆-BFApΓq means

@X P ∆ X-BFApΓq

and ∆-BFA``pΓq is defined analogously.

2 ♢pBq and ♢`pBq

We introduce the central combinatorial principles. Their relevancy is mo-
tivated by the following observation: If NSω1 is ω1-dense, then there is a
dense embedding

η : Colpω, ω1q Ñ pP pω1q{NSω1q
`.

We aim to force a forcing axiom that implies this. As usual, the forc-
ing achieving this is an iteration P of some large cardinal length κ which
preserves ω1 and iterates forcings of size ăκ with countable support-style
supports. P will thus be κ-c.c. and this means that some “representation”

η0 : Colpω, ω1q Ñ NS`
ω1

of η exists already in an intermediate extension. By “representation” we
mean that in V P,

rη0ppqsNSω1
“ ηppq

for all p P Colpω, ω1q
14. With this in mind, one should isolate the relevant

Π1-properties which η0 possesses in V P. Consequently, η0 satisfies these
properties in the intermediate extension. It is hopefully easier to first force
an object with this Π1-fragment and we should subsequently only force with
partial orders that preserve this property. This is exactly what we will do.
The relevant combinatorial properties are ♢pωăω

1 q and ♢`pωăω
1 q and were

already isolated by Woodin in his study of Qmax [Woo10, Section 6.2]. For
us, these principles will be useful in a more general context. In fact, we will
replace the role of Colpω, ω1q by an arbitrary forcing of size ďω1. Moreover,
we also strengthen Woodin’s principle in a technical way that turns out to
be convenient for our purposes. Most results in this Section are essentially
due to Woodin and proven in [Woo10, Section 6.2].

Definition 2.1. Suppose B Ď ω1 is a forcing.

14For S Ď ω1 and I an ideal on ω1, rSsI denotes the equivalence class of S induced by
the equivalence relation T „ T 1

ô T△T 1
P I.
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2. ♢pBq and ♢`pBq

piq We say that f guesses B-filters if f is a function

f : ω1 Ñ Hω1

and for all α ă ω1, fpαq is a BX α-filter15.

piiq Suppose θ ě ω2 is regular and X ă Hθ is an elementary substructure.
We say X is f -slim16 if

pX.iq X is countable,

pX.iiq f,B P X and

pX.iiiq fpδXq is BX δX -generic over MX .

Definition 2.2. Let B Ď ω1 be a forcing. ♢pBq states that there is a
function f so that

piq f guesses B-filters and

piiq for any b P B and regular θ ě ω2

tX ă Hθ | X is f -slim^b P fpδXqu

is stationary in rHθs
ω.

♢`pBq is the strengthening of ♢pBq where piiq is replaced by:

piiq` For any regular θ ě ω2

tX ă Hθ | X is f -slimu

contains a club of rHθs
ω. Moreover, for any b P B

tα ă ω1 | b P fpαqu

is stationary.

We say that f witnesses ♢pBq, ♢`pBq respectively.

Remark 2.3. Observe that if f witnesses ♢pBq and B is separative then B
can be “read off” from f : We have B “

Ť

αăω1
fpαq and for b, c P B, b ďB c

iff whenever b P fpαq then c P fpαq as well. Thus, it is usually not necessary
to mention B.

We introduce some convenient shorthand notation.

15We consider the empty set to be a filter.
16We use the adjective “slim” for the following reason: An f -slim X ă Hθ cannot be

too fat compared to its height below ω1, i.e. δ
X . If X Ď Y ă Hθ and Y is f -slim then X

is f -slim as well, but the converse can fail.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Definition 2.4. If B Ď ω1 is a forcing, f guesses B-filters and b P B then

Sfb :“ tα ă ω1 | b P fpαqu.

If f is clear from context we will sometimes omit the superscript f .

Note that if f witnesses ♢pBq, then Sfb is stationary for all b P B. This
is made explicit for ♢`pBq. This is exactly the technical strengthening
over Woodin’s definition of ♢pωăω

1 q,♢`pωăω
1 q. Lemma 2.12 shows that this

strengthening is natural. Moreover, this implies

♢pB‘ Cq ñ ♢pBq ^♢pCq

whenever B,C Ď ω1 are forcings and B‘C is the disjoint union of B and C
coded into a subset of ω1. This becomes relevant in Subsection 5.3. Nonethe-
less, the basic theory of these principles is not changed by a lot.

Definition 2.5. If f witnesses ♢pBq and P is a forcing, we say that P
preserves f if whenever G is P-generic then f witnesses ♢pBq in V rGs.

We remark that if f witnesses ♢`pBq then “P preserves f” still only
means that f witnesses ♢pBq in V P.

Next, we define a variant of stationary sets related to a witness of ♢pBq.
Suppose θ ě ω2 is regular. Then S Ď ω1 is stationary iff for any club
C Ď rHθs

ω, there is some X P C with δX P S. f -stationarity results from
restricting to f -slim X ă Hθ only.

Definition 2.6. Suppose f guesses B-filters.

piq A subset S Ď ω1 is f -stationary iff whenever θ ě ω2 is regular and
C Ď rHθs

ω is club then there is some f -slim X P C with δX P S.

piiq A forcing P preserves f -stationary sets iff any f -stationary set is still
f -stationary in V P.

We make use of f -stationarity only when f witnesses ♢pBq. However,
with the above definition it makes sense to talk about f -stationarity in a
forcing extension before we know that f has been preserved. Note that all
f -stationary sets are stationary, but the converse might fail, see Proposition
5.15. We will later see that f -stationary sets are the correct replacement of
stationary set in our context. Most prominently this notion will be used in
the definition of the MM``-variant MM``pfq we introduce in Subsection
3.7. It will be useful to have an equivalent formulation of f -stationarity at
hand.

Proposition 2.7. Suppose f guesses B-filters. The following are equivalent
for any set S Ď ω1:

15
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piq S is f -stationary.

piiq Whenever xDα | α ă ω1y is a sequence of dense subsets of B, the set

tα P S | @β ă α fpαq XDβ ‰ Hu

is stationary.

Proof. piqñpiiq can be seen by finding an f -slim X ă Hθ with

xDα | α ă ω1y P X

and δX P S. So let us prove piiqñpiq: Let θ ě ω2 be regular and C Ď rHθs
ω

be club. Let xXi | i ă ω1y a continuous increasing chain of elementary
substructures of Hθ with all Xi P C and f P X0. Now enumerate the dense
subsets of B appearing along the chain X⃗ as xDα | α ă ω1y. Let C Ď ω1 be
club with

pC.iq α “ δXα and

pC.iiq @β ă ω1 Dβ P Xα ô β ă α

for all α P C. By piiq, there is some α P S X C so that fpαq X Dβ ‰ H

whenever β ă α. Clearly we then have Xα is f -slim and δXα “ α P S.

Proposition 2.8. Suppose f guesses B-filters. The following are equivalent:

piq f witnesses ♢pBq.

piiq Sfb is f -stationary for all b P B.

piiiq For any b P B and sequence xDα | α ă ω1y of dense subsets of B,

tα P Sfb | @β ă α fpαq XDβ ‰ Hu

is stationary.

Proof. The equivalence of piq and piiq follows from the definitions. piiq and
piiiq are equivalent by the equivalent formulation of f -stationarity provided
by Proposition 2.7.

We mention a handy corollary.

Corollary 2.9. Suppose f witnesses ♢pBq. Any forcing preserving f -stationary
sets preserves f .

Proposition 2.10. Suppose f guesses B-filters. The following are equiva-
lent:

piq f witnesses ♢`pBq.
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piiq For any b P B, Sfb is stationary and all stationary sets are f -stationary.

piiiq If D is dense in B then

tα ă ω1 | fpαq XD ‰ Hu

contains a club and for all b P B, Sfb is stationary.

pivq All countable X ă Hθ with f P X and θ ě ω2 regular are f -slim and

moreover for all b P B, Sfb is stationary.

Proof. piqñpiiq is trivial.
piiqñpiiiq: Let D Ď B be dense and suppose

S :“ tα ă ω1 | fpαq XD ‰ Hu

does not contain a club. Then T “ ω1 ´ S is stationary and hence f -
stationary by piiq. It follows that there is some f -slim X ă Hω2 with D P X
and δX P T . But clearly fpδXq XD ‰ H, contradiction.
piiiqñpivq: Let θ ě ω2 be regular. Let X ă Hθ be countable with f P X.
Suppose D P X is dense in B. We have

Hθ |ù “DC Ď ω1 club and for all α P C fpαq XD ‰ H”.

Hence there is such a club C in X. But then δX P C so that

fpδXq X pD X δXq “ fpδXq XD ‰ H.

Thus fpδXq is generic over MX .
pivqñpiq is trivial.

We will now give a natural equivalent formulation of ♢`pBq. The fol-
lowing little observation will be handy.

Proposition 2.11. Suppose f guesses B-filters. Let g be pPpω1q{NSω1q
`-

generic, Ug the corresponding generic V -ultrafilter and

j : V Ñ UltpV,Ugq

the induced ultrapower17. Then

jpfqpωV1 q “ tb P B | rS
f
b sNSω1

P gu.

Witnesses of ♢`pBq are simply codes for regular embeddings18 of B
into NS`

ω1
.

17We assume wfppUltpV,Ugqq to be transitive. Note that ωV
1 P wfppUltpV,Ugqq.

18Regular embeddings, also known as complete embeddings, are embeddings between
partial orders which preserve maximal antichains.
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Lemma 2.12. The following are equivalent:

piq ♢`pBq.

piiq There is a regular embedding η : BÑ pPpω1q{NSω1q
`.

Proof. piqñpiiq: Let f witness ♢`pBq and define η via

ηpbq “
”

Sfb

ı

NSω1

for b P B. It is clear that η is well-defined, preserves the order as well as
incompatibility. Assume A is a maximal antichain in B. Let g be generic
for pPpω1q{NSω1q

`, it is our duty to show that gXηrAs ‰ H. Let D Ď B be
the dense set of conditions below some element of A. Let Ug be the generic
ultrafilter associated to g and

j : V Ñ UltpV,Ugq

be the generic ultrapower. UltpV,Ugq is not necessarily wellfounded, however
we assume the wellfounded part wfppUltpV,Ugqq to be transitive and we
have ωV1 P wfppUltpV,Ugqq, which suffices for our purposes. As f witnesses
♢`pBq,

tα ă ω1 | fpαq XD ‰ Hu P g

and thus
UltpV,Ugq |ù jpfqpωV1 q X jpDq ‰ H.

Now jpDq X ωV1 “ D and hence jpfqpωV1 q XA ‰ H. By Proposition 2.11

jpfqpωV1 q “ tb P B | ηpbq P gu

and it follows that there is b P A with ηpbq P g.
piiqñ piq: Let η witness piiq. For b P B, choose Sb P NS`

ω1
that represents

the equivalence class ηpbq and define f : ω1 Ñ Hω1 by

fpαq “ tb P BX α | α P Sbu.

Note that we have Sfb “ Sb P NS`
ω1

for all b P B.

Claim 2.13. tα ă ω1 | fpαq is a BX α-filteru contains a club.

Proof. Suppose toward a contradiction that there are stationarily many α ă
ω1 so that fpαq contains incompatible conditions. By normality of NSω1 ,
there are then incompatible b, c P B so that

tα ă ω1 | b, c P fpαqu P NS`
ω1
.

But this would imply that ηpbq, ηpcq are compatible, contradiction. Similarly
it follows from η being order-preserving that fpαq is upwards closed on a
club of α ă ω1.
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Thus we may assume all fpαq are filters. Now suppose that D Ď B is
dense. Pick g that is generic for pPpω1q{NSω1q

` and let

j : V Ñ UltpV,Ugq

be the resulting generic ultrapower. Again by Proposition 2.11, we have
that

jpfqpωV1 q “ tb P B | ηpbq P gu

Thus, as η is a regular embedding, h :“ jpfqpωV1 q is generic over V for B
and consequently meets D. Hence we have

rtα ă ωV1 | fpαq XD ‰ HusNSω1
P g

and as g was arbitrary, we can conclude

tα ă ωV1 | fpαq XD “ Hu P NSω1

which is what we had to show.

The argument above suggests the following definition.

Definition 2.14. Suppose f witnesses ♢pBq. We define

ηf : BÑ pPpω1q{NSω1q
`

by b ÞÑ rSfb sNSω1
and call ηf the embedding associated to f .

We will now show that ♢pBq is consistent for any forcing B Ď ω1, even
simultaneously so for all such B. We will deal with the consistency of ♢`pBq
in the next section.

Proposition 2.15. Assume ♢. Then ♢pBq holds for any poset B Ď ω1.

Proof. We fix a uniform way of coding an element

pb, xDα | α ă ω1yq

of ω1ˆPpω1q
ω1 into a subset A Ď ω1. We only require that on a club, AXβ

codes pb, xDαXβ | α ă βyq. This will happen automatically for any sensible
coding method. We leave the details to the reader.
Let a⃗ :“ xaβ | β ă ω1y witness ♢ and let B Ď ω1 be a forcing. Define f as
follows: Let β ă ω1 and suppose aβ codes

pb, xDα | α ă βyq

where b P B X β and xDα | α ă βy is a sequence of dense subsets of B X β.
Then we let fpβq be a filter in BX β so that

pf.iq b P fpβq and
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pf.iiq for all α ă β, fpβq XDα ‰ H.

Otherwise, we let fpβq be the empty filter.
We now show that f witnesses ♢pBq: Suppose xDα | α ă ω1y is a sequence
of dense subsets of B and b P B. Let A Ď ω1 code

pb, xDα | α ă ω1yq.

There is a club C Ď ω1 so that for all β P C both

pC.iq Dα X β is dense in BX β for all α ă β and

pC.iiq AX β codes pb, xDα X β | α ă βyq.

Since a⃗ witnesses ♢,

S “ tβ P C | aβ “ AX βu

is stationary and by construction of f

S Ď tβ ă ω1 | b P fpβq ^ @α ă β fpβq XDα ‰ Hu

is stationary as well.

Corollary 2.16. Suppose B Ď ω1 is a forcing. Then ♢pBq holds in V Addpω1,1q.

In a number of arguments, we will deal with f -slim X ă Hθ that become
thicker over time, i.e. at a later stage there will be some f -slim X Ď Y ă Hθ.

Definition 2.17. In the above case of X Ď Y , we denote the canonical
elementary embedding from MX to MY by

µX,Y : MX ÑMY .

µX,Y is given by π´1
Y ˝ πX .

Usually, both X and Y will be f -slim. It is then possible to lift µX,Y .

Proposition 2.18. Suppose f guesses B-filters and X,Y ă Hθ are both
f -slim with X Ď Y . Then the lift of µX,Y to

µ`
X,Y : MXrfpδ

Xqs ÑMY rfpδ
Xqs

exists.

Proof. As δX “ δY , the critical point of µX,Y is ąδX (if it exists). As

π´1
X pBq is a forcing of size ďωMX

1 “ δX and fpδXq is generic over both MX

and MY , the lift exists.

We consider the above proposition simultaneously as a definition: From
now on µ`

X,Y will refer to this lift if it exists.
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Definition 2.19. Suppose f witnesses ♢pBq. NSf is the ideal of f -nonstationary
sets, that is

NSf “ tN Ď ω1 | N is not f -stationaryu.

Lemma 2.20. Suppose f witnesses ♢pBq. NSf is a normal uniform ideal.

Proof. Clearly NSf is an ideal and NSf contains all bounded subsets of ω1.
To show normality, suppose that S P NS`

f and that

r : S Ñ ω1

is regressive. It is our duty to show that for

Tα :“ r´1ptαuq

for α ă ω1 we have Tα is f -stationary for some α ă ω1. So assume toward
a contradiction that there is no such α. Then for any α ă ω1 we can find

piq a club Cα Ď ω1 and

piiq a sequence D⃗α “ xDα
β | β ă ω1y of dense subsets of B

so that

@γ P Cα X TαDβ ă γ fpγq XDα
β “ H.

Let xD˚
ξ | ξ ă ω1y be an enumeration of

tDα
β | α, β ă ω1u.

There must be a club C˚ Ď ω1 so that for all γ P C˚:

tD˚
ξ | ξ ă γu “ tDα

β | α, β ă γu

By f -stationarity of S, we may find some nonzero

γ P C˚ X
`

△αăω1Cα
˘

X tα P S | @ξ ă α fpαq XD˚
ξ ‰ Hu.

Now let α “ rpγq ă γ. Then γ P Cα X Tα and hence there is β ă γ with
fpγq XDα

β “ H. But as γ P C˚, Dα
β “ D˚

ξ for some ξ ă γ. However,

fpγq XD˚
ξ ‰ H

by choice of γ, contradiction.
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3 ♢-Forcing

This section deals with a parameterized generalization of the usual classes of
forcings associated to countable support style iterations. For a witness f of
♢pBq, we will define and develop a theory for a number of classes of forcings
contained on the right hand side of the following diagram. We group these
together under the label “♢-forcing”.

Classical ♢-Forcing

complete(« σ-closed)

proper

semiproper

stationary set preserving

ω1-preserving

f -complete

f -proper

f -semiproper

f -stationary set preserving

f -preserving

c.c.c. f -c.c.c.

The theory will run parallel to the classical theory of the forcing classes
on the left hand side. We note that for some choices of B and f , no im-
plication between these properties that does not follow from transitivity of
implications presented is provable. Although, if f witnesses ♢`pBq, then all
missing horizontal reverse implications hold19.
Usually, no implication shown here is reversible, though it is a celebrated
result of Foreman-Magidor-Shelah [FMS88] that the class of stationary set
preserving forcings can coincide with with the class of semiproper forcings,
a critical step in the proof of consistency of Martin’s Maximum. Similarly,
we will see that it is possible that all f -stationary set preserving forcings
are f -semiproper. A new phenomenon here is that the class of f -preserving
forcings can equal the class of f -stationary set preserving forcings, which is
not possible for their classical counterparts. This will happen exactly when
ηf is a dense embedding. In particular, NSω1 is ω1-dense in this case. In
fact, we will construct a model in Section 7 in which all f -preserving forcings
are even f -semiproper, but we are getting ahead of ourselves. We start with
a closer look at f -complete forcings. Later on, the f -proper forcings make

19In fact, if f witnesses ♢`
pBq and B is the trivial forcing with one element then we

recover the Classical side as a special case of the ♢-forcing side.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

up a natural stepping stone along the way to f -semiproper forcings. The
f -c.c.c. forcings are not really relevant to our purposes, for completeness
reasons we introduce them in Section 11.

3.1 f-complete forcing

We introduce the analog of σ-closed forcing in the context of ♢-forcing. A
forcing P is complete if for any large enough regular θ and any countable
X ă Hθ with P P X as well as any g Ď PXX which is generic over X there
is some q P P with q , 9G X X̌ “ ǧ, see [She98, V Definition 1.1]20. We
remark that Jensen [Jen] has shown that a forcing is complete if it is forcing
equivalent to a σ-closed forcing.

Definition 3.1. Suppose f witnesses ♢pBq. A forcing P is f -complete if for
all sufficiently large regular θ and all f -slim X ă Hθ with P P X and any g
that is P̄-generic over MXrfpδ

Xqs with p̄ P g, there is q ď p with

q , 9GX X̌ “ πX̌rǧs.

Lemma 3.2. Suppose f witnesses ♢pBq and P is f -complete. Then P pre-
serves f -stationary sets.

We will prove stronger version of this Lemma later on, so we will not
give a proof here.

The following results can be proven almost exactly as their analogs for
complete forcings.

Lemma 3.3. Suppose f witnesses ♢pBq. Every σ-closed forcing is f -complete.

Lemma 3.4. Suppose f witnesses ♢pBq and P is f -complete. Then P does
not add any countable sequences of ordinals.

Lemma 3.5. Suppose f witnesses ♢pBq and P “ xPα, 9Qβ | α ď γ, β ă γy is
a countable support iteration so that for any α ă γ,

,Pα “ 9Qα is f -complete”.

Then P is f -complete.

We will now get to know the forcing that tries to turn a witness of ♢pBq
into a witness of ♢`pBq. Woodin has defined this forcing in the case of
B “ Colpω, ω1q in [Woo10, Section 6.2].

Definition 3.6 (Woodin). Suppose f witnesses ♢pBq. Ppfq consists of
conditions ph, cq so that, for some α :“ αp ă ω1,

20A forcing P is complete in our sense if it is E-complete for E “ tSℵ0p|P|qu in the sense
of [She98].
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piq h : αÑ PpBq is a function

piiq hpβq is dense in B for all β ă α,

piiiq c Ď ω1 is closed with maxpcq “ α and

pivq for all β P c and γ ă β, fpβq X hpγq ‰ H.

The order on Ppfq is defined by

ph, cq ď pk, dq

iff h æ β “ k and cX β ` 1 “ d where β “ dompkq.
If p P Ppfq then we sometimes write hp, cp for the first and second coordinate
of p, i.e. p “ php, cpq.

The typical density arguments yield:

Proposition 3.7. Suppose f witnesses ♢pBq. Then for any dense D Ď B
there is a club C P V Ppfq with

fpαq XD ‰ H

for all α P C.

Thus to get ♢`pBq one simply iterates Ppfq for a witness f of ♢pBq. For
this to work, this iteration must not collapse ω1.

Lemma 3.8. Suppose f witnesses ♢pBq. Ppfq is f -complete

Proof. Suppose θ is a sufficiently large regular cardinal and X ă Hθ is f -slim
with Ppfq P X. Let ḡ be generic over MXrfpδ

Xqs. We can find a condition
q P Ppfq with

q ď πXppq

for all p P g as follows: For β ă δX let hpβq “ πXph
rpβqq for any/all r P ḡ

with β P domphrq and

c “
ď

rPḡ

cr Y tδXu.

Claim 3.9. q :“ ph, cq P Ppfq.

Proof. Let β ă δX . We have to show that fpδXqXhpβq ‰ H. But hpβq P X
is a dense subset of B and hence

fpδXq X hpβq “ fpδXq X π´1
X phpβqq ‰ H

because fpδXq is generic over MX .

This concludes the proof.
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Lemma 3.10. Suppose f witnesses ♢pBq and κ is inaccessible. Let P be the
countable support iteration of Ppfq (as computed in the relevant extension)
of length κ. Then f witnesses ♢`pBq in V P.

This result is essentially due to Woodin, see Lemma 6.44 in [Woo10]. We
will later show that one can force ♢`pBq without the use of an inaccessible
cardinal, but for now the Lemma above suits our purposes.

Proof. P is f -complete and preserves “f witnesses ♢pBq” along the iteration
by Lemma 3.8, 3.5 and 3.2. The point is that as κ is inaccessible and as P
is a countable support iteration with |Pα| ă κ for all α ă κ, P satisfies the
κ-chain condition. Thus any dense subset D of B in V P is already in V Pα

for some α ă κ and hence for a club C P V Pα`1 of β ă ω1 we have

fpαq XD ‰ H

by Proposition 3.7.

As a warm-up for the later sections, we will make the nonstationary ideal
on ω1 presaturated and force ♢`pBq simultaneously by f -complete forcing.

Definition 3.11. The (cofinal) Strong Chang Conjecture (SCCcof) holds
true iff for any sufficiently large regular θ and for any countable X ă Hθ

there are cofinally many α ă ω2 for which there is X Ď Y ă Hθ with α P Y .

Fact 3.12 (Shelah, [She98, XIII Theorem 1.9]). Suppose κ is measurable
as witnessed by a normal measure U and P “ xPα, 9Qβ | α ď κ, β ă κy is a
RCS-iteration so that

pP.iq P is semiproper,

pP.iiq for all α ă κ, |Pα| ă κ,

pP.iiiq for all α ă κ, ,Pα`1 |p2
ω1qV

Pα
| “ ℵ1 and

pP.ivq tα ă κ |,Pα “ 9Qα is semiproper”u P U .

Then the SCCcof holds in V P.

Theorem 3.13. Suppose f witnesses ♢pBq and δ is Woodin. There is then
an extension by a f -complete forcing satisfying

piq δ “ ω2,

piiq f witnesses ♢`pBq and

piiiq NSω1 is presaturated.

In general, simply forcing with Colpω1,ăδq does not work. That exten-
sion will always satisfy piq and piiiq, but piiq may fail.
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Proof. (Sketch) Let P be the countable support iteration of length δ that
forces with Colpω1, 2

ω1q at inaccessible stages and with Ppfq at all other
stages. Note that P is f -complete by Lemma 3.8, Lemma 3.3 and Theorem
3.20. Now we have that

pκ.iq Pκ is κ-c.c.,

pκ.iiq f witnesses ♢`pBq in V Pκ ,

pκ.iiiq in V Pκ , the remaining part Pκ,δ of the iteration P is complete, in
particular semiproper and

pκ.ivq if κ is measurable in V then SCCcof holds in V Pκ .

for all inaccessible κ ď δ. pκ.iq is true by a general result of Shelah [She98,
XI 1.13] about revised countable support iterations21. pκ.iiq follows from
pκ.iq as Ppfq was used unboundedly often below κ. pκ.iiiq follows from
pκ.iiq and Lemma 3.2. pκ.ivq is a consequence of Fact 3.12 as by pκ.iiiq, the
extension V Pκ can be realized as required.
The proof that NSω1 is presaturated in V P can now be carried out similarly
as the one given in, e.g. [Sch11] which shows that NSω1 is presaturated in
V Colpω1,ăδq.

3.2 f-proper forcing

Suppose that f witnesses ♢pBq. We present the class of f -proper forcings,
the ♢-forcing analog of Shelah’s class of proper forcings. The main result
here is that that f -proper forcings can be iterated by countable support
iterations. This subsection is not necessary in the pursuit of answering
Woodin’s question, nonetheless it serves as a natural warm-up for dealing
with f -semiproper forcing later, which we will make much more use of in
practice.

Definition 3.14. Suppose P is a forcing and f witnesses ♢pBq.

piq Let θ be a regular cardinal ą 2|P| and X ă Hθ is f -slim. A condition
q P P is pX,P, fq-generic if q is pX,Pq-generic22 and

q , “X̌r 9Gs is f -slim”.

piiq P is f -proper if for all sufficiently large regular θ and all f -slim X ă Hθ

with P P X, for any p P PXX there is q ď p that is pX,P, fq-generic.

21The same result holds for countable support iterations as well by the same argument.
22q is pX,Pq-generic if q , “ 9GX X̌ is P̌X X̌-generic over X̌”.
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Being f -proper is neither stronger nor weaker than being proper, requir-
ing the existence of pX,P, fq-generic conditions is more demanding than
only pX,Pq-generic conditions, but we only do so on the potentially smaller
class of f -slim substructures.
We remark that the product lemma for forcing gives an alternative equiva-
lent formulation of pX,P, fq-generic conditions.

Proposition 3.15. Suppose f witnesses ♢pBq, P is a forcing and X ă Hθ

is f -slim with P P X. The following are equivalent for q P P:

piq q is pX,P, fq-generic.

piiq q , “π´1
X r

9Gs is generic over MX̌rf̌pδ
X̌qs”

This observation forms the backbone of the iteration theorems we are
about to prove.

Proposition 3.16. Suppose f witnesses ♢pBq. Then any f -complete forcing
is f -proper.

Proof. Let P be f -complete. Let θ be sufficiently large and regular, X ă Hθ

countable and f -slim with P P X. Let p P P X X. Now find ḡ with p̄ P ḡ
that hits all dense subsets of P̄ in MXrfpδ

Xqs. By f -completeness, there is
q ď p so that

q , 9GX X̌ “ πX̌rˇ̄gs.

By Proposition 3.15, q is pX,P, fq-generic.

Lemma 3.17. Suppose f witnesses ♢pBq and P is f -proper. Then P pre-
serves f -stationary sets23.

Proof. Assume that S is f -stationary. Let 9C be a name for a club in ω1

and x 9Dα | α ă ω1y a sequence of P-names for dense subsets of B. Assume
toward a contradiction that

p , “@α P 9C X ŠDβ ă α f̌pαq X 9Dβ “ H”. (7)

Let θ be sufficiently large and regular and X ă Hθ with

pX.iq X is f -slim,

pX.iiq P, p, 9C, x 9Dα | α ă ω1y P X and

pX.iiiq δX P S.

X exists as S is f -stationary. Since P is f -proper, there is some pX,P, fq-
generic q ď p. Let G be P-generic with q P G. Let C “ 9CG, Dα “ 9DG

α for
α ă ω1 and Ḡ “ π´1

X rGs. We have

23In particular, f is still a witness of ♢pBq in V P by Corollary 2.9.
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piq δX P C X S,

piiq xDαX δ
X | α ă δXy PMXrḠs is a sequence of dense subsets of BX δX

and

piiiq fpδXq is generic over MXrḠs.

By piiq and piiiq,

@β ă δX fpδXq XDβ ‰ H.

But this together with piq contradicts (7)!

Remark 3.18. In particular, if f witnesses ♢pBq then f -proper forcings
preserve ω1. We stress that if f witnesses ♢pBq but not ♢`pBq, there are
f -proper forcings which are not stationary set preserving, e.g. Ppfq.

Putting together Lemma 3.3 and Lemma 3.17, we see that every σ-
closed poset preserves the statement “f witnesses ♢pBq”. In general though,
depending on the choice of B, the same is not true when we replace ♢pBq
by ♢`pBq. We will see this later when we consider the case B “ Colpω, ω1q.

We now go on to show that f -proper forcings can be iterated by countable
support iterations. We first note that the following can be shown exactly as
for proper forcing.

Proposition 3.19. Suppose f witnesses ♢pBq and G is generic for some
f -proper forcing P. If X P V rGs is a countable set of ordinals then there is
a countable set Y P V with X Ď Y .

This is important as it implies that the tail of a f -proper countable
support iteration is (essentially) a countable support iteration from the point
of view of the intermediate extension.

Theorem 3.20. Suppose f witnesses ♢pBq. If P “ xPα, 9Qβ | α ď κ, β ă κy
is a countable support iteration of f -proper forcings then P is f -proper.

Proposition 3.21. Suppose f witnesses ♢pBq, P is f -proper and

,P “ 9Q is f -proper”.

Let θ be sufficiently large and regular, X ă Hθ f -slim with P ˚ 9Q P X. If
pp, 9rq P P ˚ 9Q so that

piq p is pX,P, fq-generic and

piiq p , 9r P X̌r 9Gs

then there is 9q such that pp, 9qq is pX,P ˚ 9Q, fq-generic and pp, 9qq ď pp, 9rq. In
particular, P ˚ 9Q is f -proper.
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Proof. Assume G is P-generic with p P G. Then XrGs is f -slim. As 9QG is
f -proper, there is s ď 9rG P 9QG that is pXrGs, 9QG, fq-generic. Thus there is
a name 9q with

p , “ 9q ď 9r ^ 9q is pX̌r 9Gs, 9Q, f̌q-generic”.

It is now easy to see that pp, 9qq is pX,P˚ 9Q, fq-generic and pp, 9qq ď pp, 9rq.

Lemma 3.22. Suppose f witnesses ♢pBq and Pβ “ xPα, 9Qξ | α ď β, ξ ă βy
is a countable support iteration of f -proper forcings. Let α ď β and X ă Hθ

be f -slim with Pβ, α P X. Suppose q0 P Pα is pX,Pα, fq-generic and 9p P V Pα

so that
q0 ,Pα 9p P pP̌β X X̌q ^ 9p æ α P 9Gα.

Then there is a pX,Pβ, fq-generic condition q P Pβ with q æ α “ q0 and

q ,Pβ
9p P 9Gβ.

Proof. We prove the Lemma by induction on β. The successor case follows
from Proposition 3.21, so we may assume that β is a limit. Let

xαn | n ă ωy

be an increasing cofinal sequence in M X β with α0 “ α. Furthermore,
let tD̄n | n ă ωu be an enumeration of all dense subsets of π´1

X pPβq in
MXrfpδ

Xqs and put
Dn “ πXrD̄ns.

Note that Dn is not necessarily dense in Pβ, but it is dense in Pβ XX. We
will construct sequences xqn | n ă ωy and x 9pn | n ă ωy so that the following
hold for all n ă ω:

pA.iq q0 “ q and 9p0 “ 9p.

pA.iiq qn is pX,Pαn , fq-generic.

pA.iiiq qn`1 æ αn “ qn.

pA.ivq 9pn`1 P V
Pαn .

pA.vq qn forces

(a) 9pn`1 P pP̌β X X̌q,
(b) 9pn`1 ď 9pn,

(c) 9pn`1 P Ďn and

(d) 9pn`1 æ αn P 9Gαn .

q0 and 9p0 are given by pA.iq. Suppose qn and 9pn have been constructed
already. Let G be generic for Pαn with qn P G and put pn “ 9pGn . Then
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• pn P Pβ XX and

• pn æ αn P G.

As qn P G, Ḡ “ π´1
X rGs is generic over MXrfpδ

Xqs and thus there is p̄n`1 P

D̄n with

p̄n`1 æ π
´1
X pαnq P Ḡ and p̄n`1 ď π´1

X ppnq.

Hence, letting pn`1 “ πXpp̄n`1q,

ppn`1.iq pn`1 P Pβ XX,

ppn`1.iiq pn`1 ď pn,

ppn`1.iiiq pn`1 P Dn and

ppn`1.ivq pn`1 æ αn P G.

By fullness, we can find a Pαn`1-name 9pn`1 which is forced by qn to satisfy
properties ppn`1.iq-ppn`1.ivq. By induction, we can now find qn`1 P Pαn`1

that is pX,Pαn`1 , fq-generic with qn`1 æ αn “ qn and

qn`1 , 9pn`1 æ α̌n`1 P 9Gαn`1 .

This completes the construction.
Finally, let q P Pβ with q æ αn “ qn for all n ă ω.

Claim 3.23. q is pX,Pβ, fq-generic.

Proof. Suppose D̄ PMXrfpδ
Xqs is a dense subset of π´1

X pPβq. Then D̄ “ D̄n

for some n ă ω. LetG be Pβ-generic with q P G. Note that pn`1 “ 9pGn`1 P G:
For all n ă m we have 9pGm ď pn and 9pGm æ αm P Gαm by pA.vq(d), hence

pn`1 æ αm P Gαm

Thus

pn`1 æ suppβ XXq P GsuppβXXq

Also suppppn`1q Ď X as pn`1 P X and suppppn`1q is countable. Moreover,
pn`1 P Dn by pA.vq(c), so that GXDn ‰ H. It follows that π´1

X rGsXD̄ ‰ H
and hence π´1

X rGs is generic over MXrfpδ
Xqs.

From the argument above it follows that q , 9pn P 9G for all n ă ω, in
particular for n “ 0. Thus q is as required.

Theorem 3.20 follows immediately from Lemma 3.22.

The next lemma can be proven exactly as for proper forcings, see Theo-
rem 2.12 in [Abr10].
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Lemma 3.24. Suppose f witnesses ♢pBq and

P “ xPα, 9Qβ | α ď γ, β ă γy

is a countable support iteration of f -proper forcings of length γ ď ω2. As-
sume CH holds and ,Pα |

9Qα| “ ω1 for any α ă γ. Then

piq P is ω2-c.c. and

piiq CH holds in V Pα for α ă γ.

Lemma 3.25. Suppose f witnesses ♢pBq. Then there is a f -proper (even
f -complete) forcing P so that f witnesses ♢`pBq in V P.

Proof. For a dense D Ď B consider the variant PDpfq of Ppfq that only
shoots a club through the stationary set

SD :“ tα ă ω1 | fpαq XD ‰ Hu.

That is, conditions in PDpfq are countable closed sets c Ď SD (with a
maximum) and are ordered by end-extension. If CH holds then PDpfq is
a f -complete forcing of size ω1. We may assume that CH and 2ω1 “ ω2

holds in V , otherwise we can first force it with σ-closed forcing. We define

P “ xPα, 9Qβ | α ď ω2, β ă ω2y

as a countable support iteration so that

,Pα
9Qα “ P 9Dα

pf̌q

for all α ă ω2, where 9Dα is some Pα-name for a dense subset of B given
by some bookkeeping so that any such dense set in any V Pβ , β ă ω2, is
considered at some point. Note that by Lemma 3.24 we have

piq Pω2 is ω2-c.c.,

piiq V Pα |ù 2ω1 “ ω2 and

piiiq Ppω1q
V P
“

Ť

αăω2
Ppω1q

V Pα
.

By piiq, the proposed bookkeeping exists and by piiiq, it follows that f
witnesses ♢`pBq in V P.

While all c.c.c. forcings are proper, it turns out that many prominent
c.c.c. forcings are not f -proper in general, for example random forcing, Hech-
ler forcing, instances of almost disjoint coding forcing, sometimes there are
Suslin trees which are not f -proper considered as forcings and also Baum-
gartner’s specializing forcing at some Aronszajn tree might not be f -proper.
However, Cohen forcing is always f -proper, simply because Cohen forcing is
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absolute to any transitive model of sufficiently much of ZFC. We will show
in Subsection 11.1 that if ♢pBq holds then there is always an extension in
which ♢`pBq holds and the continuum is arbitrarily large (together with a
reasonable fragment of Martin’s axiom).

Recall that proper forcings are exactly those forcings which preserve
stationary subsets of rAsω for all uncountable sets A. Next, we will provide
an analogous characterization of f -properness.

Definition 3.26. Suppose A is uncountable and f witnesses ♢pBq. A set
S Ď rAsω is f -stationary if for any club C Ď rAsω there is some regular
θ ě ω2 with A P Hθ and some f -slim X ă Hθ with X XA P S X C.

Lemma 3.27. Suppose f witnesses ♢pBq. The following are equivalent for
any forcing P:

pP.iq P is f -proper.

pP.iiq P preserves f -stationary subsets of rAsω for all uncountable sets A.

Proof. pP.iqñpP.iiq: Let A be uncountable and S Ď rAsω be f -stationary.
We have to show that S is f -stationary in V P. Let 9C be a P-name and p P P
with

p , “ 9C is club in rǍsω”.

Let θ be sufficiently large and regular so that A P Hθ. As S is f -stationary,
we can find some f -slim X ă Hθ so that

pX.iq 9C P X and

pX.iiq X XA P S.

As P is f -proper, there is q ď p that is pX,P, fq-generic. Let G Ď P be

generic with q P G. Then XrGs ă H
V rGs

θ is f -slim and

XrGs XA “ X XA P S.

Moreover, C :“ 9CG P XrGs and it follows that XrGs XA P C.
pP.iiqñpP.iq: Let θ be sufficiently large and regular. Suppose towards a
contradiction that P is not f -proper. Then the set

S :“ tX ă Hθ | X is f -slim^ Dp P X␣Dq ď p q is pX,P, fq-genericu

is f -stationary in rHθs
ω. In fact, there must be some p P P so that

Sp :“ tX ă Hθ | X is f -slim^ p P X ^␣Dq ď p q is pX,P, fq-genericu

is not f -stationary. We leave this detail to the reader. Let G Ď P be generic
and note that in V rGs, Sp is still a f -stationary subset of rHV

θ s
ω by pP.iiq.

It follows that we can find some f -slim X ă H
V rGs

θ with Y :“ XXHV
θ P Sp.

Hence Y rGs X V “ Y and Y rGs is f -slim. But then there must be some
q ď p, q P G that is pY,P, fq-generic, contradiction.
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We may now define the appropriate forcing axiom corresponding to our
iteration theorem.

Definition 3.28. Suppose f witnesses ♢pBq. PFApfq holds iff for any P
that is f -proper and any sequence xDα | α ă ω1y of dense subsets of P, there
is a P-filter G with Dα XG ‰ H for all α ă ω1.

Theorem 3.29. Suppose f witnesses ♢pBq and κ is supercompact. Then
there is a f -proper generic extension in which PFApfq holds.

Proof. Essentially the same argument as to force PFA from a supercom-
pact works using Theorem 3.20 instead of the iteration theorem for proper
forcings.

Theorem 3.30. Under PFApfq the following holds:

piq ␣CH.

piiq f witnesses ♢`pBq.

This is, admittedly, not a very impressive list of consequences of PFApfq.
Indeed, there are some issues generalizing the known proofs of the interesting
structural consequences of PFA. Dealing with this now would lead us too
far astray, but we will come back to this issue later in Subsection 11.2.

3.3 f-semiproper forcing

Next up, we introduce f -semiproper forcings. Roughly speaking we have

f -semiproper

semiproper
“
f -proper

proper
.

A decent amount of arguments carry over from the section before, and
we will not present them again. The main result of this section will be that
f -semiproperness can be preserved along certain countable support-style
iterations.

Definition 3.31. Suppose P is a forcing and f witnesses ♢pBq.

piq Let θ be a sufficiently large regular cardinal and X ă Hθ f -slim with
P P X. A condition q P P is pX,P, fq-semigeneric if q is pX,Pq-
semigeneric24 and

q , “X̌r 9Gs is f -slim”.

piiq P is f -semiproper if for any sufficiently large regular θ and any f -slim
X ă Hθ with P P X as well as all p P P X X there is q ď p that is
pX,P, fq-semigeneric.

24Recall that q is pX,Pq-semigeneric if q , X̌ Ď X̌r 9Gs.
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Trivially, we have:

Proposition 3.32. Suppose f witnesses ♢pBq. Any f -proper forcing is
f -semiproper.

Once again, similar to pX,P, fq-genericity, there is a reformulation of
pX,P, fq-semigenericity, this time slightly more complicated.

Proposition 3.33. Suppose f witnesses ♢pBq, P is a forcing and X ă Hθ

is f -slim with P P X. The following are equivalent for q P P:

piq q is pX,P, fq-semigeneric.

piiq q is pX,Pq-semigeneric,

q , “X̌r 9Gs X V is f -slim”

and
q , “π´1

9Y
r 9Gs is generic over M 9Y rf̌pδ

X̌qs”

where 9Y is a name for X̌r 9Gs X V .

In the upcoming iteration theorem, it is piiq that we will try to achieve
to establish f -semiproperness of the iteration.

Lemma 3.34. Suppose f witnesses ♢pBq and P is f -semiproper. Then P
preserves f -stationary sets. In particular, P preserves f .

Proof. An argument essentially identical to the proof of Lemma 3.17 works.

Proposition 3.35. Suppose f witnesses ♢pBq, P is f -semiproper and

,P “ 9Q is f -semiproper”

Let θ be sufficiently large and regular, X ă Hθ f -slim with P ˚ 9Q P X. If
pp, 9rq P P ˚ 9Q so that

piq p is pX,P, fq-semigeneric and

piiq p , 9r P X̌r 9Gs

then there is 9q such that pp, 9qq is pX,P˚ 9Q, fq-semigeneric and pp, 9qq ď pp, 9rq.
In particular, P ˚ 9Q is f -semiproper.

Proof. Same as Proposition 3.21.

For technical reasons, we will not prove that f -semiproperness is pre-
served along RCS-iterations. Instead we will use a different type of support.
For convenience, we include a proof that f -semiproperness is preserved along
full support iterations of length ω. The main ideas on how to arrange preser-
vation of f -semiproperness are present in that argument and the reader may
simply choose to believe the more general iteration theorem.
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Lemma 3.36. Suppose f witnesses ♢pBq and P “ xPn, 9Qm | n ď ω,m ă ωy
is a full support iteration of f -semiproper forcings. Then P is f -semiproper.

Proof. Let θ be sufficiently large, regular and X ă Hθ be f -slim with P P X.
Let us write g :“ fpδXq and let p P PXX. For i ă ω, let 9Xi be a Pi-name
for25

X̌r 9Gis X V

and let
x 9Di,j | j ă ωy

be a list of Pi-names for all dense subsets of

π´1
9Xi
pP̌q in M 9Xi

rǧs.

Fix a surjection
h : ω Ñ ω ˆ ω

with i ď n whenever hpnq “ pi, jq. We write

9Dn :“ 9Di,j

whenever pi, jq “ hpnq. Note that we can consider 9Dn as a Pn-name.
We will define sequences xqn | n ă ωy and x 9pn | n ă ωy with the following
properties for all n ă ω:

pA.iq qn is pX,Pn, fq-semigeneric.

pA.iiq qn`1 æ n “ qn.

pA.iiiq 9p0 is the P0-check-name for p.

pA.ivq 9pn`1 P V
Pn .

pA.vq qn forces

paq 9pn`1 P pP̌X X̌r 9Gnsq,

pbq 9pn`1 ď 9pn,

pcq 9pn`1 P π 9Xn
rµ`
i,np

9Dnqs where hpnq “ pi, jq for some j and

pdq 9pn`1 æ n P 9Gn.

Here, µ`
i,j denotes µ`

9Xi, 9Xj
for i ď j ă ω. Recall this notation from Proposi-

tion 2.18. Also note that we can consider 9pn as a Pn-name.
q0 is the unique condition in P0. Suppose qn and 9pn have been constructed.
Let G be generic for Pn with qn P G and let pn “ 9pGn . Then by pA.iq and
pA.vq:

25 9Gi is the canonical Pi-name for the generic filter.
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• δXrGs “ δX ,

• pn P PXXrGs and

• pn æ n P G.

As qn P G, g is generic over MXrGs. For i ď n let

• Xi :“ XrGis X V “ 9XGi
i as well as

• Mi :“MXi .

Let hpnq “ pi, jq and Di,j “ p 9Di,jq
G. By elementarity,

Mnrgs |ù µ`
i,npDi,jq is dense in π´1

Xn
pPq

and thus indeed

πXnrµ
`
i,npDi,jqs is dense in XrGns X P,

so we may find pn`1 ď pn with

pn`1 P πXnrµ
`
i,npDi,jqs

and

pn`1 æ n P G.

Thus by fullness, we can construe a Pn-name 9pn`1 which is forced by qn
to have properties pA.vqpaq-pdq. Using Proposition 3.35, we may now find
qn`1 P Pn`1 that is pX,Pn`1, fq-generic with qn`1 æ n “ qn and

qn`1 , 9pn`1 æ n` 1 P 9Gn`1

This completes the construction.
Let q be the limit of pqnqnăω.

Claim 3.37. q , 9pn P 9G for all n ă ω.

Proof. Trivial by pA.vq and as the iteration is of length ω.

We will now show that q is pX,P, fq-semigeneric. Let G be P-generic
with q P G. By Proposition 3.33, we need to show

pX.iq X Ď XrGs,

pX.iiq XrGs X V is f -slim and

pX.iiiq π´1
XrGsXV rGs is generic over MXrGsXV rfpδ

Xqs.

Let Xω denote XrGs X V and Xn “ 9XGn
n “ XrGns X V for n ă ω.

36



Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Claim 3.38. Xω “
Ť

năωXn.

Proof. Let 9x PMX be a π´1
X pPq-name with

,P πXp 9xq P V.

Then the set of conditions deciding the value of 9x is D0,j :“ p 9D0,jq
G for

some j ă ω. Find n with hpnq “ p0, jq. Then by pA.vqpcq

9pGn`1 P πXnrµ
`
0,jpD0,jqs,

but the latter set is the set of conditions in Xn X P deciding πXp 9xq. Conse-
quently

9pGn`1 , πXp 9xq P 9Xn.

As pn`1 P G by Claim 3.37, πXp 9xqG P Xn.

pX.iq and pX.iiq follow immediately from the above together with pA.iq.
It is left to prove the following claim.

Claim 3.39. π´1
Xω
rGs is generic over MXω rfpδ

Xqs.

Proof. Set Mω “ MXω and for i ă ω, let µ`
i,ω denote µ`

Xi,Xω
. Similarly,

define µi,j for i ď j ď ω as µXi,Xj . It follows from Claim 3.38 that

xMωrgs, µ
`
i,ω | i ă ωy

is the direct limit along

xMirgs, µ
`
i,j | i ď j ă ωy

for some pµ`
i,ωqiăω. So let D P Mωrgs be dense in π´1

Xω
pPq. Then, for some

i, j ă ω,

D “ µ`
i,ωpDi,jq

where Di,j “ p 9Di,jq
G. Find n with hpnq “ pi, jq. Then

9pGn`1 P GX πXnrµ
`
i,npDi,jqs

by pA.vqpcq and Claim 3.37. But

πXn ˝ µi,n “ πXi “ πXω ˝ µi,ω

and hence

9pGn`1 P GX πXω rµ
`
i,ωpDi,jqs “ GX πXω rDs.

This shows that q is indeed pX,P, fq-semigeneric.
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An easy argument now gives that f -semiproperness is preserved along
countable support iterations of length ω1. Eventually though, we run into
the usual problem that along an iteration of length γ, the set XrGαs X γ
can grow as α increases and XrGs X γ can even be cofinal in γ even if γ has
uncountable cofinality in V . The theory of RCS iterations deals with this
problem in the case of semiproper forcings. f -semiproper forcings are indeed
fully iterable with RCS-support, however we choose to use Miyamoto’s nice
support. The main reason is that the iteration theorem we prove in Section
7 is significantly smoother when using nice support and we will use nice
iterations anyway when quoting iteration theorems of Miyamoto in Sections
9 and 10. We prefer to make use of only one type of support when iterating
semiproper-style forcings.

3.4 Miyamoto’s theory of nice iterations

For all our intents and purposes, it does not matter in applications how the
limit our iterations look like as long as we can prove a preservation theorem
about it.

We give a brief introduction to Miyamoto’s theory of nice iterations.
These iterations are an alternative to RCS-itertaions when dealing with the
problem described above. In the proof of the iteration theorem for (f -
)proper forcings, one constructs a generic condition q by induction as the
limit of a sequence xqn | n ă ωy. In case of (f -)semiproper forcings, the
length of the iteration may have uncountable cofinality in V but become
ω-cofinal along the way. In this case, a sequence xqn | n ă ωy with the
desired properties cannot be in V . The key insight to avoid this issue is
that one should give up linearity of this sequence and instead build a tree
of conditions in the argument. Nice supports follow the philosophy of form
follows function, i.e. its definitions takes the shape of the kind of arguments
it is intended to be involved in. The conditions allowed in a nice limit are
represented by essentially the kind of trees that this inductive nonlinear con-
structions we hinted at above produces.

Miyamoto works with a general notion of iteration. For our purposes, we
will simply define nice iterations by induction on the length. Successor steps
are defined as usual, that is if Pγ “ xPα, 9Qβ | α ď γ, β ă γy is a nice iteration

of length γ and 9Qγ is a Pγ-name for a forcing then xPα, 9Qβ | α ď γ`1, β ď γy

is a nice iteration of length γ ` 1 where Pγ`1 – Pγ ˚ 9Qγ .

Definition 3.40 (Miyamoto, [Miy02]). Let P⃗ “ xPα, 9Qα | α ă γy be a
potential nice iteration, that is

pP⃗.iq Pα is a nice iteration of length α for all α ă γ,

pP⃗.iiq Pα`1 – Pα ˚ 9Qα for all α` 1 ă γ and
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pP⃗.iiiq Pβ æ α “ Pα for all α ď β ă γ.

A nested antichain in P⃗ is of the form

pT, xTn | n ă ωy, xsucnT | n ă ωyq

so that for all n ă ω the following hold26:

piq T “
Ť

năω Tn.

piiq T0 “ ta0u for some a0 P
Ť

αăγ Pα.

piiiq Tn Ď
Ť

αăγ Pα and sucnT : Tn Ñ PpTn`1q.

pivq For a P Tn and b P sucnT paq, lhpaq ď lhpbq and b æ lhpaq ď a.

pvq For a P Tn and distinct b, b1 P sucnT paq, b æ lhpaq K b1 æ lhpaq.

pviq For a P Tn, tb æ lhpaq | b P sucnT paqu is a maximal antichain below a in
Plhpaq.

pviiq Tn`1 “
Ť

tsucnT paq | a P Tnu.

Abusing notation, we will usually identify T with

pT, xTn | n ă ωy, xsucnT | n ă ωyq.

If b P sucnT paq then we also write a “ prednT pbq. If β ă γ then p P Pβ is a
mixture of T up to β iff for all α ă β, p æ α forces

pp.iq ppαq “ a0pαq if α ă lhpa0q and a0 æ α P Gα,

pp.iiq ppαq “ bpαq if there are a, b P T , n ă ω with b P sucnT paq, lhpaq ď α ă
lhpbq and b æ α P Gα,

pp.iiiq ppαq “ 1 9Qα
if there is a sequence xan | n ă ωy with an`1 P sucnT panq,

lhpanq ď α and an P Glhpanq for all n ă ω.

If ξ ď γ is a limit, and q is a sequence of length ξ (may or may not be in
Pξ), q is pT, ξq-nice if for all β ă ξ, q æ β P Pβ is a mixture of T up to β.

We refer to [Miy02] for basic results on nested antichains and mixtures.
We go on and define nice limits.

Definition 3.41 (Miyamoto, [Miy02]). Suppose P⃗ “ xPα, 9Qα | α ă γy is
a potential nice iteration of limit length γ. Let P̄ denote the inverse limit
along P⃗. The nice limit of P⃗ is defined as

nicelimpP⃗q “ tp P P̄ | DT a nested antichain of P⃗ and p is pT, γq-niceu.

nicelimpP⃗q inherits the order from P̄.

26Usually, we identify the nested antichain with T , its first component and write sucpaq
instead of sucnT paq if n, T are clear from context.
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Finally, if P⃗ “ xPα, 9Qα | α ă γy is a potential nice iteration then

xPα, 9Qβ | α ď γ, β ă γy

is a nice iteration of length γ where Pγ “ nicelimpP⃗q.

The fundamental property of nice iterations is:

Fact 3.42 (Miyamoto,[Miy02]). Suppose P “ xPα, 9Qβ | α ď γ, β ă γy is
a nice iteration and T is a nested antichain in P. Then there is a mixture
of T .

Definition 3.43 (Miyamoto,[Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be
a nice iteration. If S, T are nested antichains in P then S= T iff for any
n ă ω and a P Sn there is b P Tn`1 with

lhpbq ď lhpaq and a æ lhpbq ď b.

Fact 3.44 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a nice
iteration of limit length γ. Suppose that

piq T is a nested antichain in P,

piiq p is a mixture of T and s P P,

piiiq r P T1,

pivq s ď r"p æ rlhprq, γq and

pvq A Ď γ is cofinal.

Then there is a nested antichain S in P with

paq s is a mixture of S,

pbq If S0 “ tcu then lhprq ď lhpcq P A and c æ lhprq ď r and

pcq S= T .

The following describes the tool we use to construct conditions.

Definition 3.45 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be
a nice iteration of limit length γ. A fusion structure in P is

T, xppa,nq, T pa,nq | n ă ω, a P Tny

where

piq T is a nested antichain in P

and for all n ă ω and a P Tn
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piiq T pa,nq is a nested antichain in P,

piiiq ppa,nq P P is a mixture of T pa,nq,

pivq a ď ppa,nq æ lhpaq and if T
pa,nq

0 “ tcu then lhpaq “ lhpcq and

pvq for any b P sucnT paq, T
pb,n`1q= T pa,nq, thus ppb,n`1q ď ppa,nq.

If q P P is a mixture of T then q is called a fusion of the fusion structure.

Fact 3.46 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a nice
iteration of limit length γ. If q P P is a fusion of a fusion structure

T, xppa,nq, T pa,nq | n ă ω, a P Tny

and G is P-generic with q P G then the following holds in V rGs: There is a
sequence xan | n ă ωy so that for all n ă ω

piq a0 P T0,

piiq an P Glhpanq,

piiiq an`1 P sucnT panq and

pivq ppan,nq P G.

We mention one more convenient fact:

Fact 3.47 (Miyamoto, [Miy03]). Suppose κ is an inaccessible cardinal, P “
xPα, 9Qβ | α ď κ, β ă κy is a nice iteration so that

piq |Pα| ă κ for all α ă κ and

piiq P preserves ω1.

Then P is κ-c.c..

Miyamoto proves this for so called simple iterations of semiproper forc-
ings. The proof works just as well for nice iterations of semiproper forcings
and finally the proof can be made to work with assuming only P preserves
ω1 instead of P being a semiproper iteration.

3.5 The iteration theorem for f-semiproper forcing

Theorem 3.48. Suppose f witnesses ♢pBq. If P “ xPα, 9Qβ | α ď γ, β ă γy
is a nice iteration of f -semiproper forcings then P is f -semiproper.

As usual, the iteration theorem will be a consequence from a more tech-
nical lemma.
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Lemma 3.49. Suppose f witnesses ♢pBq. Let P “ xPα, 9Qβ | α ď γ, β ă γy
be a nice iteration of f -semiproper forcings. Assume that

(A.i) θ is sufficiently large and regular,

(A.ii) p P P is a mixture of a nested anitchain T p,

(A.iii) α ă γ and if T p0 “ tru then lhprq “ α,

(A.iv) q0 P Pα, 9Y P V Pα with

q0 ,α “ 9Y ă H
V r 9Gαs

θ̌
is f̌ -slim”,

(A.v) q0 ,α Ť
p, p̌, P̌, 9Gα P 9Y and

(A.vi) q0 ď p æ α.

Then there is q P P with

pq.iq q ,γ “ 9Y Ď 9Y r 9Gα̌,γ̌s ă H
V r 9Gγ s

θ̌
is f̌ -slim”,

pq.iiq q æ α “ q0 and

pq.iiiq q ď p.

Proof. The proof will be by induction on γ, the length of the iteration. The
successor step is handled with Proposition 3.35, so we will focus on the case
γ P Lim. Let

h : ω Ñ ω ˆ ω

be a surjection with i ď n whenever hpnq “ pi, jq.

Let 9δ be a Pα-name for δ
9Y . We now construct a fusion structure

T, xppa,nq, T pa,nq | a P Tn, n ă ωy

in P as well as names
B

9Y pa,nq, 9Zpa,nq,
´

9D
pa,nq

j

¯

jăω
| a P Tn, n ă ω

F

so that for any n ă ω and a P Tn

pF.iq T0 “ tq0u, p
pq0,0q “ p,

pF.iiq T pq0,0q “ T p,

pF.iiiq 9Y “ 9Y pq0,0q “ 9Zpq0,0q,

pF.ivq a ď ppa,nq æ lhpaq,
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pF.vq a ,lhpaq Ť
pa,nq, 9Glhpaq P

9Y pa,nq,

pF.viq a ,lhpaq “ 9Y Ď 9Y pa,nq ă H
V r 9Glhpaqs

θ̌
is f -slim”,

pF.viiq a ,lhpaq p̌
pa,nq, Ť pa,nq, 9Glhpǎq P

9Y pa,nq,

pF.viiiq 9Zpa,nq is a Plhpaq-name for 9Y pa,nq X V r 9Gαs and

pF.ixq
´

9D
pa,nq

j

¯

jăω
is forced by a to be an enumeration of all dense subsets

of π´1
9Zpa,nq

pP̌q in

M 9Zpa,nq

”

f̌p 9δq
ı

.

Moreover, for any b P sucnT paq

pF.xq b æ lhpaq ,lhpaq p̌
pb,n`1q, Ť pb,n`1q, lhpbq P 9Y pa,nq,

pF.xiq b ,lhpbq
9Y pb,n`1q “ 9Y pa,nqr 9Glhpaq,lhpbqs and

pF.xiiq if hpnq “ pi, jq and c “ prediT pbq then

b ,lhpbq p̌
pb,n`1q P π 9Zpa,nq

„

µ`
c,a

´

9D
pc,iq
j

¯

ȷ

.

Here, µ`
c,a denotes a name for

µ`
9Zpc,iq, 9Zpa,nq

: M 9Zpc,iq

”

f̌p 9δq
ı

ÑM 9Zpa,nq

”

f̌p 9δq
ı

.

Recall this notation from Proposition 2.18. We define all objects by induc-
tion on n ă ω.

T0 “ tq0u, p
pq0,0q, T pq0,0q, 9Y pq0,0q, 9Zpq0,0q,

´

9D
pq0,0q

j

¯

jăω

are given by pF.iq-pF.iiiq, pF.viiiq and pF.ixq. Suppose we have already
defined

Tn,

B

ppa,nq, T pa,nq, 9Y pa,nq, 9Zpa,nq,
´

9D
pa,nq

j

¯

jăω
| a P Tn

F

and we will further construct

Tn`1,

B

ppb,n`1q, T pb,n`1q, 9Y pb,n`1q, 9Zpb,n`1q,
´

9D
pb,n`1q

j

¯

jăω
| b P Tn`1

F

.

Fix a P Tn. Let E be the set of all b with the following properties:

pE.iq b P Plhpbq and lhpbq ă γ.
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pE.iiq lhpaq ď lhpbq and b æ lhpaq ď a.

Furthermore, there are a nested antichain S in P, s P P and a name 9Y b with

pE.iiiq S= T pa,nq,

pE.ivq s ď ppa,nq is a mixture of S,

pE.vq if hpnq “ pi, jq and c “ prediT paq then

b ,lhpbq š P π 9Zpa,nq

„

9µ`
c,a

´

9D
pc,iq
j

¯

ȷ

,

pE.viq b æ lhpaq ,lhpaq š, Š P 9Y pa,nq,

pE.viiq b ,lhpbq š æ lhpbq P 9Glhpbq,

pE.viiiq b ,lhpbq “ 9Y pa,nq Ď 9Y b “ 9Y pa,nqr 9Glhpaq,lhpbqs ă H
V r 9Glhpb̌qs

θ̌
is f̌ -slim” and

pE.ixq if S0 “ tc0u then lhpbq “ lhpc0q and b ď c0.

Claim 3.50. E æ lhpaq :“ tb æ lhpaq | b P Eu is dense in Plhpaq.

Proof. Let a1 ď a and let G be Plhpaq-generic with a1 P G. Let δ “ 9δG. By

pF.ivq, ppa,nq æ lhpaq P G. Let hpnq “ pi, jq and c “ prediT paq. Let

Y pc,iq :“
´

9Y pc,iq
¯Glhpcq

and Y pa,nq :“
´

9Y pa,nq
¯G

.

Moreover, set Zpc,iq :“ Y pc,iqXV rGαs, Z
pa,nq :“ Y pa,nqXV rGαs. µ

`
c,a is then

the canonical embedding

µ`
c,a : MZpc,iqrfpδqs ÑMZpa,nqrfpδqs.

Note that this exists by pF.viq and Proposition 2.18. Find r P T
pa,nq

1 with
r æ lhpaq P G. As ppa,nq is a mixture of T pa,nq, we have

r ď ppa,nq æ lhprq.

Let r̂ “ r"pppa,nq æ rlhprq, γqq. Note that r̂ P Y pa,nq as

ppa,nq, T pa,nq, G P Y pa,nq

by pF.viiq. Moreover, r̂ æ lhpaq P G. Note that by pF.viq and the product
lemma, π´1

Zpa,nqrGs is generic over MZpa,nqrfpδqs. Thus we may now find s ď r̂
with

s P πZpa,nqrµ`
c,apDqs and s æ lhpaq P G

where

D “
´

9D
pc,iq
j

¯Glhpcq

PMZpc,iqrfpδqs.

Note that s P Y pa,nq. We can now apply Fact 3.44 in Y pa,nq and get a nested
antichain S P Y pa,nq with
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paq s is a mixture of S,

pbq if S0 “ tdu then lhprq ď lhpdq and d æ lhprq ď r and

pcq S= T pa,nq.

Let 9Y b be a name for Y pa,nqr 9Glhpaqlhpdqs. As lhpdq ă γ, by induction there is
now b P Plhpdq with

pb.iq b ď d,

pb.iiq b æ lhpaq ď a1 and

pb.iiiq b , “ 9Y pa,nq Ď 9Y pa,nqr 9Glhpaq,lhpdqs is f̌ -slim”.

We can arrange pb.iiq as G is a filter and d æ lhpaq “ s æ lhpaq, a1 P G. It
is now easily checked that b P E and b æ lhpaq ď a1.

To define Tn`1, fix a maximal antichain A Ď E æ lhpaq and for any e P A
choose be P E with be æ lhpaq “ e. We set sucnT paq “ tbe | e P Au. For any

b P sucnT paq, let S, s, 9Y b witness b P E. We then set

ppb,n`1q “ s, T pb,n`1q “ S, 9Y pb,n`1q “ 9Y b

and 9Zpb,n`1q a name for 9Y pb,n`1q X V r 9Gαs. Further, let
´

9D
pb,n`1q

j

¯

jăω
be

a sequence of names that are forced by b to enumerate all dense subsets of

π´1
9Zpb,n`1q

pPq in M 9Zpb,n`1q

”

f̌p 9δq
ı

. This finishes the construction.

By Fact 3.44, there is a mixture of q of T and we may assume, as T0 “
tq0u, that q æ lhpq0q “ q0. Let G be P-generic with q P T . By Fact 3.46, in
V rGs there is a sequence xan | n ă ωy so that for all n ă ω

piq a0 “ q0,

piiq an`1 P sucnT panq and

piiiq ppan,nq P G.

Let αn “ lhpanq ă γ and αω “ γ. For i ď n ă ω we let

• Y :“ 9Y G,

• Yn :“
´

9Y pan,nq
¯G

,

• Zn :“ Yn X V rGαs,

• Mn :“MZn and πn :“ πZn ,

• Yω :“ 9Y Gα0 rGα0,γs “ Y0rGα0,γs,
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3. ♢-Forcing

• Zω :“ Yω X V rGαs,

• Mω :“MZω and πω :“ πZω .

We also set δ :“ 9δG. With Proposition 3.33 in mind, we have to show
the following that

pY.iq Y Ď Yω,

pY.iiq Zω is f -slim and

pY.iiiq π´1
ω rGα,γs is generic for π´1

ω p
9PGα
α,γq over Mωrfpδqs.

Claim 3.51. Zω “
Ť

năω Zn.

Proof. Let 9x P Y0 be a 9PGα
α,γ-name for a set in V rGαs. Then the set D of

conditions deciding 9x is πY

ˆ

´

9D
pa0,0q

j

¯Gα
˙

for some j ă ω. Find n with

hpnq “ p0, jq. Then
ppan`1,n`1q P πnrµ

`
0,npDqs

by pF.xiiq. Since ppan`1,n`1q P Zn by pF.xq, we can conclude 9xG P Zn. This
shows “ Ď ”.
To see “ Ě ”, note that

Yn “ Y0rGα1s . . . rGαns Ď Yω

for any 0 ă n ă ω by pF.xq and pF.xiq. Hence

Zn “ Yn X V rGαs Ď Yω X V rGαs “ Zω.

pY.iq and pY.iiq follow immediately from this as X Ď Yn is f -slim for all
n ă ω by pF.viq.

It is left to prove the following.

Claim 3.52. π´1
ω rGα,γs is generic over Mωrfpδqs.

Proof. Let E Ď π´1
ω p

9PGα
α,γq be dense, E P Mωrfpδqs. By Claim 3.51 we have

that
xMωrfpδqs, µ

`
n,ω | n ă ωy “ lim

ÝÑ
xMirfpδqs, µ

`
i,n | i ď n ă ωy

for some maps pµ`
n,ωqnăω. Thus, for some i, j ă ω

E “ µ`
i,ωpDq

where D “

´

9D
pai,iq
j

¯Gαi
. If we let n ă ω so that hpnq “ pi, jq, we get by

pF.xiiq,
ppan`1,n`1q P πnrµ

`
i,npDqs Ď πωrµ

`
i,ωpDqs “ πωrEs
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where the inclusion follows from:

πω ˝ µi,ω “ πω ˝ π
´1
ω ˝ πi “ πi “ πn ˝ π

´1
n ˝ πi “ πn ˝ µi,n.

As ppan`1,n`1q P G, we have E X π´1
ω rGα,γs ‰ H.

This shows that q indeed satisfies pq.iq-pq.iiiq.

In fact we have shown the following useful strengthening of Theorem
3.48.

Corollary 3.53. Suppose f witnesses ♢pBq and P “ xPα, 9Qβ | α ď γ, β ă γy
is a nice iteration of f -semiproper forcings. Then for any α ď γ

V Pα |ù “ 9P 9Gα
α,γ is f -semiproper”.

3.6 NSω1 saturated together with ♢`pBq from a Woodin car-
dinal

Suppose δ is a Woodin cardinal. Shelah has shown that there is a forcing
extension in which NSω1 is saturated. We will show that we can additionally
turn a witness f of ♢pBq into a witness of ♢`pBq as well as make ψAC hold
in the extension.

Definition 3.54. ψAC states that for any stationary, costationary S, T Ď ω1

there is a canonical function27 ηξ for some ξ ă ω2 so that

S “ η´1
ξ rT s mod NSω1 .

Proposition 3.55 (Folklore). Suppose that κ is a measurable cardinal and
θ ą κ is regular. For any countable X ă Hθ with κ P X there is Y ă Hθ

with

pY.iq X Ď Y ,

pY.iiq suppX X κq ă suppY X κq and

pY.iiiq Y X suppX X κq “ X X κ.

Proof. As X is countable there is a wellorder Ĳ of Hθ with

X ă pHθ; P,Ĳq “: H.
27A canonical function for ξ ă ω2 is a function η : ω1 Ñ ω1 with

otpp
ź

αăω1

ηpαq ` 1{ „,Ÿq “ ξ ` 1

where g „ h iff g equals h on a club and rgs„ Ÿ rhs„ if g is strictly less than h on a club.
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3. ♢-Forcing

Let U P X be a normal measure that witnesses κ to be measurable and let
A “

Ş

pU XXq. As X is of size ăκ, A P U so we can pick some ξ P A. We
will show that

Y “ HullHpX Y tξuq

has the required properties. pY.iq is clear and pY.iiq holds as ξ ą suppXXκq.
To see pY.iiiq, let γ P Y X suppX X κq and find a term τ , and x P X so that

γ “ τHpx, ξq.

We have that the function

f : κÑ Hθ, α ÞÑ τpx, αq

is in Hθ as θ is regular and is definable over H from x, thus f P X. Let
B “ tα ă κ | fpαq P αu P X. As ξ P B and U is an ultrafilter, we must
have B P U . By normality of U there is C Ď B, C P U and α ă κ so that
f rCs “ tαu. We may assume C,α P X by elementarity, so that ξ P C and
hence fpξq “ α P X.

Proposition 3.56. Suppose f witnesses ♢pBq, P is a forcing, θ is suffi-
ciently large, X,Y ă Hθ both f -slim, X Ď Y with P P X. If q is pY,P, fq-
semigeneric then q is pX,P, fq-semigeneric.

Proof. Let δ :“ δX “ δY . It is clear that q is pX,Pq-semigeneric, so we must
show that

q , “f̌pδ̌q is generic over MX̌”.

Let G be P-generic with q P G. Look at the canonical elementary embedding

µ :“ µXrGs,Y rGs : MXrGs ÑMY rGs.

By assumption, fpδq is generic over MY rGs. Moreover, µ is the inclusion on
PpδqXMXrGs, as critpµq ą δ if it exists (this follows from the semigenericity
of q). Thus fpδq meets all dense subsets of B̄ in MXrGs.

The following is a slight modification of Lemma 10.95 in [Woo10].

Lemma 3.57. Suppose there is a measurable cardinal κ, f witnesses ♢pBq
and S, T Ď ω1 are stationary costationary. Then there is a f -semiproper
forcing P so that in V P

S “ η´1
ξ rT s mod NSω1

where ηξ is a canonical function for some ξ ă ωV
P

2 .

Proof. Let conditions in P be of the form p “ pg, cq with

pp.iq c Ď ω1 is closed bounded with maximum α “ αp ă ω1,
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pp.iiq g : αÑ κ and

pp.iiiq S X c “ tβ ď α | otppgrβsq P T u.

The order on P is given by q “ ph, dq ď pg, cq “ p iff

pď .iq αq ě αp,

pď .iiq h æ αp “ g as well as

pď .iiiq dX pαp ` 1q “ c.

We will only show that P is f -semiproper and leave the rest to the reader.
Let θ ą κ be regular and let X ă Hθ be f -slim with S, T,P P X and let
p P P X X. By Proposition 3.55, we can build an increasing continuous
sequence X⃗ “ xXα | α ă ω1y of f -slim elementary substructures of Hθ so
that

pX⃗.iq X0 “ X,

pX⃗.iiq X Ď Xα for all α ă ω1 and

pX⃗.iiiq totppXα X κq | α ă ω1u is a club.

As T is stationary costationary, there is thus some α ă ω1 so that:

δXα “ δX P S ô otppXα X κq P T

We may now find a decreasing sequence p⃗ “ xpn | n ă ωy of conditions in p
with

pp⃗.iq p0 “ p,

pp⃗.iiq pn P X for all n ă ω and

pp⃗.iiiq for all dense D Ď π´1
Xα
pPq, D P MXαrfpδ

Xqs there is n ă ω with
pn P πXαrDs.

Let us write pn “ pgn, cnq for n ă ω. Let g “
Ť

năω gn,

c “
ď

năω

cn Y tδ
Xu

and observe that c is closed bounded with maximum δX , dompgq “ δX as
well as ranpgq “ Xα X κ. By choice of α, q “ pg, cq is a condition in P
and the properties of p⃗ give that q ď p and q is pXα,P, fq-semigeneric. By
Proposition 3.56, q is pX,P, fq-semigeneric as well.

Definition 3.58. If S, T Ď ω1 are stationary, costationary and there is a
measurable cardinal, then we denote the forcing P in the argument above
relative to the least measurable cardinal by PpS, T q.

49



3. ♢-Forcing

Definition 3.59. Suppose A is a maximal antichain in NS`
ω1

. The antichain
sealing forcing at A is denoted by PA and consists of conditions p “ pc, hq
where

pp.iq h : αÑ A and

pp.iiq c Ď ω1 is a closed set with maxpcq “ α and β P
Ť

hrβs for all β P c

for some α “ αp ă ω1. The order on PA is given by q “ pd, kq ď pc, hq “ p
if αq ě αp, dX pαp ` 1q “ c and k æ αp “ h.

Theorem 3.60. Suppose f witnesses ♢pBq and δ is Woodin. There is then
a f -semiproper forcing so that in the extension

piq δ “ ω2,

piiq f witnesses ♢`pBq,

piiiq ψAC holds and

pivq NSω1 is saturated.

The argument is generally very similar to Shelah’s proof of forcing “NSω1

is saturated” from a Woodin cardinal, cf. Schindler’s write-up [Sch11]. As
we will make use of the above theorem quite a lot, we give the details.

Definition 3.61. A cardinal δ is Woodin with ♢ if there is a sequence
xaβ | β ă δy with aβ Ď Vβ so that for any A Ď Vδ there are stationarily
many κ ă δ with

pκ.iq aκ “ AX Vκ and

pκ.iiq κ is ăδ-A-strong28.

Proof of Theorem 3.60. We may assume that δ is Woodin with ♢ as we can
otherwise force with Addpδ, 1q first, see [Sch11]. Say this is witnessed by
a⃗ “ xaβ | β ă δy. Define a nice iteration

P “ xPα, 9Qβ | α ď δ, β ă δy

of f -semiproper forcings as follows. At inaccessible κ ă δ, we choose 9Qκ so
that

,Pκ “If aκ is a maximal antichain in NS`
ω1

and Paκ is

f -semiproper then 9Qκ “ Paκ , otherwise 9Qκ “ Colpω1, 2
ω1q”

28κ is ăδ-A-strong if for any λ ă δ there is an elementary embedding j : V Ñ M with
M transitive, critpjq “ κ, Vλ ĎM and jpAq X Vλ “ AX Vλ.
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where where we consider aκ as a Pκ-name.
At accessible ordinals α ă δ we alternate between

,Pα “ 9Qα “ Colpω1, ω2q”, ,Pα “ 9Qα “ Ppf̌q” and ,Pα “ 9Qα “ Pp 9S, 9T q”

where 9S, 9T are some Pα-names for stationary costationary subsets of ω1 in
V Pα given by some suitable bookkeeping. Recall the forcings Ppfq,PpS, T q
from Definitions 3.6, 3.58 respectively.
P is then f -semiproper by Lemma 3.57 and Theorem 3.48, also note that f
witnesses ♢`pBq in V Pκ for inaccessible κ ď δ. Moreover P is δ-c.c. by Fact
3.47. Now suppose that G is P-generic over V .

Claim 3.62. V rGs |ù ψAC.

Proof. If pS, T q P V rGs is a pair or stationary costationary subsets of ω1 then
S, T exist already in an intermediate extension. Our bookkeeping makes sure
that there is α ă δ so that

V rGαs |ù 9QGα
α “ PpS, T q

and hence the instance of ψAC corresponding to pS, T q is true in V rGα`1s.
This is preserved in the extension from V rGα`1s to V rGs, simply because
ω1 is not collapsed.

Note that δ is preserved by P and as we have thrown enough collapses

into P, δ “ ω
V rGs

2 . It is left to show that NSω1 is saturated in V rGs. Suppose
that NSω1 is not saturated so that there is a maximal antichain

A⃗ :“ xAi | i ă δy

of stationary sets in V rGs of length δ. We can find a nice P-name 9τ P Vδ`1

for A⃗. It follows that there is a club C Ď δ so that

pC.iq A⃗ æ α “ pτ X V PαqGα and

pC.iiq A⃗ æ α is a maximal antichain in V rGαs

for all α P C. As P is δ-c.c., there is a club C 1 Ď C in V . We can now find
κ P C 1 so that

pκ.iq κ is ăδ- 9τ -strong and

pκ.iiq aκ “ 9τ X V Pκ .

Note that κ is inaccessible in V and thus

pκ.iiiq κ “ ω
V rGκs

2 and

pκ.ivq V rGκs |ù “f witnesses ♢`pBq”.
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Let A “ tAi | i ă κu and observe that

V rGκs |ù “ 9QGκ
κ “ PA if this is f -semiproper, else 9QGκ

κ “ Colpω, 2ω2q”

as κ P C and by pκ.iiq.

Claim 3.63. PA is f -semiproper in V rGκs.

Proof. Suppose not and work in V rGκs. We can find p P PA so that

S “ tX ă Hκ` | PA, p P X P rHκ`s
ω ^␣Dq ď p q is pX,PA, fq-semigenericu

is f -stationary in rHκ`sω. Moreover, 9QGκ
κ “ Colpω, 2κq. In V rGκ`1s, there is

a surjection g : ω1 Ñ pHκ`qV rGκs. As S is still f -stationary in rpHκ`qV rGκssω

in V rGκ`1s by Lemma 3.27, we have that

S “ tα ă ω1 | grαs P Su

is f -stationary in V rGκ`1s. By Corollary 3.53, the extension V rGκ`1s Ď

V rGs preserves f -stationary sets, hence S is f -stationary in V rGs. It follows
that S X Ai is stationary for some i ă δ. In fact, S X Ai is f -stationary as
f witnesses ♢`pBq in V rGs. Find some V -inaccessible λ with κ, i ă λ P C.
Back in V , we can find an elementary embedding

j : V ÑM

with M transitive and

pj.iq critpjq “ κ, jpκq ą λ,

pj.iiq Vλ ĎM ,

pj.iiiq Mκ ĎM ,

pj.ivq jp 9τq X Vλ “ 9τ X V Pλ and jpPκqλ “ Pλ.

In V rGκ`1s, build a continuous increasing chain

xYα | α ă ω1y

of countable elementary substructures of H
V rGκ`1s

λ` so that

pY⃗ .iq g, 9τ X V Pλ , Gκ`1,S,Pλ, V Pλ X Vλ P Y0 and

pY⃗ .iiq jrYα X V s Ď Yα for all α ă ω1.

There is α ă ω1 such that
δYα P S XAi

and Yα Ď YαrGκ`1,λs is f -slim. Let Y :“ Yα. As 9QGκ
κ is σ-closed in V rGκs,

X :“ Y X pHκ`qV rGκs P V rGκs. Note that X “ grδY s and consequently
X P S. Clearly, Gλ is Pλ-generic over M .
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Subclaim 3.64. Y rGκ`1,λs PM rGλs.

Proof. As Pκ is of size κ in V ,

M rGκs
κ ĎM rGκs

holds in V rGκs by pj.iiiq. Similarly,

V
V rGκs

λ ĎM rGκs

is a consequence of pj.iiq and the regularity of λ. Now Z :“ Y X V rGκs P
V rGκs as the extension V rGκs Ď V rGκ`1s is σ-distributive. As Z is a

countable subset of V
V rGκs

λ , Z PM rGκs and thus

Y rGκ`1,λs “ ZrGκ,λs PM rGκs.

By Corollary 3.53, the tail jpPκqGλ

λ,jpκq
is f -semiproper in M rGλs. As

Y rGκ`1,λs is f -slim, (in some outer model) we can find a filter H that is

jpPκqGλ

λ,jpκq
-generic over M rGλs such that

Y Ď Y rGκ`1,λsrHs is f -slim.

Let Y˚ :“ Y rGκ`1,λsrHs. As κ is V -inaccessible, Pκ is κ-c.c. in V and
Pκ is (isomorphic to) the direct limit along xPα | α ă κy. It follows that
jrGκs “ Gκ. Thus j lifts to

j` : V rGκs ÑM rGλsrHs.

We find j`pXq P j`pSq and furthermore

j`pXq “ j`rXs Ď Y˚

follows from pY⃗ .iiq. In M rGλsrHs, we can easily find q ď j`ppq that is
pY˚, jpPAq, fq-generic: Build a descending sequence

p⃗ “ xpn | n ă ωy

of conditions in jpPAq X Y˚ with

pp⃗.iq p0 “ j`ppq and

pp⃗.iiq For any dense D Ď π´1
Y˚
pj`pPAqq, D P MY˚

rfpδY qs, we have pn P
πY˚
rDs for some n ă ω.
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As δY˚ “ δY P Ai P Y˚ and

Ai P p 9τ X V PλqGλ Ď jp 9τ X V PκqGλ˚H “ j`pAq

by pj.ivq, there is q P j`pPAq a lower bound of p⃗. It follows that q is
pY˚, j

`pPAq, fq-generic and hence pj`pXq, j`pPAq, fq-semigeneric by Propo-
sition 3.56. But then j`pXq R j`pSq, contradiction.

It follows that in V rGκ`1s, ▽iăκAi contains a club. But then already
A⃗ æ κ is maximal in V rGs, contradiction.

We note that “NSω1 is saturated” has an enhancing effect on the princi-
ples ♢pBq.

Definition 3.65. For a forcing B Ď ω1 and S Ď ω1 stationary, ♢`
S pBq holds

if there is a function f witnessing ♢pBq so that

tα P S | fpαq XD “ Hu P NSω1

for all dense D Ď B.

If NSω1 is saturated and I is a normal uniform ideal on ω1, then for any
S P I` we have I æ T “ NSω1 æ T for some I-positive T Ď S 29. If f
witnesses ♢pBq then NSf is a normal uniform ideal on ω1 by Lemma 2.20
and hence for any f -stationary S there is some f -stationary T Ď S with
NSf æ T “ NSω1 æ T . Hence f witnesses ♢`

T pBq for such T .
This is not true without any further assumptions: ♢pBq alone does not
prove “♢`

S pBq for some S P NS`
ω1

” in case B “ Colpω, ω1q, this is implicit in
Corollary 5.18. Moreover, the conclusion cannot be strengthened to ♢`pBq
in general: “NSω1 is saturated”`♢pBq does not imply ♢`pBq in case B is
Cohen forcing, see Theorem 5.32.

3.7 MM``
pfq and related forcing axioms

We will formulate a new MM-style forcing axiom called MMpfq, together
with their bounded and ``-counterparts. One can think of MMpfq as
essentially MM conditioned on “f witnesses ♢pBq”.

Definition 3.66. Suppose Γ is a class of forcings and f witnesses ♢pBq.

piq f -FA``pΓq holds if for any P P Γ and sets

• D of at most ω1-many dense subsets of P,

• S of at most ω1-many P-names for f -stationary subsets of ω1,

there is a filter g Ď P so that

29I æ T “ tU Ď ω1 | U X T P Iu.
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pg.iq g XD ‰ H for all D P D and

pg.iiq 9Sg :“ tβ ă ω1 | Dp P g p , β̌ P 9Su is f -stationary for all 9S P S.

piiq SPFApfq is FApf -semiproperq.

piiiq SPFA``pfq is f -FA``pf -semiproperq.

pivq MMpfq is FApf -stationary set preservingq.

pvq MM``pfq is f -FA``pf -stationary set preservingq.

Our goal is to prove MM``pfq consistent from a supercompact cardi-
nal. Similar as to the construction of a model of MM``, the argument
goes through the axiom SPFA``pfq. Thus we aim to prove the following
Theorem first.

Theorem 3.67. Suppose f witnesses ♢pBq.

piq SPFApfq ô MMpfq.

piiq SPFA``pfq ô MM``pfq.

We will prove this via the principle SRP.

Definition 3.68 (Todorčević, [Tod87]).

piq For θ an uncountable cardinal and S Ď rHθs
ω we define

SK “ tX P rHθs
ω | @Y P rHθs

ωpX Ď Y Ñ Y R Squ.

piiq The Strong Reflection Principle (SRP) holds if: Whenever θ ě ω2

is regular, a P Hθ and S Ď rHθs
ω then S Y SK contains a continu-

ous increasing ω1-chain of countable elementary substructures of Hθ

containing a, i.e. there is xXα | α ă ω1y so that for all α ă ω1

pX⃗.iq Xα ă Hθ is countable,

pX⃗.iiq Xα P S Y SK,

pX⃗.iiiq a P X0,

pX⃗.ivq Xα P Xα`1 and

pX⃗.vq if α P Lim then Xα “
Ť

βăαXβ.

Lemma 3.69. Suppose f witnesses ♢pBq. Then SPFApfq ñ SRP.

Proof. We argue that the proof of SRP from SPFA still goes through. Let
θ ě ω2 be regular and suppose a P Hθ and S 1 Ď rHθs

ω. Let 2θ ă λ be
regular. Let

S :“ tX ă Hλ | X countable and X XHθ P S 1u.
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Let P be the forcing that shoots a continuous increasing ω1-chain of count-
able elementary substructures of Hλ containing a through S Y SK. Con-
ditions in P are countable initial segments of such a sequence of non-limit
length, that is a sequence xXα | α ă γ ` 1y for some countable γ, that
satisfies pX⃗.iq-pX⃗.vq for all α ď γ, ordered by end-extension. We will show
that P is f -semiproper.
Let µ ą λ be sufficiently large and regular, Y ă Hµ countable with f, p,S, θ, λ P
Y . Let p0 P PX Y . We may assume that for some wellorder Ÿ of Hµ,

pY ; P,ŸX Y q ă pHµ; P,Ÿq

Claim 3.70. There is a countable Y Ď Z ă Hµ with Z XHλ P S Y SK.

The argument is due to Shelah, we give a proof for the convenience of
the reader.

Proof. If Y X Hλ P SK, we can take Z “ Y , so let us assume otherwise.
Then there is some Y XHλ Ď Z 1 ă Hλ with Z 1 P S. We set

Z “ HullpHµ;P,ŸqpY Y pZ 1 XHθqq.

Subclaim 3.71. Z XHθ “ Z 1 XHθ.

Proof. Suppose τpv0, v1q is a term, p P Z 1 XHθ, q P Y are parameters and

r :“ τpp, qqpHθ;P,Ÿq P Hθ

Next, we define a function

h : Hθ Ñ Hθ, hpxq “

#

τpx, qqpHµ;P,Ÿq if this is in Hθ

H otherwise.

We have h P Y XHλ Ď Z 1 and thus r “ hppq P Z 1.

It follows from the definition of S and from Z 1 P S that Z XHλ P S.

Let δ “ δZ . Note that f witnesses ♢`pBq by Theorem 3.30 and thus
fpδq is generic over MZ . We now build a descending sequence xpn | n ă ωy
in PX Z so that for any dense set D of π´1

Z pPq in MZrfpδqs,

pn P πZrDs

for some n. Let xXα | α ă δy be the limit of ppnqnăω. The point is that

Xδ :“
ď

αăδ

Xα “ Z XHλ P S Y SK
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and thus q “ xXα | α ă δ ` 1y is a condition in P. Clearly q is pZ,P, fq-
generic by construction and thus by Proposition 3.56 also pY,P, fq-semigeneric.
Applying SPFApfq to P yields a continuous chain

X⃗ :“ xXα | α ă ω1y P V

of elementary substructures of Hλ with all Xα P S Y SK and a P X0.

Lemma 3.72. Suppose f witnesses ♢`pBq and SRP holds. The following
are equivalent for any forcing P:

piq P is f -semiproper.

piiq P preserves f -stationary sets.

We will prove something stronger in Lemma 7.15, so we will skip the
proof for now.

Theorem 3.67 follows immediately from Lemma 3.69 and 3.72.

Theorem 3.73. Suppose f witnesses ♢pBq and κ is supercompact. Then
there is a generic extension by f -semiproper forcing in which MM``pfq
holds.

Proof. Do the usual construction that forces SPFA`` but replace semiproper
by f -semiproper, stationary by f -stationary and build a nice iteration in-
stead of a RCS-iteration. Our iteration theorem for f -semiproper forcing
yields a f -semiproper P with V P |ù SPFA``pfq. Here we use that tails
of the iteration P are f -stationary set preserving, i.e. Corollary 3.53. By
Theorem 3.67, MM``pfq is valid in V P.

Fact 3.74 (Woodin, [Woo10, Lemma 5.14]). ψAC ñ 2ω “ 2ω1 “ ω2.

Theorem 3.75. Assume MMpfq. Then we have

piq 2ω “ 2ω1 “ ω2,

piiq f witnesses ♢`pBq,

piiiq NSω1 is saturated,

pivq ψAC and

pvq ␣lκ for all κ ě ω2.

Proof. piq follows from pivq by Fact 3.74, piiq follows already from PFApfq by
Theorem 3.30 and piiiq-pvq are consequences of SRP which holds by Lemma
3.69.

We note here the following consequence for later use:
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Corollary 3.76. Suppose f witnesses ♢pBq and there is a supercompact
cardinal. Then there is a f -stationary set preserving forcing P with V P |ù

SRP.

We finally show that MMpfq is a maximal forcing axiom in the sense
that the class of forcings it applies to cannot be increased given that f is
a witness of ♢pBq. To make the ride smoothly we introduce the relevant
bounded forcing axioms.

Definition 3.77. Let Γ be a class of forcings.

piq f -BFA``pΓq holds iff for any P P Γ we have

pHω2 ; P,NSf q
V ăΣ1 pHω2 ; P,NSf q

V P
.

piiq For f a witness of ♢pBq, BMMpfq is BFApf -stationary set preservingq
and BMM``pfq is f -BFA``pf ´ stationary set preservingq.

Joan Bagaria has proven (a stronger theorem than) the following in
[Bag00]:

Fact 3.78 (Bagaria, [Bag00]). Let P be any forcing. Then FA``pPq ñ
BFA``ptPuq.

Moreover, his methods show the following:

Lemma 3.79. Suppose f witnesses ♢pBq. For any forcing P, we have
FA``ptPuq ñ f -BFA``ptPuq.

Lemma 3.80. Suppose f witnesses ♢pBq and P is a forcing which is not
f -stationary set preserving. Then BFAptPuq is false.

Proof. There is then some p P P and S f -stationary so that

p , “Š is not f -stationary”.

Let G be P-generic with p P G. We have:

pHV rGs
ω2

, Pq |ù “DxDα | α ă ω1y a sequence of dense subsets of B with

tα P S | @β ă α fpαq XDβ ‰ Hu nonstationary”.

Note that this is a Σ1-statement in parameters ω1,B, f which would be true
in pHV

ω2
; Pq if BFAptPuq would hold by Fact 3.78. This would contradict the

f -stationarity of S in V .
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4 Blueprints for Instances of “MM``
ñ p˚q”

We modify the p˚q-forcing method of Asperó-Schindler in a way that allows
us to prove a variety of instances of MM`` ñ p˚q. The results of this
section also play a crucial role in answering Woodin’s question as we use
they provide tools to prove Lemma 7.41.

Definition 4.1. Let P P LpRq be a forcing. P-p˚q asserts that AD holds in
LpRq and there is a filter g Ď P with

piq g is P-generic over LpRq and

piiq Ppω1q Ď LpRqrgs.

p˚q is Pmax-p˚q. Pmax is the most prominent of a number of similar forcing
notions defined and analyzed by Woodin in [Woo10]. A central notion to all
of them is that of a generically iterable structure.

Definition 4.2. Suppose the following holds:

pM.iq pM ; P, Iq is a countable transitive model of (sufficiently much of) ZFC
where I is allowed as a class parameter in the schemes.

pM.iiq pM ; P, Iq |ù “I is a normal uniform ideal on ω1”.

pM.iiiq a0, . . . , an PM .

In this case, we call pM, I, a0, . . . , anq a potentially iterable structure. A
generic iteration of pM, I, a0, . . . , anq is a sequence

xpMα, Iα, a0,α, . . . , an,αq, µα,β | α ď β ď γy

with

• pM0, I0q “ pM, Iq,

• ai,α “ µ0,αpaiq for i ď n,

• µα,α`1 : pMα; P, Iαq Ñ pMα`1; P, Iα`1q is a generic ultrapower of Mα

w.r.t Iα and

• if α P Lim then

xpMα; P, Iαq, µβ,α | β ă αy “ lim
ÝÑ
xpMβ; P, Iβq,Mβ,ξ | β ď ξ ă αy

for all α ď γ. pM, I, a0, . . . , anq is a generically iterable structure if all
(countable) generic iterations of pM, I, a0, . . . , anq produce wellfounded mod-
els. Note that this only depends on pM, Iq and that we do not require I PM .
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Remark 4.3. A generic iteration xpMα, Iα, a0,α, . . . , an,αq, µα,β | α ď β ď γy
can be read off from the final map µ0,γ : M0 Ñ Mγ , so we will frequently
identify one with the other. We also reserve the right to call generic itera-
tions simply iterations.

Definition 4.4. Pmax-conditions are generically iterable structures pM, I, aq

with a P Ppω1q
M andM |ù ω

Lras

1 “ ω1. Pmax is ordered by q “ pN, J, bq ăPmax

p iff there is a generic iteration

µ : pÑ p˚ “ pM˚, I˚, a˚q

of length ωq1 ` 1 in q so that

păPmax .iq I
˚ “ J XM˚ and

păPmax .iiq a
˚ “ b.

There are a number of ways this definition can be varied, leading to
different partial orders. We will work with such variants in a general context.

4.1 Pmax-variations and the Vmax-multiverse view

Definition 4.5. A Pmax-variation is a nonempty projective preorder pVmax,ďVmaxq

with the following properties:

pVmax.iq Conditions in Vmax are generically iterable structures pM, I, a0, . . . , anq
for some fixed n “ nVmax30.

pVmax.iiq There is a first order formula φVmax in the language31 tP, 9I, 9a0, . . . , 9anu
so that q “ pN, J, b0, . . . bnq ăVmax pM, I, a0, . . . anq iff there is a generic
iteration

j : pÑ p˚ “ pM˚, I˚, a˚
0 , . . . , a

˚
nq

in N of length ωN1 ` 1 with

pN ; P, J, b0, . . . , bnq |ù φVmaxpp˚q.

pVmax.iiiq If µ : p Ñ p˚ witnesses q ăVmax p and σ : q Ñ q˚ witnesses r ăVmax q
then σpµq : pÑ σpp˚q witnesses r ăVmax p.

pVmax.ivq Suppose pM, Iq is generically iterable, j : pM, Iq Ñ pM˚, I˚q is a generic
iteration of pM, Iq of countable length and a0, . . . an PM . Then

pM, I, a0, . . . , anq P Vmax ô pM˚, I˚, jpa0q, . . . , jpanqq P Vmax.

30Of course, not all structures of this form are necessarily conditions.
31When dealing with Pmax-variations, we stick to the convention that capitalized sym-

bols are unary predicates symbols which are lower case are constants.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

pVmax.vq Vmax has no minimal conditions.

We always consider Pmax-variations as a class defined by a projective
formula, rather then the set itself. So if we mention Vmax in, e.g. a forcing
extension of V , then we mean the evaluation of the projective formula in
that model32.

Remark 4.6. Typically, φVmax dictates e.g. one or more of the following:

• a˚
0 “ b0, . . . , a

˚
n “ bn.

• I˚ “ J XM˚.

• Some first order property is absolute between M˚ and N .

We want to relate forcing axioms to star axioms of the form Vmax-p˚q for
Pmax-variations Vmax. To explain this relationship heuristically we present
the Vmax-Multiverse View:
Suppose Vmax is a Pmax-variation (with nVmax “ 0 for convenience) and

• V “ pVκq
V for some large cardinal κ in some larger model V and

• there are a proper class of Woodin cardinals both in V and V.

We will take the point of view of VColpω,κq. Note that our assumptions
imply generic projective absoluteness (and more) in V, in particular Vmax

is a Pmax-variation also in VColpω,κq and VWmax “ Vmax XW for any generic
extension of V . Pick some A⃗ “ pA0, . . . , AnVmax q P HV

ω2
. Let MpV q denote

the closure of V under generic extensions and grounds containing A⃗. Points
W PMpV q may be considered as Vmax-conditions if

pW,NSWω1
, A0, . . . , AnVmax q P Vmax.

In this case we identify W with this condition. In practice, this can only
reasonably hold if ωW1 “ ωV1 so we make this an explicit condition. The
Vmax-multiverse of V (w.r.t. A⃗) is

MVmaxpV q “ tW PMpV q |W P Vmax ^ ω
W
1 “ ωV1 u.

If we A⃗ picked with sufficient care then MVmaxpV q should be nonempty. If
W rGs is a generic extension of W , both in MVmaxpV q, then it is a good
extension if

W rGs ďVmax W.

Here, p ďVmax q means p ,Vmax q̌ P
9G. The existence of a proper class of

Woodin cardinals in V should guarantee that MVmaxpV q reversely ordered

32In practice this extension will be projectively absolute so it does not matter which
projective formula we choose. Also all the variations we consider will have a Π1

2-definition.
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by good extensions is “as rich as” Vmax.
In this sense, iterated forcing along good extensions corresponds to building
descending sequences in Vmax. In practice, Pmax-variations are σ-closed.
From this point of view, σ-closure of Vmax becomes roughly equivalent to a
forcing iteration theorem: If

xW rGαs | α ă γy

is a chain of good extensions W rGαs ĎW rGβs of points

W rGαs,W rGβs PMVmaxpV q, α ď β ă γ P V

then this constitutes a countable decreasing chain33 in Vmax in VColpω,κq.
σ-closure of Vmax suggests that there should be a further point

W rGγs PMVmaxpV q

below allW rGαs, α ă γ. Thus the “forcing iteration along xW rGαs | α ă γy”
preserves ω1 and enough structure to be able to be extended to a Vmax-
condition below all W rGαs without collapsing ω1.
We should be able to find points satisfying Vmax-p˚q by constructing “closure
points” W PMVmaxpV q of sufficiently generic ďVmax-decreasing sequences

xWα | α ă γy

in MVmaxpV q. To make that precise, we want:

If D P LpRqW is dense open in VWmax then Wα P D
˚ for some α ă γ. (‹)

Here, D˚ is the reinterpretation of the universally Baire D in VColpω,κq. The
degree of closure of W PMVmaxpV q under this procedure is measured by

gW “ tp P Vmax |W ăVmax pu

which should be a filter if W is “sufficiently closed”. gW can be defined in
W via

gW “ tp P Vmax | Dµ : pÑ p˚ of length ω1 ` 1 with φVmaxpp˚quW

if Vmax has unique iterations.

Definition 4.7. Vmax has unique iterations if whenever q ăVmax p then
there is a unique generic iteration of p witnessing this.

33Note that the size of γ in V does not matter here.
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Under reasonable assumptions, (‹) implies that gW is generic over LpRqW .
Finally, an additional property34 like W |ù “NSω1 is saturated” should im-
ply Ppω1q

W Ď LpRqW rgW s.
Taking a step back, forcing a forcing axiom related to good extensions via
iterated forcing looks like it should produce such sequences xWα | α ă γy
with (‹) and NSω1 saturated in W , so Vmax-p˚q should follow from such a
forcing axiom.
On the other hand, W looks like an endpoint of an iteration liberally incor-
porating forcings leading to good extensions: For α ă γ, if D P LpRqWα is
dense open in VWα

max then D˚ is dense open in the full Vmax. D˚ can also be
considered as a dense subset of MVmaxpV q. As D˚XVWmax P LpRqW , by (‹),
there will be some later α ď β ă γ with Wβ P D

˚. Thus one might expect
a forcing axiom to hold at W . This suggest that Vmax should in fact be
equivalent to a forcing axiom related to good extensions. The consistency
of this forcing axiom should follow from the iteration theorem suggested by
the σ-closure of Vmax.
If we look at the case Vmax “ Pmax and let A be some subset of ω1 so that
ω
LrAs

1 “ ωV1 then stationary set preserving extensions are exactly the generic
extensions intermediate to a good extension. The Pmax-Multiverse View is
roughly correct in the sense that:

• (Woodin) Pmax is σ-closed assuming ADLpRq.

• (Shelah) Semiproper forcings can be iterated and the class of sta-
tionary set preserving forcings and semiproper forcings coincide under
MM.

• (Asperó-Schindler) If there is a proper class of Woodin cardinals then

p˚q ô pPpRq X LpRqq-BMM``.

The rest of this section distills this heuristic into rigorous mathematics
that relates more Pmax-variations to forcing axioms. We will assume (two-
step) generic absoluteness in this section, though this is not fully necessary.
Note that in this case, if Vmax is a Pmax-variation then we have

V P |ù “Vmax is a Pmax-variation”

in any generic extension V P, where Vmax is to be understood as defined by
a projective formula. Usually, Pmax-variations are Π1

2.
We will from now on work with some fixed Pmax-variation Vmax and assume
nVmax “ 0 to ease notation.

34Often, simply p␣CHqW is enough. Woodin [Woo] (see also [Sch]) has shown that if
ADLpRq holds, there is a filter g Ď Pmax generic over LpRq and CH fails then g witnesses
p˚q.
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Definition 4.8. We say that a structure H is almost a Vmax-condition if

V Colpω,Hq |ù qH P Vmax.

For A P Hω2 , HA denotes the structure:

HA :“ pHω2 ,NSω1 , Aq

Suppose that for some fixed A P Hω2 we have that H :“ HA is almost a
Vmax-condition. We may define

gA “ tp P Vmax | V
Colpω,2ω1 q |ù H ăVmax pu.

Our goal is to show that gA witnesses Vmax-p˚q under favorable circum-
stances. At the very least, it should be a filter.

Proposition 4.9. Suppose gA meets all projective dense D Ď Vmax. Then
gA is a filter.

Proof. It is easy to see that if q ăVmax p and q P gA then p P gA. So assume
p, q P gA and we have to find some r P gA with r ďVmax p, q. Consider

D “ tr P Vmax | r ďVmax p, q _ r K p_ r K qu

and note that D is a projective dense subset of Vmax, so by assumption we
can find some r P D X gA. Now in V Colpω,2ω1 q we have r, p, q ďVmax H and
thus r is compatible with both p and q. By generic absoluteness, this is true
in V as well so that r ďVmax p, q as r P D.

Even assuming that gA is a fully generic over LpRq, we still have to
arrange Ppω1q Ď LpRqrgAs.

Definition 4.10. Suppose that

piq g Ď Vmax is a filter,

piiq p P g and

piiiq xpα, µα,β | α ď β ď γy is a generic iteration of p0 “ p.

Then we say that xpα, µα,β | α ď β ď γy is guided by g if pα P g for all
countable α ď γ.

Lemma 4.11. Suppose Vmax has unique iterations and g Ď Vmax is a filter
meeting all projective dense D Ď Vmax. For any p P g and any γ ď ω1, there
is a unique iteration

xpα, µα,β | α ď β ď γy

of p0 “ p of length γ ` 1 guided by g.
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Proof. First, we prove existence for all γ ă ω1.

Claim 4.12. There is q P g with ωq1 ą γ.

Proof. Let D “ tq P Vmax | ω
q
1 ą γu. Clearly, D is projective and we will

show that D is dense. Let q P Vmax and using pVmax.vq, find r ăVmax q as
witnessed by

σ : q Ñ q˚.

Now let
ν : r Ñ r˚

be any generic iteration of r of length γ`2, consequently ωr
˚

1 ą γ. We have
r˚ P Vmax by pVmax.ivq. Note that the iteration ν ˝ σ witnesses r˚ ăVmax q.
Again applying pVmax.vq, there is s ăVmax r

˚ and thus s ăVmax q and s P D.
Thus g XD ‰ H.

As g is a filter, we can find q ăVmax p with ωq1 ą γ. Thus if µ : p Ñ p˚

witnesses this then µ is an iteration

xpα,β, µα,β | α ď β ď ωq1y

of length ωq1 ` 1 ą γ ` 1 by pVmax.iiq.

Claim 4.13. xpα,β, µα,β | α ď β ď γy is guided by g.

Proof. Let α ď γ. Then µα,ωq
1

is an iteration of length ωq1 ` 1 in q and

q |ù φVmaxppωq
1
q, thus q ăVmax pα and pα P g.

Next we prove uniqueness. By proceeding by induction on γ ď ω1, it is
in fact enough to verify the case γ “ 1. Suppose that µi : pÑ p˚

i is a generic
ultrapower of p with p˚

i P g for i ă 2. As g is a filter and by pVmax.vq, there
is q P g with q ăVmax p

˚
i as witnessed by some

µ˚
i : p˚

i Ñ p˚˚
i

for i ă 2 as well as q ăVmax p as witnessed by

µ : pÑ p˚˚.

Let i ă 2. We have that p, p˚
i are countable in q. As

“p˚
i is a generic ultrapower of p”

is a true Σ1
1pp, p

˚
i q-statement, it is true in q as well. Thus there is a generic

ultrapower
µ1
i : pÑ p˚

i

in q. Both µ, µ˚
i ˝ µ

1
i witness q ăVmax p and as Vmax has unique iterations,

µ “ µ˚
i ˝ µ

1
i. It follows that p˚

0 “ p˚
1 .
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Claim 4.14. µ˚
0 “ µ˚

1 .

Proof. Assume this fails, then

“There are distinct generic ultrapower maps pÑ p˚
0”

is another true Σ1
1pp, p

˚
0q-statement which accordingly must hold in q. Thus

there is a generic ultrapower map µ2
0 : p Ñ p˚

0 in q different from µ1
0. But

then both µ˚
0 ˝ µ

1
0 and µ˚

0 ˝ µ
2
0 witness q ăVmax p, which contradicts that

Vmax has unique iterations.

Finally, existence of a generic iteration of p of length ω1` 1 guided by g
follows from existence and uniqueness of generic iterations of p guided by g
of any countable length.

This suggests the following definition:

Definition 4.15. Suppose Vmax is a Pmax-variation with unique iterations
and g Ď Vmax is a filter. For p P g, the g-iteration of p is the unique generic
iteration of p of length ω1 ` 1 that is guided by g (if it exists).

Corollary 4.16. Suppose that

piq AD holds in LpRq,

piiq Vmax has unique iterations,

piiiq HA is almost a Vmax-condition,

pivq gA XD ‰ H for all dense D Ď Vmax, D P LpRq and

pvq Ppω1q “
Ť

tPpω1q X p
˚ | p P gA ^ µ : pÑ p˚ is guided by gAu.

Then Vmax-p˚q holds and gA witnesses this.

Proof. gA is a filter by Proposition 4.9 and thus LpRq-generic by assumption.
To see that Ppω1q Ď LpRqrgAs, notice that for any p P gA, LpRq knows of
all countable generic iterations of p. Hence, LpRqrgAs can piece together the
gA-iteration of p from the countable iterations of p that are guided by gA.
Ppω1q Ď LpRqrgAs now follows immediately from pvq.

The biggest obstacle by far is to get into a situation where gA XD ‰ H
for all dense D Ď Vmax, D P LpRq. The main idea is:

Lemma 4.17. Suppose that all of the following hold:

piq D Ď Vmax is dense.

piiq HA is almost a Vmax-condition.
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piiiq P is a forcing and D is |P|-universally Baire.

pivq In V P there is q P D˚ and an iteration σ : q Ñ q˚ with

pHω2 ; P,NSω1 , Aq
V P
|ù φVmaxpq˚q.

pvq Γ is a set of formulas in the language tP, 9I, 9a, 9Du so that

pΓ.iq φVmax P Γ,

pΓ.iiq Σ0 Ď Γ, where Σ0 is computed in the language tP, 9Du and

pΓ.iiiq Γ is closed under D and ^.

pviq pHω2 ; P,NSω1 , A,Dq
V ăΓ pHω2 ; P,NSω1 , A,D

˚qV
P
.

Then gA XD ‰ H.
If additionally

pviiq HV
ω2
Ď q˚

then Ppω1q “
Ť

tPpω1q X p
˚ | p P gA ^ µ : pÑ p˚ is guided by gAu.

Proof. Observe that pHω2 ; Pq ăΣ1 pHω2 ; PqV
P

implies that P preserves ω1.
The statement

Dq P 9D Dσ : q Ñ q˚ an iteration of length ω1 ` 1 and φVmaxpq˚q

is in Γ and thus is true in

pHω2 ; P,NSω1 , A,Dq
V

as witnessed by some p P D and iteration µ : p Ñ p˚. It follows that µ
witnesses HA ăVmax q in V Colpω,2ω1 q so that p P D X gA.
Now assume pviiq, it is our duty to show

Ppω1q “
ď

tPpω1q X p
˚ | p P gA ^ µ : pÑ p˚ is guided by gAu.

Let X Ď ω1. As above,

Dq P Vmax Dσ : q Ñ q˚ an iteration of length ω1 ` 1 and φVmaxpq˚q ^X P q˚

reflects down to V . The iteration witnessing this in V is guided by gA by
the same argument that showed p P gA above.

Condition pviq is a typical consequence of a (bounded) forcing axiom. It
is left to construct forcings P with property pivq to which hopefully a broad
range of forcing axioms may apply.
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4.2 Asperó-Schindler p˚q-forcing

We describe the results of Asperó-Schindler[AS21]. Their results carry over
to any Pmax-variation Vmax though they were originally proven in the case
of Vmax “ Pmax. Suppose that

piq NSω1 is saturated,

piiq A P Hω2 is so that H “ pHω2 ,NSω1 , Aq is almost a Vmax-condition and

piiiq D Ď Vmax is a 2ω1-universally Baire dense subset of Vmax whose rein-
terpretation is still dense in extensions by forcings of size ď 2ω1 , as
witnessed by trees T, S with D “ prT s.

Asperó-Schindler construct a partial order P “ PpVmax, A,Dq so that in
V P the following picture

prT s

q0 “ pN, I, bq qω1 “ pN
˚, I˚, bq

p0 pωN
1

pω1

ppHω2q
V ,NSVω1

, Aq “ HVmax

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“
P

exists so that

pP.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,

pP.iiq µ0,ωN
1

witnesses q0 ăVmax p0,

pP.iiiq µ0,ω1 “ σ0,ω1pµ0,ωN
1
q and

pP.ivq the generic iteration σ0,ω1
: q0 Ñ qω1 is correct, i.e. I˚ “ NSV

P
ω1
XN˚.

If φVmaxppM,J, aqq implies J “ 9I XM then NS
p
ωN
1

ω1 “ I X pωN
1

. This gets

transported upwards along σ0,ω1 and shows NSVω1
“ I˚ X HV

ω2
. Together

with pP.ivq, this yields NSVω1
“ NSV

P
ω1
X V , i.e. P preserves stationary sets.

If MM`` holds in V then

pHω2 ; P,NSω1 , A,Dq
V ăΣ1 pHω2 ; P,NSω1 , A,D

˚qV
P

and it follows from Lemma 4.17 that gAXD ‰ H (note that φPmaxppM, I, aqq“ “
I “ 9I XM ^ a “ 9a”). This is how Asperó-Schindler prove MM`` ñ p˚q.
An important observation is the following: To invoke a forcing axiom in the
case of P or variants thereof, typically P needs to preserve certain structure,
like stationary sets in the example above. This preservation is proven in two
steps:
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piq Preservation between qω1 and V P. This is governed by the iteration
σ0,ω1 having certain properties in V P, e.g. correctness.

piiq Preservation between pω1 and qω1 . This is governed by the nature of
Vmax, specifically the formula φVmax .

We will modify the construction of P and get a forcing P♢ which strength-
ens pP.ivq so that P♢ can have a variety of preservation properties depending
on the Pmax-variation Vmax in question, for example

• preserving stationary sets as well as all Suslin trees (ù SM`` ñ

Smax-p˚q, Section 6) or

• preserving a witness f of ♢pωăω
1 q (ù QM ñ Qmax-p˚q, Section 7).

4.3 ♢-iterations

We introduce the concept that is roughly the equivalent of ♢-forcing in the
world of generic iterations.

Definition 4.18. Suppose pN, Iq is generically iterable. A generic iteration

xpNi, Iiq, σi,j | i ď j ď ω1y

of pN, Iq “ pN0, I0q is a ♢-iteration if for any

piq sequence xDi | i ă ω1y of dense subsets of ppPpω1q{Iω1q
`qNω1 and

piiq S P Ppω1q
Nω1 ´ Iω1

the set
tξ P S | @i ă ξ gξ X σ

´1
ξ,ω1
rDis ‰ Hu

is stationary. Here, gξ is the generic ultrafilter applied to Nξ for ξ ă ω1.

If pN, Iq is generically iterable and ♢ holds then there is a ♢-iteration
of pN, Iq, see Lemma 8.4. But this is not generally the case. Paul Larson
noted that if pM, Iq is generically iterable and

xMα, µα,β | α ď β ď ω1y

is a generic generic iteration of pM, Iq “ pM0, I0q of length ω1 then this is a
♢-iteration. By this we mean that this iteration has been constructed gener-
ically by forcing with countable approximations ordered by endextension.

Lemma 4.19. Suppose

xpNi, Iiq, σi,j , gi | i ď j ď ω1y

is a ♢-iteration. If

Nω1 |ù “f witnesses ♢`
Iω1
pBq”

then Iω1 “ NSf XNω1. In particular, f witnesses ♢pBq.
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Proof. Let S P Ppω1q
Nω1 ´ Iω1 , we have to show that S is f -stationary. Let

xD1
i | i ă ω1y be a sequence of dense subsets of B. As f witnesses ♢`

Iω1
pBq

in Nω1 , we have

Nω1 |ù “ηf : BÑ pPpω1q{Iω1q
` is a complete embedding”

and notice that ηf is a complete embedding in V as well. Thus Di “ ηf rD
1
is

is dense for i ă ω1. As σ0,ω1
: N0 Ñ Nω1 is a ♢-iteration,

T :“ tξ P S | @i ă ξ gξ X σ
´1
ξ,ω1
rDis ‰ Hu

is stationary. Thus if C Ď ω1 is club, we can find ξ P C X T with ω
Nξ

1 “ ξ
and f P ranpσξ,ω1q. It follows that

fpξq “ η´1

σ´1
ξ,ω1

pfq
rgξs

so that fpξq XD1
i ‰ H for all i ă ξ.

4.4 ♢-p˚q-forcing

Theorem 4.20. Suppose that

piq generic projective absoluteness holds for generic extensions by forcings
of size 2ω1,

piiq Vmax is a Pmax-variation,

piiiq NSω1 is saturated and Ppω1q
7 exists,

pivq pHω2 ,NSω1 , A0, . . . , AnVmax q is almost a Vmax-condition and

pvq D Ď Vmax is 2ω1-universally Baire and dense in Vmax in any generic
extension by a forcing of size 2ω1, as witnessed by trees T, S with
prT s “ D.

Then there is a forcing P♢ so that in V P♢
the following picture

prT s

q0 qω1

p0 pωN
1

pω1

ppHω2q
V ,NSVω1

, A0, . . . , AnVmax q “ HVmax

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“
P

exists so that

pP♢.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,
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pP♢.iiq µ0,ωN
1

witnesses q0 ăVmax p0,

pP♢.iiiq µ0,ω1 “ σ0,ω1pµ0,ωN
1
q and

pP♢.ivq the generic iteration σ0,ω1
: q0 Ñ qω1 is a ♢-iteration.

For the remainder of this section, ω1 will always denote ωV1 .
So suppose piq-pvq holds. We will assume nVmax “ 0 for notational purposes.
For the most part, we will follow the construction of P in [AS21] but will
put additional constraints on the certificates. The idea that guides us here
is:

In order for σ0,ω1
: q Ñ q˚ to be a ♢-iteration, the forcing P♢ will

have to anticipate dense subsets of the forcing pI`qNω1 so that
they have been “hit before”. This should be captured by the map
K Ñ C. Formulating this correctly produces a strengthened ver-
sion of the “genericity condition” put onto semantic certificates.

A reader who can compile the above paragraph without syntax error can
probably safely skip most the definition of P and go straight to (Σ.8).

We try to keep our notation here consistent with the notation in the
paper [AS21]. For this reason, we will identify a condition p “ pM, I, aq P
Vmax with its first coordinate M . Additionally, by even more abuse of
notation:

Convention 4.21. If pN, J, bq is (almost) a condition in Vmax, then

• IN denotes J ,

• pI`qN denotes Ppω1q
M ´ J and

• aN denotes b.

We will additionally assume both 2ω1 “ ω2 and ♢ω3 to hold. Otherwise,
first force with Addpω2, 1q˚Addppp2ω1q`qV , 1q and note that piq and pvq still
hold for forcing with Colpω, ω2q, which is all we need. Moreover, observe
that this preserves “NSω1 is saturated”.
We will denote ω3 by κ and pick a ♢κ-sequence xĀλ | λ ă κy.

We may find T0 Ď T of size ω2 so that

V Colpω,ω2q |ù Dq P prT0s q ăVmax H.

Here we use that H is almost a Vmax-condition as well as pVmax.vq. Note
that prT0s Ď prT s in any outer model. Without loss of generality, we may
assume that T0 is a tree on ω ˆ ω2.
Fix a bijection

c : κÑ Hκ.
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For λ ă κ let
Qλ :“ crλs and Aλ :“ c

“

Āλ
‰

.

There is then a club C Ď κ with

piq T0, p P Qλ and ω2 ` 1 Ď Qλ,

piiq Qλ XOrd “ λ and

piiiq pQλ; Pq ă pHκ; Pq

for all λ P C. We now have

For all P,B Ď Hκ the set

p♢q tλ P C | pQλ; P, P XQλ, Aλq ă pHκ; P, P,Bqu

is stationary.

We will also define Qκ as Hκ. The forcing P will add some

pN0, I0, a0q P D
˚

together with a generic iteration

xNi, σi,j | i ď j ď ω1y

by Henkin-style finite approximations. By abuse of notation, we let Ni “

pNi; Ii, aiq. For readability we will also write

Nω1 “ pNω1 , I
˚, a˚q.

P♢ will be the last element of an increasing sequence xP♢
λ | λ P C Y tκuy of

forcings which we define inductively. We will have:

piq P♢
λ Ď Qλ,

piiq conditions in P♢
λ will be finite sets of formulae in a first order language

Lλ and

piiiq the order on P♢
λ is reverse inclusion.

Suppose now that λ P C Y tκu and P♢
ν is defined for all ν P C X λ.

We will make use of the same convention as Asperó-Schindler.

Convention 4.22. x Ď ω is a real code for N0 “ pN, I0, a0q if there is
a surjection f : ω Ñ N so that x is the monotone enumeration of Gödel
numbers of all expressions of the form

x 9N |ù φp 9n1, . . . , 9nl, 9I, 9aqy

where φ is a first order formula of the language associated to pN0, I0, a0q(see
below) and

N |ù φpfpn1q, . . . , fpnlq, I0, a0q

holds.
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We will have conditions in P♢
λ be certified in a concrete sense by objects

C which exist in generic extensions of V that satisfies projective absoluteness
w.r.t. V . They are of the form

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

where

pC.1q M0, N0 P Vmax,

pC.2q x “ xkn | n ă ωy is a real code for N0 “ pN0; P, I, a0q and
xpkn, αnq | n ă ωy is a branch through T0,

pC.3q xMi, µi,j | i ď j ď ωN0
1 y P N0 is a generic iteration of M0 witnessing

N0 ăVmax M0,

pC.4q xNi, σi,j | i ď j ď ω1y is a generic iteration of N0,

pC.5q xMi, µi,j | i ď j ď ω1y “ σ0,ω1pxMi, µi,j | i ď j ď ωN0
1 yq and

Mω1 “ ppHω2q
V ; P, pNSω1q

V , Aq,

pC.6q K Ď ω1 and for all ξ P K

pC.6.aq λξ P λXC, and if γ ă ξ is in K then λγ ă λξ and XγYtλγu Ď Xξ,

pC.6.bq Xξ ă pQλξ ; P,P♢
λξ
, Aλξq and δXξ “ ξ.

If C has these properties, we call C a potential certificate.

Next up, we will define a certain first order language L. L will have the
following distinguished constants

• x for any x P Hκ,

• 9n for any n ă ω,

• 9Mi for i ă ω1,

• 9µi,j for i ď j ď ω1,

• 9⃗
M ,

• 9Ni for i ă ω1,

• 9σi,j for i ď j ă ω1,

• 9I, 9a and

• 9Xξ for ξ ă ω1.
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The constants 9n will eventually produce “Henkin-style” term models for
the Ni. Formulas in the language L are of the form

x 9Ni |ù φpγ1, . . . , γk, 9n1, . . . , 9nl, 9I, 9a, 9Mj1 , . . . ,
9Mjm , 9µq1,r1 , . . . , 9µqs,rs ,

9⃗
Mqy

where

• i ă ω1,

• γ1, . . . γk ă ω1,

• n1, . . . , nl ă ω,

• j1, . . . , jm ă ω1,

• qt ď rt ă ω1 for t P t1, . . . , su

and φ is a first order P-formula. Moreover we allow as formulas

• x 9µi,ω1p 9nq “ xy for i ă ω1, n ă ω and x P Hω2 ,

• x 9µω1,ω1pxq “ xy for x P Hω2 ,

• x 9σi,jp 9nq “ 9my for i ď j ă ω1 and n,m ă ω,

• xpk⃗, α⃗q P T y for k⃗ P ωăω and α⃗ P ωăω
2 ,

• xξ ÞÑ νy for ξ ă ω1 and ν ă κ and

• xx P 9Xξy for ξ ă ω1 and x P Hκ.

Lλ is the set of L-formulae φ so that if x appears in φ for some x P Hκ

then x P Qλ. We assume formulae in Lλ to be coded in a reasonably way
(ultimately uniform in λ) so that Lλ “ L X Qλ. We will not make this
precise.

A potential certificate

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

is (λ-)precertified by Σ Ď Lλ if there are surjections ei : ω Ñ Ni for i ă ω1

so that

(Σ.1) x 9Ni |ù φpγ1, . . . , γk, 9n1, . . . , 9nl, 9I, 9a, 9Mj1 , . . . ,
9Mjm , 9µq1,r1 , . . . , 9µqs,rs ,

9⃗
Mqy P

Σ iff

(a) i ă ω1,

(b) γ1, . . . , γk ď ωNi
1 ,

(c) n1, . . . , nl ă ω,

(d) j1, . . . , jm ď ωNi
1 ,
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(e) qt ď rt ď ωNi
1 for t P t1, . . . , su

and

Ni |ù φpγ1, . . . , γk, eipn1q, . . . , eipnlq, I
Ni , aNi ,

Mj1 , . . . ,Mjm , µq1,r1 , . . . , µqs,rs , M⃗q

where M⃗ “ xMj , µj,j1 | j ď j1 ď ωNi
1 y,

(Σ.2) x 9µi,ω1p 9nq “ xy P Σ iff i ă ω1, n ă ω and µi,ω1peipnqq “ x,

(Σ.3) x 9µω1,ω1pxq “ xy P Σ for all x P Hω2 ,

(Σ.4) x 9σi,jp 9nq “ 9my P Σ iff i ď j ă ω1 and σi,jpeipnqq “ ejpmq,

(Σ.5) xp⃗l, β⃗q P T y P Σ iff for some n ă ω, lhp⃗lq “ n “ lhpβ⃗q and for all m ă n
lm “ km, βm “ αm,

(Σ.6) xξ ÞÑ νy P Σ iff ξ P K and ν “ λξ and

(Σ.7) xx P 9Xξy P Σ iff ξ P K and x P Xξ.

Note that C can be “read off” from Σ in a unique way via a Henkin-style
construction. For i ă ω1 and n,m ă ω, let

n „i mô xNi |ù 9n “ 9my P Σ

and denote the equivalence class of n modulo „i by rnsΣi . We will usually
drop the superscript Σ if it is clear from context. Also let

nP̃imô xNi |ù 9n P 9my P Σ.

Then pNi, Pq – pω, P̃iq{ „i. We call the latter model the term model pro-
ducing Ni. See Lemma 3.7 in [AS21] for more details. For x P Ni we say
x is represented by n if x gets mapped to rnsi by the unique isomorphism
of Ni to the term model. The term model for Nω1 is then the direct limit
along the term models producing the Ni, i ă ω1 and elements can then be
represented by pairs pi, nq, i ă ω1, n ă ω in the natural way.

To define certificates, we make use of the following concept:

Definition 4.23. For λ̄ P C X λ,

Z Ď P♢
λ̄
ˆ ω1 ˆ ω

is a λ̄-code for a dense subset of pI`q
9Nω1 given that
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piq if pp, i, nq P Z then

x 9Ni |ù “ 9n P 9I`
i ”y P p,

piiq for any pq, j,mq P Pλ̄ ˆ ω1 ˆ ω with

x 9Nj |ù “ 9m P 9I`
j ”y P q

there is pp, i, nq P Z with

paq p ď q, j ď i and

pbq x 9Ni |ù “ 9n Ď 9k mod 9Ii”y, x 9σj,ip 9mq “ 9ky P p for some k ă ω,

piiiq and if pp, i, nq P Z as well as q ď p then pq, i, nq P Z.

Suppose that

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

is pλ´qprecertified by Σ Ď Lλ as witnessed by peiqiăω1 . For Z0 Ď Z we
define the evaluation of Z0 by Σ as

ZΣ
0 :“ tS P Nω1 | Dp P rΣs

ăωDi ă ω1Dn ă ω ppp, i, nq P Z0^S “ σi,ω1peipnqqqu.

A potential certificate C is (λ-)certified by a collection Σ Ď Lλ if C is
pλ-)precertified by Σ and additionally

(Σ.8) whenever ξ P K and Z is a λξ-code for a dense subset of pI`q
9Nω1

definable over

pQλξ ; P,P♢
λξ
, Aλξq

from parameters in Xξ, then there is S P pZ XXξq
Σ with ξ P S.

Definition 4.24. In the case that (Σ.8) is satisfied, we call C a semantic
certificate, and Σ a syntactic certificate, relative to

Vmax, A,Hω2 , T0, xAν | ν P C X λy and xP♢
ν | ν P C X λy.

Remark 4.25. The genericity condition in [AS21] that is replaced here with
(Σ.8) (adapted to our context) is:

pΣ.8qAS If ξ P K and E Ď P♢
λξ

is dense and definable over

pQλξ ; P,P♢
λξ
, Aλξq

from parameters in Xξ then

rΣsăω X E XXξ ‰ H.
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Condition (Σ.8) is stronger than pΣ.8qAS: From any such E,

Z “ tpp, i, nq P P♢
λ̄
ˆ ω1 ˆ ω | Dq P E p ď q ^ x 9Ni |ù “ 9n P 9I`

i ”y P pu

is a λξ-code for a dense subset of pI`q
9Nω1 definable over the same structure

from the same parameters. If pZ XXξq
Σ ‰ H, it follows that

rΣsăω X E XXξ ‰ H.

Suppose Σ is a certificate that certifies

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy,

ξ P K and Z is a λξ-code for a dense subset of pI`q
9Nω1 definable over

pQλξ ; P,P♢
λξ
, Aλξq.

Z is supposed to represent a dense subset of pI`qNω1 (w.r.t. inclusion

mod INω1 ) in V P♢
λ . Σ may not be “generic over V ”, so it may not be the

case that ZΣ is dense in pI`qNω1 . Nonetheless, already pΣ.8qAS implies that

D “ σ´1
ξ,ω1
rpZ XXξq

Σs Ď pI`qNξ

is dense. D may not be in Nξ, so it is not guaranteed that D is hit by the
ultrapower σξ,ξ`1 : Nξ Ñ Nξ`1 just from genericity over Nξ alone, however

(Σ.8) makes sure that this happens (observe that ω
Nξ

1 “ ξ). So in essence,
the idea of (Σ.8) is that any dense subset of pI`qNω1 that exists in the final

V P♢
κ has been “hit” before at some point along the iteration of N0 to Nω1 .

Remark 4.26. Note that for any syntactic certificate, there is a unique
semantic certificate it corresponds to. Given a semantic certificate, its cor-
responding syntactic certificate is unique modulo the choice of the maps
peiqiăω.

A finite set p of Lλ-formulas is certified by Σ iff Σ is a syntactic certificate
and p Ď Σ. If C is a semantic certificate then we also say p is certified by C
in case there is a syntactic certificate λ certifying both C and p.

Definition 4.27. Conditions p P P♢
λ are finite sets of Lλ formulae so that

V Colpω,ω2q |ù “DΣ Ď Lλ Σ certifies p”.

This completes the construction of P♢
λ .

Proposition 4.28. Let p P rLλsăω. If p is certified in some outer model,
then p is certified in V Colpω,ω2q.
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Proof. Let g be Colpω, ω2q-generic. If there is some outer model in which
p is certified, then by Shoenfield absoluteness we can find in V rgs a set of
Lλ-formulas Σ with p P rΣsăω such that if

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

is the corresponding semantic interpretation then

piq Σ satisfies (Σ.1)-(Σ.8),

piiq C satisfies pC.2q as well as pC.4q-pC.6q and

piiiq C satisfies pC.3q in the sense that µ
0,ω

N0
1
P N0 and N0 |ù φVmaxpM

ω
N0
1
q,

as this can be expressed by a Σ1
2-formula. It remains to show that pC.1q

holds true as well, i.e. M0, N0 P Vmax. For N0 this follows as N0 P prT0s
and by assumption pvq, prT0s Ď Vmax in V rgs. To see that M0 P Vmax, note
that H P Vmax as H is almost a Vmax-condition in V . By pVmax.ivq, it is
enough to see that M0 is generically iterable. This follows from (the proof
of) Theorem 3.16 in [Woo10], here we use Ppω1q

7 exists in V .

We let P♢ “ P♢
κ . As in Asperó-Schindler, we conclude that there is a

club D Ď C so that for all λ P D

P♢
λ “ P♢ XQλ

and hence we get

for all B Ď Hκ the set

p♢pP♢qq tλ P C | pQλ; P,P♢
λ , Aλq ă pHκ; P,P, Bqu

is stationary.

Lemma 4.29. H P P♢
minpCq

.

The argument is essentially the same as the proof of Lemma 3.6 in
[AS21] modulo some details that arise from replacing Pmax by a general
Pmax-variation.

Proof. Let g be generic for Colpω, ω2q. Note that H P Vmax as H is almost
a Vmax-condition in V . By choice of T0, we can find N0 “ pN0, I0, a0q P D

˚

with N0 ăVmax H. Let xpkn, αnq | n ă ωy witness N0 P prT s. Let us denote
M0 “ H and let

µ
0,ω

N0
1

: M0 ÑM
ω
N0
1

witness N0 ăVmax M0. Now let

σ0,κ : N0 Ñ Nκ
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be a generic iteration of N0 of length κ` 1 “ ω
V rgs

1 ` 1 as well as

µ0,κ :“ σ0,κpµ0,ωN0
1
q : M0 ÑMκ

the stretch of µ
0,ω

N0
1

by σ0,κ. Note that this is a generic iteration of M0 of

length κ` 1.

Claim 4.30. The generic iteration

xMα, µα,β | α ď β ď κy

can be extended to a generic iteration of M`
0 :“ pV,NSVω1

q of length κ ` 1.
That is, there is a generic iteration

xM`
α , µ

`
α,β | α ď β ď κy

of M`
0 so that for all α ď β ď κ

p`.iq Mα “
`

Hω2

˘M`
α and

p`.iiq µα,β “ µ`
α,β æMα.

Proof. The iteration xM`
α , µ

`
α,β | α ď β ď κy arises by applying the same

generic ultrafilter gα which generates µα,α`1 : Mα Ñ Mα`1 to M`
α . By

induction on α, as Mα “
`

Hω2

˘M`
α , gα measures all subsets of ωM

`
α

1 in M`
α .

It is a generic ultrafilter as

M`
α |ù “NSω1 is saturated”

by elementarity of µ`
0,α, and hence all maximal antichains in pNS`

ω1
qM

`
α are

already in Mα, hence are met by gα. Now let

µ`
α,α`1 : M`

α ÑM`
α`1 :“ UltpM`

α , gαq

be the ultrapower. Any x P pHω2q
M`

α`1 is represented by some function

f : ωM
`
α

1 Ñ
`

Hω2

˘M`
α which is an element of

`

Hω2

˘M`
α
“Mα. It follows that

µα,α`1 “ µ`
α,α`1 æ Mα. It is easy to see that the properties p`.iq,p`.iiq are

stable under taking direct limits.

The point is that

xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy,Hy

is a semantic certificate for H in M` :“M`
κ with respect to

µ`pVmaxq, µ
`pAq,

`

Hω2

˘M`

, µ`pT0q, µ
`pxAν | ν P CXλyq, µ

`pxP♢
ν | ν P CXλyq

for λ “ minpCq and µ` “ µ`
0,κ. By Proposition 4.28,

M` |ù H P µ`pP♢
minpCq

q

so that H P P♢
minpCq

in V by elementarity of µ`.
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Lemma 4.31. Suppose λ P C Y tκu and g Ď P♢
λ is a filter with

piq g X E ‰ H whenever E Ď P♢
λ is dense and definable over

pQλ; P,P♢
λ , Aλq,

piiq g is an element of a generic extension of V by a forcing of size ď 2ω2.

Then
Ť

g is a semantic certificate.

Proof. Read off the canonical candidate

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

from g. The proof of Lemma 3.7 in [AS21] shows that
Ť

g λ-precertifies
C. Note that the argument from Proposition 4.28 gives that M0, N0 P Vmax

and pC.3q follows from (Σ.1) and pVmax.iiq. It remains to check (Σ.8). So

suppose ξ P K and Z is a λξ-code for a dense subset of pI`q
9Nω1 definable

over
Qλ :“ pQλξ ; P,P♢

λξ
, Aλξq

from a parameter x P Xξ. Then there is p P g with

xξ ÞÑ λξy, xx P 9Xξy P p.

Let Σ1 be a syntactic certificate certifying p (in some extension of V by
Colpω, ω2q) and

C1 “ xxM 1
i , µ

1
i,j , N

1
i , σ

1
i,j | i ď j ď ω1y, xpk

1
n, α

1
nq | n ă ωy, xλ1

ρ, X
1
ρ | ρ P K

1yy

the corresponding semantic certificate. We have ξ P K and λ1
ξ “ λξ as

well as x P X 1
ξ. Thus Z is definable over Qλ from parameters in X 1

ξ. As

Σ1 satisfies (Σ.8), there is S P pZ X X 1
ξq

Σ1

with ξ P S. We may now find
pq, i, nq P Z XX 1

ξ so that

S “ σi,ω1prns
Σ1

i q.

Note that i ă ξ as δX
1
ξ “ ξ. Let σi,ξ`1prns

Σ1

i s “ rms
Σ1

ξ`1. It follows that

x 9Nξ`1 |ù “ξ P 9m”y, x 9σi,ξ`1p 9nq “ 9my P Σ1.

This is a density argument that shows: There are s ě r P g, j ă ξ, l ă ω so
that

piq ps, j, lq P Z,

piiq xs P 9Xξy P r and

piiiq x 9Nξ`1 |ù “ξ P 9k”y, x 9σj,ξ`1p
9lq “ 9ky P r for some k ă ω.
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It follows that for S “ σj,ω1prls
Ť

g
j q, we have S P pZ XXξq

Ť

g and ξ P S.

Lemma 4.32. Suppose g is generic for P♢ and

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

is the resulting semantic certificate. Then in V rgs,

xNi, σi,j | i ď j ď ω1y

is a ♢-iteration.

Proof. Let 9S, 9C be P♢-names with

p , “ 9C Ď ω1 is club and 9S P p 9I`q
9Nω1”

for some p P P♢. Further suppose x 9Dα | α ă ω1y is a sequence of P♢-names

for dense subsets of pI`q
9Nω1 . We may suppose that

p , 9S “ 9σi0,ω1prňs
Ť

9G

ǐ0
q

for some i0 ă ω1 and n ă ω where 9σi0,ω1 is a name for σi0,ω1 which arises in
the semantic certificate corresponding to the generic filter. It is our duty to
find ξ ă ω1 and q ď p with

q , ξ̌ P 9S X 9C ^ @α ă ξ̌ 9gξ X 9σ´1
ξ,ω1
r 9Dαs ‰ H (♠)

where 9gξ is a name for the generic ultrafilter applied to 9Nξ along the iteration

to 9Nω1 . We will replace the 9Dα with codes for them: For α ă ω1, let Zα be
defined by pq, j,mq P Zα iff

pZ.iq pq, j,mq P P♢ ˆ ω1 ˆ ω,

pZ.iiq x 9Nj |ù “ 9m P 9Ij”y P q and

pZ.iiiq q , 9σj,ω1

ˆ

rms
Ť

9G
j

˙

P 9Dα.

Further, for α ă ω1, we let

Eα “ tq ď p | Dβ α ď β ^ q , β̌ P 9Cu

and
E “ tpq, αq P P♢ ˆ ω1 | q , α̌ P 9Cu.

Finally we define

τ “

˜

à

αăω1

Zα

¸

‘

˜

à

αăω1

Eα

¸

‘ E.
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We may now find λ P C so that p P P♢
λ and

pQλ; P,P♢
λ , Aλq ă pHκ; P,P♢, τq.

Here, ‘ denotes some canonical way of coding at most ω1-many subsets of
Hκ into a subset of Hκ. Let h be Colpω, ω2q-generic over V .

Claim 4.33. In V rhs, there are filters g,G that satisfy the following prop-
erties piq-piiiq:

piq g meets every dense subset of P♢
λ that is definable (with parameters)

in
pQλ; P,P♢

λ , Aλq.

Let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

denote the semantic certificate corresponding to g.

piiq G is pI`qNω1 -generic over Nω1 with 9Sg “ rns
Ť

g
i0
P G.

piiiq G meets Z
Ť

g whenever Z is a λ-code for a dense subset of p 9I`q
9Nω1

definable (with parameters) over

pQλ; P,P♢
λ , Aλq.

Proof. Let g1 Ď P♢
λ be generic over V and let

C1 “ xxM 1
i , µ

1
i,j , N

1
i , σ

1
i,j | i ď j ď ω1y, xpk

1
n, α

1
nq | n ă ωy, xλ1

ρ, X
1
ρ | ρ P K

1yy

be the semantic certificate corresponding to
Ť

g1. Let further G1 be pI`q
N 1

ω1 -

generic over V rg1s (so in particular over N 1
ω1

) with 9Sg
1

“ rns
Ť

g1

i0
P G1. It is

clear that g1, G1 satisfy piq-piiiq above. The existence of such filters is Σ1
1 in

a real code for pQλ; P,P♢
λ , Aλq so that there are g,G P V rhs with piq-piiiq by

Shoenfield-absoluteness.

We now work in V rhs. Let G, g be the filters given by the claim above
and let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

be the semantic certificate that comes from g. Let

σω1,ω1`1 : Nω1 Ñ Nω1`1 “ UltpNω1 , Gq

be the generic ultrapower. We can further extend the generic iteration

xNi, σi,j | i ď j ď ω1 ` 1y
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to one of length κ` 1, say

xNi, σi,j | i ď j ď κy.

Further, set

M⃗ “ xMi, µi,j | i ď j ď κy :“ σω1,κpxMi, µi,j | i ď j ď ω1yq.

As C is certified, Mω1 “ H and as in Claim 4.30, we can extend the tail of
M⃗ that is an iteration of Mω1 to a generic iteration of M`

ω1
:“ pV,NSVω1

, Aq,
say

xM`
i , µ

`
i,j | ω1 ď i ď j ď κy

and have all M`
i , i P rω1, κs, wellfounded. Let us write

µ` :“ µ`
ω1,κ

: V ÑM`
ω1
“: M`.

Work in M`. We will now use

xMi, µi,j , Ni, σi,j | i ď j ď κy

as part of a certificate. Set

q :“ µ`ppq Y txω1 ÞÑ µ`pλqy, x 9σi0,ω1`1p 9nq “ 9my, x 9Nω1`1 |ù “ω1 P 9m”yu

where 9m represents σω1,ω1`1pSq in the term model for Nω1`1.

Claim 4.34. q P µ`pP♢q.

Proof. Set

C˚ “ xxMi, µi,j , Ni, σi,j | i ď j ď κy, xpkn, µ
`pαnqq | n ă ωy, xλ˚

ξ , X
˚
ξ | ξ P K

˚yy

where

• K˚ “ K Y tω1u,

• for ξ P K, λ˚
ξ “ µ`pλξq and X˚

ξ “ µ`rXξs and

• λω1 “ µ`pλq, X˚
ω1
“ µ`rQλs.

We show that C˚ is a semantic certificate for q in M`. Note that we have
to show that C˚ is a certificate relative to

µ`pVmaxq, µ
`pAq, µ`pHω2q “ pHω2q

M`

, µ`pT0q, µ
`pxAν | ν P Cyq, µ

`pxPν | ν P Cyq.

Observe that we can find a corresponding set of formulae Σ` that corre-
sponds to C˚ with µ`r

Ť

gs Ď Σ` which we aim to prove to be a syntactic
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certificate.
We have Mκ “

`

Hω2

˘M`

. Notice also that

xpkn, µ
`pαnqq | n ă ωy P rµ`pT0qs

and that pknqnăω is still a real code for N0. Next, we prove (Σ.8). First
assume ξ P K. Then

X˚
ξ “ µ`rXξs ă pµ`pQλξq; P, µ

`pP♢
λξ
q, µ`pAλξqq

and δX
˚
ξ “ δXξ “ ξ as critpµq “ ω1 ą ξ. As µ`rXξs “ X˚

ξ , (Σ.8) holds for ξ
in C˚, since it holds for ξ in C.
Finally, let us consider the case ξ “ ω1. We have

X˚
ω1
“ µ`rQλs ă pµ`pQλq; P, µ

`pP♢
λ q, µ

`pAλqq

and δX
˚
ω1 “ ω1 as µ` has critical point ω1. Clearly X˚

ω1
collapses to Qλ. So

if x P X˚
ω1

and

M` |ù “Ẑ is a µ`pλq-code for a dense subset of p 9I`qNκ definable over

pµ`pQλq; P, µ
`pP♢

λ q, µ
`pAλqq

with parameter x”

for some x P X˚
ω1

, then by elementarity, the same definition defines a λ-code

Z for a dense subset of p 9I`q
9Nω1 over

pQλ; P,P♢
λ , Aλq

with parameter pµ`q´1pxq and we have µ`pZq “ Ẑ. Our properties of g,G
imply that there is R P GX Z

Ť

g. It is not difficult to see

pẐ XX˚
ω1
qΣ

`

“ σω1,κrZ
Ť

gs

and hence ω1 P σω1,κpRq P pẐ XX
˚
ω1
qΣ

`

. This shows (Σ.8) at ω1.
We conclude that indeed, C˚ is a semantic certificate for q which exists in
some outer model of M`. This gives q P µ`pP♢q by Proposition 4.28.

Thus we have

M` |ù“Dξ ă µ`pω1q
´

µ`ppq Y txξ ÞÑ µ`pλqy, x 9σi0,ξ`1p 9nq “ 9my, x 9Nξ`1 |ù “ξ P 9m”yu P µ`pP♢q
¯

”.

By elementarity of µ`, we conclude

V |ù “Dξ ă ω1

´

pY txξ ÞÑ λy, x 9σi0,ξ`1p 9nq “ 9my, x 9Nξ`1 |ù “ξ P 9m”yu P P♢
¯

”.
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Let ξ witness this and set

q “ pY txξ ÞÑ λy, x 9σi0,ξ`1p 9nq “ 9my, x 9Nξ`1 |ù “ξ P 9m”yu.

We will show that q, ξ witness (♠). From this point on, we work in V again
and forget about h, g,C, etc.

Claim 4.35. q , ξ̌ P 9C X 9S.

Proof. As in Claim 3.17 in [AS21], exploit the components of τ made up
from E as well as Eα, α ă ω1.

Claim 4.36. q , @α ă ξ̌ 9gξ X 9σ´1
ξ,ω1
r 9Dαs ‰ H.

Proof. Let g be P♢-generic with q P g and let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

be the resulting semantic certificate. We have ξ P K and λξ “ λ as q P g.
Fix some α ă ξ. Clearly,

Z̄α “ Zα XQλ

is a λ-code for a dense subset of p 9I`q
9Nω1 which is definable over

pQλ; P,P♢
λ , Aλq

from a parameter in Xξ, namely α. Recall that δXξ “ ξ. Using (Σ.8), we
find that there is

R P pZ̄α XXξq
Ť

g

with ξ P R. Note that there are r P g, j ă ξ “ δXξ as well as k ă ω with

piq pr, j, kq P Z̄α Ď Zα and

piiq R “ σj,ω1prks
Ť

g
j q.

By definition of Zα, and as r P g, R P Dα and since ξ P R, R P gξ, where gξ
is the generic ultrafilter generating σξ,ξ`1 : Nξ Ñ Nξ`1.

(♠) follows from Claim 4.35 together with Claim 4.36.

This completes the proof of Theorem 4.20. We denote the forcing P♢

constructed above in the instance of a Pmax-variation Vmax, the set A P Hω2

and appropriate dense D Ď Vmax by P♢pVmax, A,Dq (and forget that P♢

also depends on the choice of T, T0, etc.).
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4.5 The first blueprint

We will formulate a general theorem that will allow us to prove a variety
of instances of MM`` ñ p˚q. In order to formulate the relevant forcing
axioms, we use that in practice φVmax has a specific form.

Definition 4.37. A Pmax-variation Vmax is typical if φVmax can be chosen
to be the form

φVmaxpxq “ “DM, I, a0, . . . , an x “ pM, I, a0, . . . , anq

^ @y PM
ľ

ψPΨ

“

ψpyq Ø pM ; P, I, a0, . . . , anq |ù ψpyq
‰

”

for n “ nVmax and a finite set Ψ of formulae ψpyq in the language tP, 9I, 9a0, . . . , 9anu.
Moreover, Ψ contains the formulae ψpxq “ “x P 9I” and ψipxq “ “x “ 9ai”
for all i ď nVmax . We say that Ψ witnesses the typicality of Vmax.
This means that q ăVmax p iff there is a generic iteration µ : p Ñ p˚ of p in
q of length ωq1 ` 1 so that the formulae in Ψ are absolute between q, p˚.

Remark 4.38. For example, Pmax is (or can be construed as) a typical
Pmax-variation. We have that typicality of Pmax is witnessed by tψPmax

0 , ψPmax
1 u

where

• ψPmax
0 pyq “ “y P 9I” and

• ψPmax
1 pyq “ “y “ 9a0”.

All Pmax-variations we will encounter, except for Q´
max, are typical Pmax-variations.

Next, we formulate the relevant bounded and unbounded forcing axioms
as general as possible.

Definition 4.39. Suppose ψpxq is a formula in the language tP, 9I, 9a0, . . . , 9anu
and A⃗ “ pA0, . . . , Anq P Hω2 .

piq We define Rψ
A⃗

via

Rψ
A⃗

:“ tx P Hω2 | pHω2 ; P,NSω1 , A0, . . . , Anq |ù ψpxqu.

piiq For x P Hω2 , we say that C Ď ω1 is a code for x if: Let l : ω1 Ñ ω1ˆω1

denote Gödels pairing function and E “ lrCs. Then pω1 ˆ ω1, Eq is
wellfounded and ptcptxuq, Pq is the transitive isomorph35.

piiiq C Ď ω1 is a code for an element of Rψ
A⃗

if C is a code for some x P Rψ
A⃗

.

Definition 4.40. Suppose that

35tc denotes transitive closure.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

• Γ is a class of forcings,

• A⃗ “ pA0, . . . , Anq P Hω2 and

• Ψ is a set of formulae ψpxq in the language t 9I, 9a0, . . . , 9anu.

piq D-BFAΨ
A⃗
pΓq states that D Ď R is 8-universally Baire and whenever

P P Γ and g is P-generic then

´

Hω2 ; P, D,Rψ
A⃗
| ψ P Ψ

¯V
ăΣ1

´

Hω2 ; P, D˚, Rψ
A⃗
| ψ P Ψ

¯V rgs

.

For ∆ Ď PpRq, ∆-BFAΨ
A⃗
pΓq means D-BFAΨ

A⃗
pΓq for all D P ∆.

piiq FAΨ
A⃗
pΓq states that whenever P P Γ and

pFA.iq D is a set of at most ω1-many dense subsets of P,

pFA.iiq Nψ is a set of at most ω1-many P-names for codes of elements of

pRψ
A⃗
qV

P
for ψ P Ψ

then there is a filter g Ď P so that

pg.iq g XD ‰ H for all D P D and

pg.iiq 9Sg “ tα ă ω1 | Dp P g p , α̌ P 9Su is a code for an element of Rψ
A⃗

for all 9S P Nψ, ψ P Ψ.

We note that the methods of Bagaria in [Bag00] readily yield the follow-
ing.

Lemma 4.41. Suppose that

piq Γ is a class of forcings,

piiq A⃗ “ pA0, . . . , Anq P Hω2 and

piiiq Ψ is a set of formulae ψpxq in the language t 9I, 9a0, . . . , 9anu.

If FAΨ
A⃗
pΓq holds then so does uB-BFAΨ

A⃗
pΓq.

Definition 4.42. Let Ψ be a set of formulae in the language t 9I, 9a0, . . . , 9anu
for some n. For A⃗ “ pA0, . . . , Anq, we say that a forcing P is pΨ, A⃗q-
preserving iff

Rψ
A⃗
“

´

Rψ
A⃗

¯V P

X V

for all ψ P Ψ. ΓΨ
A⃗

denotes the class of pΨ, A⃗q-preserving forcings.
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Definition 4.43. A Pmax-variation Vmax accepts ♢-iterations if

“If p P Vmax and pÑ p˚ “ pM, I, a0, . . . , anVmax q

is a ♢-iteration then Hpa0,...,anVmax q |ù φVmaxpp˚q”

is provable in ZFC´ ` “ω1 exists” (that is, from sufficiently much of ZFC).

First Blueprint Theorem 4.44. Suppose that

piq Vmax is a typical Pmax-variation with typicality witnessed by Ψ,

piiq Vmax has unique iterations and accepts ♢-iterations,

piiiq A⃗ P Hω2 and HA⃗ is almost a Vmax-condition,

pivq SRP holds and

pvq FAΨ
A⃗
pΓΨ
A⃗
q holds.

Then Vmax-p˚q holds as witnessed by gA⃗.

Proof. Let us assume nVmax “ 0, so A⃗ “ A. SRP entails “NSω1 is saturated”
as well as @κ ě ω2␣lκ. Results of Steel [Ste05] show that the latter implies
that V is closed under X ÞÑM 7

ωpXq. As a consequence

• ADLpRq,

• all sets of reals in LpRq are 8-universally Baire and

• pLpRqV ; P, Dq ” pLpRqV rGs; P, D˚q for all sets D Ď R in LpRq and any
generic extension V rGs of V .

Thus generic projective absoluteness holds in V and if D P LpRq is a dense
subset of Vmax, then D˚ is a dense subset of Vmax in any generic extension.
Thus P♢pVmax, A,Dq exists for any such D.

Claim 4.45. For any dense D Ď Vmax, D P LpRq, P♢pVmax, A,Dq is
pΨ, Aq-preserving.

Proof. Let g be P♢pVmax, A,Dq-generic. By Theorem 4.20, in V rgs we have

D˚

q0 qω1 “ pN
˚, I˚, b˚q

p0 pωN
1

pω1

ppHω2q
V ,NSVω1

, Aq “ HAVmax

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“
P

where
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pP♢.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,

pP♢.iiq µ0,ωN
1

witnesses q0 ăVmax p0,

pP♢.iiiq µ0,ω1 “ σ0,ω1pµ0,ωN
1
q and

pP♢.ivq the generic iteration σ0,ω1
: q0 Ñ qω1 is a ♢-iteration.

Note that
pN˚; P, I˚, b˚q |ù φVmaxpHAq.

As Vmax is typical, we must have b˚ “ A. As Vmax accepts ♢-iterations,

pHω2 ; P,NSω1 , Aq
V rgs |ù φVmaxpqω1q

and finally it follows from typicality that

pHω2 ; P,NSω1 , Aq
V rgs |ù φVmaxpHAq.

As Ψ witnesses the typicality of Vmax, it follows that P♢pVmax, A,Dq is
pΨ, Aq-preserving.

It follows from Theorem 4.20, Lemma 4.41 and Lemma 4.17 that

• gA⃗ XD ‰ H for all dense D Ď Vmax, D P LpRq and

• Ppω1q “
Ť

tPpω1q X p
˚ | p P gA⃗ ^ µ : pÑ p˚ is guided by gA⃗u.

By Corollary 4.16, gA⃗ witnesses Vmax-p˚q.

Remark 4.46. If additionally there are a proper class of Woodin cardinals,
then gA⃗ meets all 8-universally Baire dense subsets of Vmax.

4.6 The second blueprint

From the right perspective, Vmax-p˚q is a forcing axiom. As noted before,
Asperó-Schindler show that if there is a proper class of Woodin cardinals,
then p˚q is equivalent to pPpRq XLpRqq-BMM``. Some additional assump-
tion like large cardinals is necessary as BMM implies closure of V under
sharps while p˚q holds in the Pmax-extension of LpRq. We try to generalize
this result roughly to all natural Pmax-variations for which the P♢-method
can prove them from some forcing axiom. We will have to restrict to better
behaved Pmax-variations.

Definition 4.47. Let Vmax be a Pmax-variation with unique iterations and
g be Vmax-generic over LpRq.

piq We say that g produces pA0, . . . , AnVmax q if there is p P g so that if

µ : pÑ p˚ “ pM, I, a0, . . . , anVmax q

is the g-iteration of p then ai “ Ai for all i ď nVmax .
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piiq If Vmax is typical, we set

Hg :“ pHω2 ,NSω1 , A0, . . . , AnVmax q
LpRqrgs

where pA0, . . . , AnVmax q is the unique sequence produced by g.

Definition 4.48. A Pmax-variation Vmax with unique iterations is self-
assembling if: Whenever g is Vmax-generic over LpRq then

piq Hg is almost a Vmax-condition and

piiq pHω2q
LpRqrgs “

Ť

tp˚ | p P g, µ : pÑ p˚ guided by gu.

All Pmax-variation we will work with are self-assembling (assuming AD in
LpRq). For example, Pmax is self-assembling. The relevance of this property
for us is partly explained by the following result.

Lemma 4.49. Suppose Vmax is a self-assembling Pmax-variation with unique
iterations and typicality of Vmax is witnessed by a set Ψ of pΣ1 Y Π1q-
formulae. If Vmax-p˚q holds as witnessed by g then

piq HA⃗ is almost a Vmax-condition and

piiq g “ gA⃗

where g produces A⃗.

Proof. As Vmax is self-assembling, Hg is almost a Vmax-condition. Moreover,
Ppω1q Ď LpRqrgs as g witnesses Vmax-p˚q. It follows that Hg “ HA⃗ and thus
piq holds.
Let us now prove piiq, note that it suffices to show g Ď gA⃗.

Claim 4.50. If q P g and

σ : q Ñ q˚ “ pM˚, I˚, a˚
0 , . . . , a

˚
nVmax q

is the g-iteration of q then I˚ “ NSω1 XM
˚ and a˚

i “ Ai for i ď nVmax.

Proof. a˚
i “ Ai for i ď nVmax follows easily from typicality, we show I˚ “

NSω1 XM˚. It is clear that I˚ Ď NSω1 since if S P I˚, then a tail of the
iteration points of the iteration σ : q Ñ q˚ is missing from S. On the other
hand, suppose S P Ppω1q

M˚

´I˚. We may assume S “ µpS̄q for some S̄ P q.
If C Ď ω1 is club then as Vmax is self-assembling, there is r P g, such that if
ν : r Ñ r˚ is the g-iteration of r, then C P ranpνq, say C “ νpC̄q. Note that
we may assume r ăVmax q, say this is witnessed by

σ̄ : q Ñ q̄ “ pM̄, Ī, āq.

Write r “ pN, J, bq. As Vmax is typical, Ī “ JXM̄ and hence σ̄pS̄qX C̄ ‰ H
which gives

ν ˝ σ̄pS̄q X C ‰ H.

Clearly, νpσ̄q is an iteration of q of length ω1 ` 1 guided by g. Thus, by
Lemma 4.11, νpσ̄q “ σ. S X C ‰ H follows.
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Let p P g and let µ : pÑ p˚ be the g-iteration of p.

Claim 4.51. HA⃗ |ù φVmaxpp˚q.

Proof. Let ψ P Ψ and assume ψ is Σ1, so write ψpxq “ Dy θpx, yq where θ is
Σ0. So suppose for some x P p and y P Hω2 we have

HA⃗ |ù Dy θpx, yq.

As Vmax is self-assembling, we can find q P g with

pq.iq q ăVmax p as witnessed by µ̄ : pÑ p̄ and

pq.iiq HA⃗ |ù θpx, σpyqq for some y P q

where σ : q Ñ q˚ is the g-iteration of q. By Claim 4.50,

q˚ ăΣ0 HA⃗

and as σpµ̄q “ µ by Lemma 4.11 as well as elementarity of σ we find

q |ù θpµ̄pxq, yq.

Finally, q |ù pφVmaxpp̄qq so that

p̄ |ù Dz θpµ̄pxq, zq

and hence p |ù Dz θpx, zq by elemntarity of µ̄.
The “dual argument” works if ψ is Π1 instead.

Now if G is Colpω, 2ω1q-generic then the above shows that µ : p Ñ p˚

witnesses HA⃗ ăVmax p in V rGs. Thus p P gA⃗.

Theorem 4.44 gives a hint how the forcing axiom equivalent to Vmax-p˚q
should look like. However, ΓΨ

A⃗
is not the right class of forcings, for example

one can construe two Pmax-variations which are the same as forcings, but
for which the resulting classes ΓΨ

A⃗
are fundamentally different for reasonable

A⃗. Instead, we should look at the class of forcings which roughly lie on the
way to the good extensions highlighted in the Vmax-Multiverse View.

Definition 4.52. Suppose that

piq Vmax is a typical Pmax-variation,

piiq typicality of Vmax is witnessed by Ψ and

piiiq A⃗ “ pA0, . . . , AnVmax q P Hω2 .
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The class ΓVmax

A⃗
pΨq consists of all pΨ, A⃗q-preserving forcings P so that if g

is P-generic, then there is a forcing Q P V rgs with

V rgs |ù “Q is pΨ, A⃗q-preserving”

and if further h is Q-generic over V rgs, then in V rgsrhs both

ph.iq HA⃗ is almost a Vmax-condition and

ph.iiq NSω1 is saturated.

It just so happens that, maybe by accident, for the Pmax-variations we
will look at explicitly, if there is a proper class of Woodin cardinals then one
can choose Ψ so that ΓΨ

A⃗
“ ΓVmax

A⃗
pΨq in case that ΓVmax

A⃗
‰ H.

Definition 4.53. Suppose that pM, Iq is a potentially iterable structure and
Y Ď R. We say that pM, Iq is (generically) Y -iterable if for X :“ Y XM we
have

piq pM ; P, I,Xq is a model of (sufficiently much of) ZFC where Y is allowed
as a class parameter in the schemes and

piiq whenever xpMα, Iα, Xαq, µα,β | α ď β ď γy is a generic iteration of
pM0, I0, X0q “ pM, I,Xq, i.e.

pµ.iq pMα`1; P, Iα`1, Xα`1q is an ultrapower of pMα; P, Iα, Xαq by a
Mα-generic ultrafilter w.r.t. Iα for α ă γ,

pµ.iiq if α ď γ is a limit then

xpMα, Iα, Xαq, µξ,α | ξ ă αy “ lim
ÝÑ
pxpMβ, Iβ, Xβq, µβ,ξ | β ď ξ ă αyq

then Xγ “ Y XMγ .

Proposition 4.54 (Folklore). Suppose that NSω1 is saturated and X Ď R
is 8-universally Baire. Then in any forcing extension V rGs in which HV

ω2

is countable, pHω2 ,NSω1 , Xq
V is X˚-iterable.

Proof. Let P be some forcing which collapses 2ω1 to ω. Let T, S P V witness
that X is |P|-universally Baire with prT s “ X, prSs “ R ´ X. Let G be
P-generic over V . Let

xpMα, Iα, Xαq, µα,β | α ď β ď γy

be any generic iteration of pM0, I0, X0q “ pHκ,NSω1 , Xq
V . Then as in Claim

4.30, this iteration can be lifted to a generic iteration

xpM`
α , Iα, Xαq, µ

`
α,β | α ď β ď γy

of pM`
0 , I0, X0q “ pV,NSVω1

, Xq. In particular, Mγ is wellfounded as M`
γ is

wellfounded. Let µ` “ µ`
0,γ , M` “M`

γ .
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Claim 4.55. In V rGs, prµ`pT qs “ X˚.

Proof. Work in V rGs. We have X˚ “ prT s and this implies X˚ Ď prµ`pT qs,
likewise R´X˚ Ď prµ`pSqs. In M`, µ`pT q, µ`pSq project to complements
and an absoluteness of wellfoundedness argument shows that this must be
true in V rGs as well, so that we indeed have X˚ “ prµ`pT qs.

We conclude

Xγ “ µ`pXq “ µ`pprT sq “ prµ`pT qs XM` “ X˚ XM` “ X˚ XMγ

which is what we had to show.

Lemma 4.56. Suppose that

piq Vmax is a typical self-assembling Pmax-variation with unique iterations,

piiq typicality of Vmax is witnessed by a set of pΣ1 YΠ1q-formulae Ψ,

piiiq there is a proper class of Woodin cardinals,

pivq Vmax-p˚q holds as witnessed by g and

pvq g produces A⃗.

Then pPpRq X LpRqq-BFAΨ
A⃗
pΓVmax

A⃗
pΨqq holds true.

Proof. We will assume nVmax “ 0. Let g witness Vmax-p˚q. Let p P g and
µ : pÑ p˚ “ pM, I,Aq the generic iteration of p guided by g. We will show
that

pPpRq X LpRqq-BFAΨ
ApΓ

Vmax
A pΨqq

holds. By Lemma 4.49, Hg “ HA is almost a Vmax-condition. Now let
P P ΓVmax

A pΨq and X P PpRq X LpRq. Let G be P-generic. We have to show
that

pHω2 ; P, X,RψA | ψ P ΨqV ăΣ1 pHω2 ; P, X˚, RψA | ψ P ΨqV rGs.

So let v P HV
ω2

, and θ a Σ0-formula such that

pHω2 ; P, X˚, RψA | ψ P ΨqV rGs |ù Du θpu, vq.

As Vmax is self-assembling, we may assume without loss of generality that
v “ µpv̄q for some v̄ P p. Let V rGsrHs be a further generic extension by
pΨ, Aq-preserving forcing so that in V rGsrHs

pH.iq HV rGsrHs

A is almost a Vmax-condition and

pH.iiq NSω1 is saturated.
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Note that

pHω2 ; P, X˚, RψA | ψ P ΨqV rGs ăΣ0 pHω2 ; P, X˚˚, RψA | ψ P ΨqV rGsrHs

as the extension is pΨ, Aq-preserving. Here, X˚˚ denotes the reevaluation of
X˚ in V rGsrHs. Accordingly,

pHω2 ; P, X˚˚, RψA | ψ P ΨqV rGsrHs |ù Du θpu, vq.

Let g be Colpω, 2ω1qV rGsrHs-generic over V rGsrHs and X˚˚˚ the reevaluation
of X˚˚ in V rGsrHsrgs. Then in V rGsrHsrgs,

pHω2 ,NSω1 , X
˚˚qV rGsrHs

is X˚˚˚-iterable by Proposition 4.54.

Claim 4.57. HV rGsrHs

A ăVmax q for all q P g.

Proof. Let q P g and σ : q Ñ q˚ the g-iteration of q. It follows from the
proof of Lemma 4.49 that

pHω2 ; P,NSω1 , Aq
V |ù φVmaxpq˚q

and since the extension V Ď V rGsrHs is pΨ, Aq-preserving,

pHω2 ; P,NSω1 , Aq
V rGsrHs |ù φVmaxpq˚q

follows.

Let q P g, q ăVmax p as witnessed by µ̄ : p Ñ p̄. HV rGsrHs

A witnesses in
V rGsrHsrgs that there is r “ pM, I, aq ăVmax q, as witnessed by σ : q Ñ q˚,
so that

pr.iq pM, I, Y q is X˚˚˚-iterable,

pr.iiq pM ; P, Iq |ù “V “ Hω2 ^ I “ NSω1” and

pr.iiiq pM ; P, Y, RψA | ψ P ΨqM |ù Du θpu, σpµ̄pv̄qq

where Y “ X˚˚˚ XM . As there is a proper class of Woodin cardinals,

pLpRqV ; P, Xq ” pLpRqV rGsrHsrgs; P, X˚˚˚q

and hence a density argument shows that there is q “ pN, J, bq P g, q ăVmax

p, as witnessed by µ1 : pÑ p1, such that

pq.iq pN, J,X XNq is X-iterable,

pq.iiq pN ; P, Jq |ù “V “ Hω2 ^ J “ NSω1” and

94



Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

pq.iiiq for some u P N , pN ; P, X XN,RψA | ψ P ΨqN |ù θpu, µ1pvqq.

Let σ : q Ñ q˚ “ pN˚, J˚, a˚q be the g-iteration of q. By (the proof of)
Lemma 4.49 piiq

pHω2 ,NSω1 , Aq
V |ù φVmaxpq˚q

and hence

pN˚; P, X XN˚, RψA | ψ P ΨqN
˚

ăΣ0 pHω2 ; P, X,RψA | ψ P ΨqV .

Moreover,
σ : pN, J,X XNq Ñ pN˚, J˚, X XN˚q

is fully elementary by pq.iq so that

pN˚; P, X XN˚, RψA | ψ P ΨqN
˚

|ù θpσpuq, σpµ1pvqqq.

By Lemma 4.11, σ ˝ µ1 “ µ, so we can conclude

pHω2 ; P, X,RψA | ψ P ΨqV |ù θpσpuq, vq

which is what we had to show.

In fact, we get an equivalence in case we can apply the P♢-method.

Second Blueprint Theorem 4.58. Suppose that

piq There are a proper class of Woodin cardinals,

piiq Vmax is a self-assembling typical Pmax-variation,

piiiq Vmax has unique iterations and accepts ♢-iterations,

pivq typicality of Vmax is witnessed by a set Ψ of pΣ1 YΠ1q-formulae,

pvq A⃗ “ pA0, . . . , AnVmax q P Hω2 and

pviq ΓΨ
A⃗
“ ΓVmax

A⃗
pΨq.

The following are equivalent:

p˚ .iq There is a filter g Ď Vmax which witnesses Vmax-p˚q and produces A⃗.

p˚ .iiq pPpRq X LpRqq-BFAΨ
A⃗
pΓVmax

A⃗
pΨqq.

Proof. “p˚ .iqñp˚ .iiq” follows from Theorem 4.56. “p˚ .iiqñp˚ .iq” can be
proven similar to the First Blueprint Theorem 4.44. We use the existence of
a proper class of Woodin cardinals instead of SRP to justify ADLpRq, that all
sets of reals in LpRq are 8-universally Baire and generic LpRq-absoluteness.
It is not immediate that HA⃗ is almost a Vmax-condition, nor did we assume

that NSω1 is saturated, however as ΓVmax

A⃗
pΨq “ ΓΨ

A⃗
, we can pass to a pΨ, A⃗q-

preserving forcing extension in which both of this is true. It follows that

g “ tp P Vmax |Dµ : pÑ p˚ a generic iteration of

length ω1 ` 1 with HA⃗ |ù φVmaxpp˚qu

witnesses Vmax-p˚q and produces A⃗.
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5 Instances of MM``
pfq

We take closer look at the theory of ♢pBq and MM``pfq for several instances
of B.

5.1 B “ t1u is the trivial forcing and p˚q

If we plug in the trivial forcing into the machinery developed here, we com-
pletely recover the picture of MM`` ñ p˚q. Observe that ♢pt0uq˚ is canon-
ically witnessed by

f : ω1 Ñ ω1, fpαq “

#

H if α “ 0

t0u else.

Now observe that

• f -complete forcing is the same as complete forcing,

• f -proper forcing is the same as proper forcing,

• f -semiproper forcing is the same as semiproper forcing,

• f -stationary is the same as stationary,

• PFApfq is equivalent to PFA and

• MM``pfq is equivalent to MM``.

In particular, we recover versions of Shelah’s iteration theorems for proper
and semiproper forcings.

Corollary 5.1 (Shelah). Countable support iterations of proper forcings are
proper.

Corollary 5.2 (Miyamoto). Nice iterations of semiproper forcings are semiproper.

Shelah has proven the above for iterations with revised countable sup-
port.

Corollary 5.3 (Foreman-Magidor-Shelah). If there is a supercompact car-
dinal then MM`` holds in a generic extension by semiproper forcing.

We also mention that Shelah’s version of S-properness and S-semiproperness
for a stationary set S Ď ω1 can be expressed naturally in our context: Let
fS be defined by

fpαq “

#

t0u if α P S ´ t0u

H else

and note that fS-(semi)properness is equivalent to S-(semi)properness.
We mention without proof that we can prove two of the main results of
[AS21] from the Blueprint Theorems and Pmax-theory.
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Theorem 5.4 (Asperó-Schindler). MM`` ñ p˚q.

Theorem 5.5 (Asperó-Schindler). If there is a proper class of Woodin car-
dinals, then the following are equivalent:

piq p˚q.

piiq pPpRq X LpRqq-BMM``.

5.2 B “ Colpω, ω1q and Cmax-p˚q

Technically, Colpω, ω1q is not a subset of ω1, but we can easily find a partial
order ď on ω1 so that

Colpω, ω1q – pω1,ďq.

There will then be a club C Ď ω1 so that

Colpω, αq – pα,ďæ αq

for all α P C. Hence we can replace B by Colpω, ω1q and BXα by Colpω, αq
in the definition of ♢pBq (and its variants) for all our intents and purposes.

We denote ♢pColpω, ω1qq by ♢pωăω
1 q and ♢pColpω, ω1qq

` by ♢`pωăω
1 q.

As mentioned already in Section 2, these are slight strengthenings of prin-
ciples studied in [Woo10, Section 6.2]. From the results of the previous
sections, it is consistent relative to a Woodin cardinal that NSω1 is satu-
rated and there is a regular embedding of Colpω, ω1q into pPpω1q{NSω1q

`.
This is a step closer towards “NSω1 is ω1-dense”, as that is equivalent to a
dense embedding of Colpω, ω1q into pPpω1q{NSω1q

` and implies saturation.
Moreover, “NSω1 saturated” does not imply even ♢pωăω

1 q. If MAω1 , holds
then ♢pωăω

1 q fails. For example there is a nonmeager set of reals of size ℵ1

under ♢pωăω
1 q, see Proposition 5.27. Observe that this implies that random

forcing kills all ground model witnesses of ♢pωăω
1 q. Moreover, if MM holds

then NSω1 is saturated while ♢pωăω
1 q fails.

Fact 5.6 (Woodin,[Woo10, Theorem 6.49]). If ♢pωăω
1 q holds then there is

a Suslin tree36.

From a witness f of ♢pωăω
1 q, Woodin describes a particular construction

similar to the construction of a Suslin tree from ♢. Forcing with this tree
does not preserve f . Given that such simple forcings can destroy “f wit-
nesses ♢pωăω

1 q”, it seems quite miraculous how much of the MM``-theory
carries through to MM``pfq.

Corollary 5.7. Any model of ZFC has a forcing extension in which ♢`pCq
holds and ♢pωăω

1 q fails.

36Recall that a Suslin tree is a tree T of height ω1 so that pT,ěT q has no uncountable
antichains.
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We will now apply the Blueprint Theorems in the context B “ Colpω, ω1q.
First we define the corresponding Pmax-variation. Although not exactly
necessary, it seems natural in this context to generalize ♢pBq and ♢`pBq
to different ideals then the nonstationary ideal, i.e. we replace stationary
by “is in I`” and “contains a club” by “the complement is in I” for the
formulations of ♢pBq, ♢`pBq for which this makes sense.

Definition 5.8. Let B Ď ω1 be a forcing and I a normal uniform ideal on
ω1. ♢IpBq states that there is a function f so that

piq f guesses B-filters and

piiq if xDα | α ă ω1y is a sequence of dense subsets of B and b P B then

tα ă ω1 | b P fpαq ^ @β ă α fpαq XDβ ‰ Hu P I
`.

♢`
I pBq results from ♢IpBq by replacing piiq above with:

piiq` For any dense D Ď B,

tα ă ω1 | fpαq XD “ Hu P I

and moreover for any b P B, we have

Sfb “ tα ă ω1 | b P fpαqu P I
`.

Observe that ♢pBq “ ♢NSω1
pBq and ♢`pBq “ ♢`

NSω1
pBq. We also define

ψAC relativized to a normal uniform ideal.

Definition 5.9. Suppose I is a normal uniform ideal on ω1. Then ψACpIq
holds iff for any S, T P I` with ω1 ´ S, ω1 ´ T P I` there is a canonical
function ηξ for some ξ ă ω2 with

S “ η´1
ξ rT s mod I.

Definition 5.10. Cmax is the following Pmax-variation: Conditions are
generically iterable structures

p “ pMp, Ip, fpq “ pM, I, fq

so that

pCmax.iq pM ; P, Iq |ù ψACpIq and

pCmax.iiq pM ; P, Iq |ù “f witnesses ♢`
I pω

ăω
1 q”.
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The order on Cmax is defined as follows: We let

q “ pN, J, gq ă pM, I, fq “ p

iff there is a generic iteration

µ : pÑ p˚ “ pM˚, I˚, f˚q

of p in q so that I˚ “ J X p˚ and f˚ “ g˚.

The point of pCmax.iq is to make sure that Cmax has unique iterations.

Fact 5.11 (Woodin,[Woo10, Lemma 5.15]). Suppose pM, Iq is a potentially
iterable structure and a P Ppω1q, so that

piq pM ; P, Iq |ù “I is a normal uniform ideal on ω1”,

piiq pM ; P, Iq |ù ψACpIq and

piiiq M |ù ω
Lras

1 “ ω1.

If µi : M ÑM˚
i are generic iterations of pM, Iq with M˚

i transitive for i ă 2
and µ0paq “ µ1paq then

M˚
0 “M˚

1 and µ0 “ µ1.

Note that if f witnesses ♢`
I pω

ăω
1 q then f is “essentially a subset of ω1”

and ω
Lpfq

1 “ ω1.

We remark that Pmax makes use of MAω1 for this purpose. The relevant
consequence of MAω1 which makes this work is:

Definition 5.12. Coding holds if for any sequence xaβ | β ă ω1y of pairwise
almost disjoint sets in rωsω and any subset A of ω1 there is c Ď ω with

β P Aô cX aβ is finite

for all β ă ω1.

Unfortunately, Coding is inconsistent with ♢pωăω
1 q and we will prove this

later, see Lemma 5.45.

Let us define

• ψCmax
0 “ “x “ 9f” and

• ψCmax
1 “ “x P 9I 9f”.
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Then, for all our intents and purposes, ΨCmax “ tψCmax
i | i ă 2u witnesses

the typicality of Cmax: “x P 9I” is not an element of ΨCmax , but is implied
by ψCmax

1 in the context it is used in. Moreover, if f witnesses ♢pωăω
1 q then

ΓΨ
f is exactly the class of f -stationary set preserving forcings. Also ψCmax

0

is atomic while ψCmax
1 is (equivalent to) a Σ1-formula. Note that ω1 can be

defined by a Σ1 formula as the Mostowski collapse of a set with complement
in 9I. Moreover, Cmax accepts ♢-iterations by Lemma 4.19.

Theorem 5.13. If f witnesses ♢pωăω
1 q then MM``pfq ñ Cmax-p˚q.

Proof. Let f witness ♢pωăω
1 q so that MM``pfq holds. SRP holds by Lemma

3.69 and f is a witness of ♢`pωăω
1 q by Theorem 3.75 so that Hf is almost

a Cmax-condition. Cmax-p˚q follows from the First Blueprint Theorem 4.44.

These axioms are MM`` and p˚q respectively conditioned on the exis-
tence of a complete embedding

η : Colpω, ω1q Ñ pPpω1q{NSω1q
`.

However, NSω1 is not ω1-dense under either of these axioms. The reason for
this can be seen from two different perspectives: On the forcing axiom side,
the “++”-part of MM``pfq implies that for any set S of ω1-many stationary
sets, there is a (f -)stationary set T so that T X S, S ´ T is (f -)stationary
for all S P S, as the generic set added by Addpω1, 1q has this property. We
will see later that the weaker MMpfq is indeed consistent with “NSω1 is
ω1-dense”, assuming appropriate large cardinals of course. If one takes a
look at the standard iteration to produce a model of MM``pfq, the “++”-
part comes from the fact that f -stationary sets are preserved along the
iteration. When producing a model of a forcing axiom which implies “NSω1

is ω1-dense” later, we will and must often kill f -stationary sets during the
iteration.
On the other side, the fact that NSω1 is not ω1-dense under Cmax-p˚q is due
to the ideals being preserved along the order, that is: If q ă p in Cmax, this
is witnessed by a generic iteration µ : pÑ p˚ “ pM˚, I˚, f˚q with, crucially,

Iq X p˚ “ I˚.

If Mp |ù S P rpI`qpsω1 , then there are dense-below-p many q ă p so that if
µ : p Ñ p˚ witnesses q ă p, then µpSq is not dense in pI`qq, as witnessed
by some T . This can then not be removed anymore: If further r ă q as
witnessed by

η : q Ñ q˚

then, as Ir X q˚ “ Iq
˚

, ηpT q will witness in r that η ˝ µpSq is not dense in
pI`qr. This suggests to drop the compatibility condition on the ideals if one
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wants to force “NSω1 is ω1-dense”. This will later lead us to Q´
max.We will

later see that Cmax is self-assembling assuming ADLpRq, see Corollary 8.12.

Theorem 5.14. If there is a proper class of Woodin cardinals then the
following are equivalent:

piq Cmax-p˚q.

piiq There is a witness f of ♢pωăω
1 q so that pPpRq X LpRqq-BMM``pfq

holds.

Proof. Note that as there is a proper class of Woodin cardinals, if f witnesses
♢pωăω

1 q then ΓΨCmax

f “ ΓCmax
f pΨCmaxq by Theorem 3.60. Now if g witnesses

Cmax-p˚q and g produces f then f witnesses ♢pωăω
1 q by Lemma 4.49. The

desired equivalence follows from the Second Blueprint Theorem 4.58.

Finally, we will separate ♢pωăω
1 q from ♢`pωăω

1 q to highlight the differ-
ences between the two principles.

Proposition 5.15. No function f P V witnesses ♢`pωăω
1 q in V Addpω1,1q.

Proof. We may assume that f witnesses ♢pωăω
1 q in V , otherwise f cer-

tainly does not witness ♢`pωăω
1 q in any forcing extension. Furthermore, we

may replace the role of Colpω, αq in ♢`pωăω
1 q by the poset Colincpω, αq of

increasing conditions in Colpω, αq as these two forcings are isomorphic for
additively closed α (and uniformly so in α). We may further assume that

f : ω1 Ñ Hω1

is a function with

fpαq is a maximal filter in Colincpω, αq

for all nonzero α ă ω1. We will find a dense D Ď Colincpω, ω1q in V Addpω1,1q

so that
tα ă ω1 | fpαq XD “ Hu

is stationary. Let G be Addpω1, 1q-generic and g “
Ť

G. We define D as

D :“ tp P Colincpω, ω1q | Dn P domppq gpppnqq “ 1u.

Let 9D be a name for this set and let 9C be a name for a club in ω1 and
p P Addpω1, 1q. Let ξ “ psup domppqq ` 1 and define b P Colincpω, ω1q by
b : 1 Ñ ω1, bp0q “ ξ. Let θ be sufficiently large and regular. As f witnesses

♢pωăω
1 q, we can find some f -slim X ă Hθ with p, 9C, 9D P X and δX P Sfb .

We may consider fpδXq as an increasing function from ω into α. We will
find q ď p so that

q , δX̌ P 9C ^ f̌pδX̌q X 9D “ H.
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Claim 5.16. There is a filter H generic over MX for AddpδX , 1qMX with
p P H so that for all n ă ω, hpfpδXqpnqq “ 0, where h “

Ť

H.

Proof. Let us write αn for fpδXqpnq. Let pDnqnăω be an enumeration of
all dense open subsets of AddpδX , 1qMX in MX . Let us define a decreasing
sequence xpn | n ă ωy by induction satisfying

pp⃗.iq p0 “ p,

pp⃗.iiq pn`1 P Dn and

pp⃗.iiiq if αm P domppnq for some m then pnpαmq “ 0

for all n ă ω. Note that αm ą sup domppq for all m ă ω as b P fpδXq and
thus p0 “ p satisfies pp⃗.iiiq. Now suppose pn is already defined. A simple
density argument shows that there is some αm ą domppnq so that if p1

n is the
extension of pn to a condition of length αm`1 by padding with 0’s, then there
is a further extension pn`1 of p1

n with pn`1 P Dn and domppn`1q ă αm`1.
This finishes the construction and the filter H generated by ppnqnăω does
the job.

Let q “
Ť

H is a condition in Addpω1, 1q below p. The properties of H
imply that q is pX,Addpω1, 1qq-generic and thus

q , δX̌ P 9C.

But also by design

q , 9D X f̌pδX̌q “ H.

Remark 5.17. Note that the q constructed above is pX,Addpω1, 1qq-generic
but not pX,Addpω1, 1q, fq-generic, even though X is f -slim. Thus being
pX,P, fq-generic is in some cases strictly stronger than being pX,Pq-generic,
even for f -proper forcings.

Corollary 5.18. If GCH holds then V Colpω1,ăω2q |ù ♢pωăω
1 q ^ ␣♢`pωăω

1 q.

Proof. We can factor Colpω1,ăω2q as Colpω1, ω1q ˆ Colpω1,ăω2q and by
Corollary 2.16, ♢pωăω

1 q holds in V Colpω1,ω1q as well as CH, and this is pre-
served in the further extension by the σ-closed forcing Colpω1,ăω2q by
Lemma 3.5.
Let G be generic for Colpω1,ăω2q and work in V rGs. To see that ♢`pωăω

1 q

fails, note that any function

f : ω1 Ñ Hω1

is already in V rG æ αs for some α ă ω2, where G æ α “ G X Colpω1,ăαq.
This follows from GCH in V . If g is the slice of G at α, then f does not
witness ♢`pωăω

1 q in V rG æ α, gs by Proposition 5.15. The extension from
V rG æ α, gs to V rGs is stationary set preserving and hence f does not witness
♢`pωăω

1 q in V rGs either.
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5.3 Split witnesses

Instead of considering only one witness f of ♢pBq, one can split ω1 into
two stationary sets S, T and consider one witness f0 of ♢pB0q “on S” and
another witness f1 of ♢pB1q “on T”.

Definition 5.19. Suppose B0,B1 Ď ω1 are forcings. ♢pB0,B1q holds if there
is pair pf0, f1q so that

piq fi witnesses ♢pBiq for i ă 2 and

piiq for all α ă ω1, f0pαq “ H or f1pαq “ H.

♢`pB0,B1q if additionally

piiiq for any dense D0 Ď B0, D1 Ď B1

tα ă ω1 | f0pαq XD0 ‰ H_ f1pαq XD1 ‰ Hu

contains a club.

We call pf0, f1q a split witness of ♢pB0,B1q, ♢`pB0,B1q respectively.

Note that if pf0, f1q is a split witness of ♢pB0,B1q then condition piiiq is
equivalent to “fi witnesses ♢`

NSω1æSi
pBiq” where

Si “ supppfiq :“ tα ă ω1 | fpαq ‰ Hu

for i ă 2.
All of what we have done so far for usual witnesses of ♢pBq generalizes
naturally to split witnesses. The reason for this is that any split witness
pf0, f1q of ♢pB0,B1q naturally corresponds to a usual witness f of ♢pBq for
some B as follows: Let B “ B0 ‘ B1 Ď ω1 be the disjoint union of B0, B1

coded as a subset of ω1. Then for a club C and α P Si X C, i ă 2, we have

τirBi X αs “ ranpτiq X α

where τi is the canonical regular embedding Bi Ñ B. Define f by

f : ω1 Ñ Hω1 , α ÞÑ

$

’

’

&

’

’

%

τ0rf0pαqs if α P S0 X C

τ1rf1pαqs if α P S1 X C

H else.

We call pf0, f1q a split of f . Clearly, this translation procedure has an
inverse: If f witnesses ♢pB0 ‘ B1q and we define fi by fipαq “ τ´1

i rfpαqs if
α P ranpτiq X C and fipαq “ H otherwise, then pf0, f1q is a split witness of
♢pB0,B1q and is a split of f . On the club C, pf0, f1q “behaves the same as
f”. In particular, we can express properties of pf0, f1q that only depend on
f0, f1 modulo NSω1 in terms of properties of f and vice versa. For example,
pf0, f1q is a split witness of ♢`pB0,B1q iff f witnesses ♢`pBq. We can also
translate all the notions related to usual witnesses into the split witness
context.

103



5. Instances of MM``pfq

Definition 5.20. Suppose pf0, f1q is a split witness of ♢pB0,B1q. A forcing
P is pf0, f1q-complete/proper/semiproper iff P is fi-complete/proper/semiproper
for both i “ 0, 1.

Thus the iteration theorems related to a split witness naturally follow
from the iteration theorems related to usual witnesses of ♢pBq. The only
results we will make use of for split witnesses is the existence of witnesses
under ♢ and the translation of (a weak version of) Theorem 3.60.

Proposition 5.21. Suppose ♢ holds. For any forcings B0,B1 Ď ω1 there is
a split witness pf0, f1q of ♢pB0,B1q.

Theorem 5.22. Suppose there is a Woodin cardinal and pf0, f1q is a split
witness of ♢pB0,B1q. Then there is a δ-c.c. pf0, f1q-semiproper forcing P so
that NSω1 is saturated in V P.

We note that we could have defined split witnesses of any length ď ω1,
but will not make use of this.

5.4 B is Cohen forcing and weakly Lusin sequences

The case B is Cohen forcing is related to the following concept which was
introduced by Shelah-Zapletal [SZ99].

Definition 5.23. A sequence xxα | α ă ω1y of reals is weakly Lusin if

tα ă ω1 | xα P Y u P NSω1

for all meager sets Y Ď R.

Question 5.24 (Shelah-Zapletal, [SZ99]). Does the saturation of NSω1 plus
the existence of a nonmeager set of reals of size ℵ1 imply the existence of a
weakly Lusin sequence?

This has been answered in the negative by Paul Larson by forcing with
a Pmax-style partial order over LpRq under determinacy.

Fact 5.25 (Larson, [Lar05]). Suppose V “ LpRq |ù AD. Then there is a
forcing extension V rGs which is a model of ZFC and in V rGs

• NSω1 is saturated,

• there is a nonmeager set of reals of size ℵ1 and

• there is no weakly Lusin sequence.

We improve this result by reducing the assumption ADLpRq to the opti-
mal one in terms of consistency strength. Let C denote Cohen forcing. We
will do so by forcing “NSω1 is saturated” while simultaneously separating
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♢pCq from ♢`pCq. In order for these principles to make sense, we consider
C as being recursively coded as subset of ω. We will now explain the con-
nection between these two principles and the question of Shelah-Zapletal.
The following standard fact is crucial.

Fact 5.26. Suppose θ is regular uncountable and X ă Hθ is countable. Let
c be a real. The following are equivalent:

piq c is a Cohen real over MX .

piiq c R Y whenever Y is a meager Borel set of reals definable over X.

See e.g. [BJ95].

Proposition 5.27. If ♢pCq holds then there is a nonmeager set of reals of
size ℵ1.

This is essentially p1q of Theorem 6.49 in [Woo10].

Proof. Suppose f witnesses ♢pCq and let Z “ R X Lpfq. We have Lpfq “
LrAs for some set A Ď ω1 and hence Z is of size ℵ1. Let Y be any Borel
meager set of reals and find some f -slim X ă Hω2 with Y definable over
X. As fpδXq is C-generic over MX , we have

Ť

fpδXq P Z ´ Y . Thus Z is
nonmeager.

The existence of a weakly Lusin sequence is a familiar face in disguise.

Lemma 5.28. The following are equivalent:

piq There is a weakly Lusin sequence.

piiq ♢`pCq.

Proof. piqñpiiq: Suppose x⃗ “ xxα | α ă ω1y is a weakly Lusin sequence. We
identify R with ωω and consider x⃗ to be a sequence in ωω. Define

f : ω1 Ñ PpCq

via fpαq is the C-filter of all initial segments of xα for ω ď α ă ω1 and
fpnq “ H for n ă ω.

Claim 5.29. Any countable X ă Hω2 with f P X is f -slim.

Proof. fpδXq is C-generic over MX iff xδX R Y for any meager Borel Y Ď R
definable over X by Fact 5.26. The latter holds as x⃗ is weakly Lusin and
x⃗ P X.

We do not necessarily have Sfp stationary for all p P C, we deal with this

issue now. Let C` “ tp P C | S
f
p P NS`

ω1
u.
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Claim 5.30. C` is a nonatomic suborder of C.

Proof. Suppose p P C`. Find some increasing continuous chain

xXα | α ă ω1y

of countable elementary substructures of Hω2 with f P X0. Note that

S :“ tα ă ω1 | δ
Xα P Sfp u

is stationary as p P C`. For n ă ω define

rn : S Ñ C

by rnpαq “
Ť

fpδXαq æ n “ xδXα æ n. By iterated applications of Fodor’s
lemma, we can find a real x P ωω so that

tα P S | rnpαq “ x æ nu

is stationary for all n ă ω. It follows that x æ n P C` for all n ă ω. If
there were no incompatible conditions in C` below p, then x “

Ť

fpδXαq for
almost all α P S and hence x is definable from f and a countable ordinal but
on the other hand, x is generic over MXα for almost all α P S, contradiction.

It follows that there is a dense embedding σ : CÑ C`. For α ă ω1, let

f 1pαq “ σ´1rfpαqs.

It is easy to see that f 1 witnesses ♢`pCq.
To see piiqñpiq, suppose f witnesses ♢`pCq. It follows that fpαq is a max-
imal C-filter on a club C. Let xξα | α ă ω1y be the monotone enumeration
of C. It easily follows from Fact 5.26 that

A

ď

fpξαq | α ă ω1

E

is a weakly Lusin sequence.

Remark 5.31. If NSω1 is saturated then the existence of a weakly Lusin
sequence is additionally equivalent to “pPpω1q{NSω1q

` adds a Cohen real”,
however this can fail in general.

We now state the theorem that reduces the assumption of Larson from
ADLpRq to just one Woodin cardinal.

Theorem 5.32. The theories

piq ZFC` “There is a Woodin cardinal” and
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piiq ZFC` “NSω1 is saturated”`♢pCq ` ␣♢`pCq

are equiconsistent.

Note that in any model of the theory in piiq, there is a nonmeager set of
size ℵ1 by Proposition 5.27, but no weakly Lusin sequence by Lemma 5.28.
An important ingredient of the argument will be Miller forcing.

Definition 5.33. Suppose T Ď ωăω is a tree.

piq For t P T the set of immediate successors of t P T is

succT ptq “ tn ă ω | t"n P T u.

piiq A node t P T splits in T if succT ptq is infinite.

piiiq For n ă ω and t P T , t is a splitting node of order n, t P splitnpT q, if
t splits in T and there are exactly n proper initial segments of t that
split in T .

pivq T is superperfect if T ‰ H and for any t P T there is t ďT s so that s
splits in T .

Definition 5.34. Conditions in Miller forcing M are superperfect trees T Ď
ωăω. M is ordered by inclusion.

Lemma 5.35. Suppose f witnesses ♢pBq. Miller forcing is f -proper.

We adapt the usual argument which shows that M is proper.

Proof. Let θ be sufficiently large regular and X ă Hθ f -slim. Suppose
p P MXX, it is our task to find some pX,M, fq-generic condition below p.
For q, r PM, let q ďn r iff q ď r and splitnpqq “ splitnprq. Let xDn | n ă ωy
be an enumeration of all dense open D Ď MMX , D P MXrfpδ

Xqs. We will
construct a descending sequence

p⃗ “ xpn | n ă ωy

satisfying

pp⃗.iq p0 “ p,

pp⃗.iiq if t P splitnppnq then pn æ t P X,

pp⃗.iiiq pn`1 ďn pn and

pp⃗.ivq pn`1 æ t P πXrDns for every t P splitn`1ppnq
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for all n ă ω. Define pn by induction on n ă ω. Set p0 “ p and now
assume that pn is defined. For t P splitn`1ppnq, find ptn ď pn æ t so that
ptn P πXrDns. This is possible as pn æ t P X. Define pn`1 by gluing all ptn
for t P splitn`1ppnq together, that is

pn`1 “
ď

tptn | t P splitn`1ppnqu.

It follows that pn`1 P M and that pp⃗.iiiq, pp⃗.ivq hold as well as that pn`1 æ

t P X for all t P splitn`1ppn`1q.
We define q :“

Ş

năω pn, the fusion of the sequence p⃗. We have q P M by
pp⃗.iiiq, q ď p by pp⃗.iq. Condition pp⃗.ivq implies that q is pX,M, fq-generic,
see Proposition 3.15.

The following was shown in [SZ99] and attributed to Baroszyński.

Fact 5.36. No sequence xxα | α ă ω1y of reals in V is weakly Lusin in V M.

Remark 5.37. In fact, their proof shows that for any stationary set S P V
and any sequence xxα | α ă ω1y P V of reals, in V M there is a meager set
Y Ď R so that tα P S | xα P Y u P NS`

ω1
.

Proof of Theorem 5.32. Suppose δ is a Woodin cardinal. By Proposition
5.21, we may assume that there is a split witness pf0, f1q of ♢pC, t0uq. Fur-
ther, we may assume that δ is Woodin with ♢. By Theorem 5.22, there is a
δ-c.c. pf0, f1q-semiproper forcing P so that NSω1 is saturated in V P. P is a
nice iteration

P “ xPα, 9Qβ | α ď δ, β ă δy

of pf0, f1q-semiproper forcings. We will assume that for unboundedly many
α ă δ, we have V Pα |ù 9Qα “ M. The proof of Theorem 3.60 clearly allows
for this by Lemma 5.35. Let G be P-generic over V . As P is f0-semiproper,
f0 witnesses ♢pCq in V rGs.

Claim 5.38. ♢`pCq fails in V rGs.

Proof. Suppose f P V rGs guesses C-filters. As P is δ-c.c. in V , there is some
α ă δ with f P V rGαs so that

V rGαs |ù 9QGα
α “M.

By Fact 5.36 and the subsequent remark as well as (the proof of) Lemma
5.28, f does not witness ♢`pCq in V rGα`1s. In fact, in V rGα`1s there is a
dense D Ď C such that

T :“ tα P supppf1q | fpαq XD “ Hu

is stationary. Note that supppf1q is stationary in V rGαs as P is f1-semiproper.
By Corollary 3.53, the extension V rGα`1s Ď V rGs is f1-stationary set pre-

serving (i.e. preserves stationary subsets of supppf1q) hence T R NS
V rGs
ω1 .
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The other direction holds as Jensen-Steel [JS13] have shown that the
consistency of

ZFC` “There is a Woodin cardinal”

follows from the consistency of ZFC` “NSω1 is saturated”.

We separate ♢pCq from ♢pωăω
1 q now.

Proposition 5.39. Suppose f witnesses ♢pCq. If T is a Suslin tree then
the forcing pT,ěT q is f -proper.

Proof. The reason for this is that Cohen forcing preserves all Suslin trees.
If θ is sufficiently large, regular and X ă Hθ is f -slim with T P X then in
fact any q P T is pX,P, fq-generic: If

MXrfpδ
Xqs |ù “A is a maximal antichain in π´1

X pT q”

then MXrfpδ
Xqs |ù “A is countable” and thus A Ď Tξ for some ξ ă δX . It

follows that A really is a maximal antichain in T and thus

q , 9GX ǍX X̌ ‰ H.

It follows that ♢`pCq together with “there are no Suslin trees” is con-
sistent and implies ␣♢pωăω

1 q by Fact 5.6. We also note that ♢`pCq follows
from CH by Lemma 5.28 as it is straightforward to construct a weakly Lusin
sequence from CH. Jensen (cf. [DJ74]) has shown that CH is consistent with
“there are no Suslin trees”, so CH does not even imply ♢pωăω

1 q.

For several Σ2-sentences ϕ, Shelah-Zapletal have investigated numerous
Pmax-style forcings that maximize the Π2-theory of

pHω2 ; P,NSω1q

conditioned to the existence of a witness for ϕ. Shelah-Zapletal make this
precise and investigate what they call Π2-compact sentences: Consider the
following scheme depending on ϕ.

Theorem Scheme. If ADLpRq holds, then there is a σ-closed forcing Pϕ
definable in LpRq such that in LpRqPϕ

pPϕ.iq ZFC holds, 2ω “ ω2 “ δ12, NSω1 is saturated and

pPϕ.iiq ϕ holds in LpRqPϕ.

Moreover, if ψ is any Π2-sentence over pHω2 ; P,NSω1q and

piq there is a Woodin with a measurable above it,
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piiq ϕ holds and

piiiq pHω2 ; P,NSω1q |ù ψ

then pHω2 ; P,NSω1q
LpRq

Pϕ
|ù ψ.

Definition 5.40. A Σ2-sentence ϕ is Π2-compact if the instance of the
scheme above with ϕ can be proven in ZFC.

For example, it follows from Woodin’s Theorem 4.64 in [Woo10] that ϕ “
“@x x “ x” is Π2-compact via the Pmax-method and that “NSω1 is ω1-dense”
is Π2-compact using Qmax, see [Woo10, Theorem 6.33].
The instances of ϕ that Shelah-Zapletal were interested in were mostly of
the form r “ ℵ1 for a cardinal characteristic r of the continuum, but also of
the form “There exists a Suslin tree with θ” for some Σ1-properties θ. We
will take a look at sentences ϕ of the former form in Section 9 and 10, of
the latter form in Subsection 5.6. Right now, we consider the sentence

ϕwL “ “There is a weakly Lusin sequence”

which Shelah-Zapletal have proven Π2-compact. The forcing PϕwL they de-
fined to accomplish this is not a Pmax-variation according to our definition,
however their methods together with results of Woodin in [Woo10, Section
5.4] show that, for all our intents and purposes, PϕwL can be replaced by the

Pmax-variation PwL
max we are about to define.

Definition 5.41. Suppose I is a normal uniform ideal on ω1. A sequence
xxα | α ă ω1y of reals is I-weakly Lusin if

tα ă ω1 | xα P Y u P I

whenever Y Ď R is meager.

Definition 5.42. PwL
max conditions are generically iterable structures p “

pM, I, x⃗, aq with

pPwL
max.iq pM ; P, Iq |ù ψACpIq,

pPwL
max.iiq pM ; P, Iq |ù “x⃗ is an I-weakly Lusin sequence” and

pPwL
max.iiiq M |ù a Ď ω1 ^ ω

Lras

1 “ ω1.

The order on PwL
max is given by

q “ pN, J, y⃗, bq ăPwL
max

p

if there is a generic iteration

µ : pÑ p˚ “ pM˚, I˚, x⃗˚, a˚q

in N of length ωN1 ` 1 so that
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păPwL
max

.iq I˚ “ J XM˚,

păPwL
max

.iiq x⃗˚ “ y⃗ and

păPwL
max

.iiiq a˚ “ b.

Let ΨwL consist of

• ψwL
0 pxq “ “x “ 9⃗x”,

• ψwL
1 pxq “ “x “ 9a” and

• ψwL
2 pxq “ “x P 9Ifx⃗”

where fx⃗ denotes the C-filter guessing function f constructed from a se-
quence of reals x⃗ in the proof of Lemma 5.28. As in the case of Cmax, ΨwL

“witnesses typicality for all intents and purposes”. PwL
max accepts ♢-iterations

by Lemma 4.19. PwL
max has unique iterations by Fact 5.11.

Theorem 5.43. Suppose f witnesses ♢pCq. Then MM``pfq implies PwL
max-p˚q.

Proof. Suppose MM``pfq holds. It follows that f witnesses ♢`pCq. Let x⃗
be the weakly Lusin sequence constructed from f as in Lemma 5.28. Note
that any f -preserving forcing preserves x⃗ as a weakly Lusin sequence. We
have that SRP holds by Corollary 3.76, so that NSω1 is saturated. Hence

for any A Ď ω1 with ω
LrAs

1 “ ω1, we have that

pHω2 ,NSω1 , x⃗, Aq

is almost a PwL
max-condition. PwL

max accepts ♢-iterations by Lemma 4.19 and
(the proof of) Lemma 5.28. This implies PwL

max-p˚q by the First Blueprint
Theorem 4.44.

Theorem 5.44. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq PwL
max-p˚q.

piiq There is a witness f of ♢pCq so that pPpRqXLpRqq-BMM``pfq holds.

Proof. It follows from results in [SZ99] (also from results in Section 8) that
PwL
max is self-assembling. Suppose that f witnesses ♢`pCq and x⃗ is the as-

sociated weakly Lusin sequence. Let A Ď ω1 with ω
LrAs

1 “ ω1. We have

that ΓΨwL
is exactly the class of f -stationary set preserving forcings. It is

a consequence of the existence of a proper class of Woodin cardinals and of
Theorem 3.60 that

ΓΨwL

px⃗,Aq “ Γ
PwL
max

px⃗,Aq
pΨwLq.

The desired equivalence now follows from the Second Blueprint Theorem
4.58.
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We finally fulfill our earlier promise and explain the tension between
Coding and ♢pωăω

1 q and even ♢pCq which forced our hands to use ψACpIq
to ensure that Cmax and PwL

max have unique iterations.

Lemma 5.45. If ♢pCq holds then Coding fails.

Proof. Suppose f witnesses ♢pCq. Let

C “ tα ă ω1 | DX ă Hω2 X is f -slim^ f P X ^ δX “ αu

and observe that ω1 ´ C P NSf . Let xξβ | β ă ω1y be the monotone
enumeration of C and define

aβ :“ h

„

!

ď

fpξβq æ n | n ă ω
)

ȷ

where h : ωăω Ñ ω is some fixed recursive bijection. It is straightforward
to see that a⃗ :“ xaβ | β ă ω1y consists of pairwise almost disjoint sets in
rωsω. Suppose for a contradiction that Coding holds for a⃗. Consider the
embedding

ηf : CÑ pPpω1q{NSf q
`

and note that ηf is a complete embedding with this codomain.

Claim 5.46. ηf is a dense embedding.

Proof. Let S P NS`
f and let G Ď pPpω1q{NSf q

` be a generic filter with
rSsNSf P G. Let UG be the corresponding V -ultrafilter and

j : V Ñ UltpV,UGq “: M

the induced ultrapower. We assume that the wellfounded part of M is
transitive. Find x P rωsω which codes S via a⃗. NSf is a uniform normal
ideal by Lemma 2.20 so ω1 P jpSq and we have

|xX aω1 | ă ω

by elementarity, where aω1 denotes the ω1-st entry in jp⃗aq. However, this
only depends on g :“ η´1

f rGs: By construction we have

aω1 “ h

„

!

ď

jpfqpω1q æ n | n ă ω
)

ȷ

“ h

„

!

ď

g æ n | n ă ω
)

ȷ

.

It follows that there is some p P C so that

ηf ppq , | 9aω1 X x̌| ă ω

where 9aω1 is a name for aω1 . This is only possible if ηf ppq ď rSsNSf .

This is clearly absurd, C is c.c.c. while pPpω1q{NSf q
` collapses ω1.
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5.5 Uniform sequences of witnesses

In some way, shape or form, everything from Section 2 through Section 3.3
generalizes to uniform sequences of witnesses for ♢pBq, resp. ♢`pBq. We
immediately introduce them relative to arbitrary ideals on ω1.

Definition 5.47. Suppose I is a normal uniform ideal on ω1 and B Ď ω1 a
forcing. A sequence f “ pfnqnăω uniformly witnesses ♢IpBq if

piq fn guesses B-filters for all n ă ω and

piiq if xDα | α ă ω1y is a sequence of dense subsets of B, n ă ω and
xbi | i ă ny is a finite sequence of conditions in BP then

tα ă ω1 | b P fnpαq ^ @m ă ω @β ă α fmpαq XDβ ‰ Hu P I
`.

f uniformly witnesses ♢`
I pBq if piq above holds and piiq is replaced by:

piiq1 For any dense subset D Ď B,

tα ă ω1 | Dm ă ω fmpαq XD “ Hu P I

and moreover, for for all n ă ω and b P B

Sf
n,b :“ tα ă ω1 | b P fnpαqu P I

`.

Note that f uniformly witnesses ♢`
I pBq iff all fn, n ă ω witness ♢`pBq

and thus we may and will drop the adverb “uniformly” in this case and only
say f witnesses ♢`

I pBq. The same is however not true in general for ♢IpBq
instead of ♢`

I pBq.

Definition 5.48. If f is a sequence of functions guessing B-filters and θ is
an uncountable cardinal, we say that X ă Hθ is f -slim iff X is countable,
f P X and X is fn-slim for all n ă ω.

This leads also leads to f -stationary sets, simply replace f -slim in the
definition of f -stationary by f -slim. We leave it to the reader to generalize
more concepts, e.g. f -proper and f -semiproper forcings to f -proper and f -
semiproper forcings.

Convention 5.49. Assume and G is a countable set of filters. Then G is
generic over M if all g P G are generic over M . In this case we set

M rGs “
ď

gPG
M rgs.

If f uniformly witnesses ♢IpBq, we let

fpαq “ tfnpαq | n ă ωu.
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With this convention, many results hold and plenty of arguments work
verbatim when f is replaced by f and “witnesses ♢pBq” is replaced by
“uniformly witnesses ♢pBq” (and similar for ♢`pBq and other variants).
The “meta-reason” for this is that usually we care about dense subsets in
MXrfpδ

Xqs of some forcing in MX and since there are only countable such
sets, we can diagonalize against them in some way. But in MXrfpδ

Xqs there
are also only countably many dense sets we care about and the same diag-
onalizing works. In some arguments we had f -slim X,Y ă Hθ with X Ď Y
and needed to lift the natural elementary embedding

µ : MX ÑMY

to

µ` : MXrfpδqs ÑMY rfpδqs

where δ “ δX “ δY . See for example the proofs of Theorem 3.48 and
Theorem 11.41. In these cases one would instead do countably many liftings
of the from

µ`
n : MXrfnpδqs ÑMY rfnpδqs

for n ă ω if X,Y are f -slim instead. Some additional, but boring, bookkeep-
ing may then be required but essentially the same arguments work nonethe-
less. Since doing this only makes the proof more notationally exhausting
but not mathematically inspiring, we opted to give the arguments in the
less general case. We leave the details to the reader. In the next section,
it will for the first time be interesting and necessary to work with uniform
witnesses.

5.6 B is a Suslin tree and STmax-p˚q

In this section, we will assume that B “ T is a Suslin tree. We may indeed
suppose T Ď ω1, but then on a club of α ă ω1, we will have

Tăα “ T X α.

It is thus more natural for witnesses f of ♢pT q to require that any fpαq is a
filter in Tăα. In fact, in this section we will mostly only care about uniform
sequences of witnesses of ♢pT q.

The following observation is key. It is probably either folklore or due to
Jensen.

Proposition 5.50. Suppose T is a ω1-tree and let θ be a sufficiently large
regular cardinal. The following are equivalent:

piq T is Suslin.
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piiq For all countable X ă Hθ with T P X and all s P TδX ,

π´1
X rss is generic for π´1

X pT q over MX .

piiiq There is a countable X ă Hθ with T P X so that for all s P TδX ,

π´1
X rss is generic for π´1

X pT q over MX .

Proof. We assume T Ď ω1.
piqñpiiq: If A P X is an antichain of T , then it is countable and thus there
is some α ă δX with A Ď Tα. Hence any s P Tδ is above some node in A.
piiqñpiiiq is trivial, so let us prove piiiqñpiq. Let X ă Hθ witness piiiq.
Suppose for a contradiction that there is a maximal antichain of T of size
ω1. By elementarity, there is some such antichain A P X. Let Ā “ π´1

X pAq “
AX TăδX and T̄ “ π´1

X pT q “ T X δX . If s P TδX , then s is generic over MX

and hence above some condition in Ā. But then Ā is already a maximal
antichain in T , so that A “ Ā is countable, contradiction.

Definition 5.51. An ω1-tree37 T is strongly homogeneous if there is a col-
lection

tµs,t | s, t P T are on the same level of T u

with the following properties:

pµ.iq For s, t P T on the same level, µs,t : T æ sÑ T æ t is a level preserving
isomorphism and if s “ t then µs,t is the identity.

pµ.iiq If s, t, u are all on the same level of T then µt,u ˝ µs,t “ µs,u.

pµ.iiiq If s, t are on the same level of T and u, v are on the same level of T so
that µs,tpuq “ v then µu,v “ µs,t æ pT æ uq.

pµ.ivq If u, v are on the same limit level of T then there are s, t on the same
level of T with s ăT u and µs,tpuq “ v.

Definition 5.52. Suppose T is an ω1-tree.

piq A canonical witness of ♢pT q is a witness f of ♢pT q so that for all
α ă ω1, fpαq “ predT ptq for some t P T .

piiq A sequence f “ pfnqnăω is a canonical witness sequence (cws) for T if

pf .iq f uniformly witnesses ♢pT q,
pf .iiq fn is a canonical witness of ♢pT q for all n ă ω and

pf .iiiq for any limit α ă ω1 and any t P Tα there is n ă ω so that

fnpαq “ predT ptq.
37An ω1-tree is a tree of height ω1 with all levels countable.
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Lemma 5.53. Suppose T is an ω1-tree. The following are equivalent:

piq T is Suslin.

piiq There is a cws for T .

Proof. piqñpiiq: Let S be a partition of ω1 into ω1-many stationary sets and
enumerate S as

xSβn,i | n, i ă ω, β ă ω1y.

Also enumerate Tβ as xtβi | i ă ωy for any countable ordinal β. Now, for
α ă ω1 and n ă ω find sαn P Tα so that

ps.iq if α P Sβn,i and β ď α then tβi ďT s
α
n and

ps.iiq Tα “ ts
α
n | n ă ωu.

Define fnpαq as predT ps
α
nq. It follows that

Sf
n,tβi

Ě Sβn,i ´ pβ ` 1q

is stationary for all β ă ω1 and i, n ă ω. By Proposition 5.50, whenever θ is
sufficiently large regular and X ă Hθ is countable with T P X then fnpδ

Xq

is generic over X for all n ă ω. Thus f is a cws.
piiqñpiq: Suppose that f⃗ is a cws for T . Let θ be regular with T P Hθ and
let X ă Hθ be f -slim with T P X. As f is a cws, we have that π´1

X rts is
generic for π´1

X pT q over MX for all t P TδX . Thus T is Suslin by Proposition
5.50.

Note that if f is a cws for T then in fact f witnesses ♢`pT q.

Definition 5.54. Suppose T is a Suslin tree.

piq PFApT q is FApproper and T -preserving38q.

piiq MMpT q is FApstationary-set- and T -preservingq.

piiiq MM``pT q is FA``pstationary-set- and T -preservingq.

For a coherent Suslin tree T , PFApT q and its implications about the
forcing extension V T have been investigated by Todorcevic e.g. in [Tod11].
MMpT q has been considered in, e.g. [Tal17] and [DT18].

Observation 5.55. Suppose f is a cws for a Suslin tree T . We have that

piq f -stationary sets are exactly the stationary sets,

piiq f -complete forcings are exactly the complete forcings,

38A forcing P is T -preserving if T is Suslin in V P.
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piiiq f -proper forcings are exactly the proper forcings preserving T ,

pivq f -semiproper forcings are exactly the semiproper forcings preserving T

pvq PFApT q is PFApfq and

pviq MMpT q is MMpfq, MM``pT q is MM``pfq.

Our iteration theorems in this context yield theorems due to Miyamoto.

Corollary 5.56 (Miyamoto, [Miy93]). Suppose T is Suslin. If P is a count-
able support iteration of proper forcings which preserve T , then P is proper
and preserves T .

Corollary 5.57 (Miyamoto,[Miy02]). Suppose T is Suslin. If P is nice
iteration of semiproper forcings which preserve T , then P is semiproper and
preserves T .

The following is a consequence of Lemma 5.53 and generalizing Lemma
4.19 to uniform sequences of witnesses.

Corollary 5.58. Suppose that

piq p “ pM, Iq is generically iterable,

piiq µ : pÑ p˚ “ pM˚, I˚q is a ♢-iteration and

piiiq M˚ |ù “T is a Suslin tree”.

Then T is a Suslin tree.

Larson has investigated a Pmax-variation STmax which is conditioned to the
existence of a distinguished strongly homogeneous Suslin tree. The existence
of such trees follows, for example, from ♢. We refer the reader to [Lar99].

Definition 5.59. Conditions in STmax are generically iterable structures p “
pM, I, s, aq so that

pSTmax.iq pM ; P, Iq |ù ψACpIq,

pSTmax.iiq M |ù “s is a strongly homogeneous Suslin tree” and

pSTmax.iiiq M |ù a Ď ω1 ^ ω
Lras

1 “ ω1.

The order on STmax is defined by

q “ pN, J, t, bq ăSTmax
p

iff there is a generic iteration

µ : pÑ p˚ “ pM˚, I˚, s˚, a˚q

in q of length ωq1 ` 1 so that
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păSTmax
.iq I˚ “ J XM˚,

păSTmax
.iiq s˚ “ t and

păSTmax
.iiiq a˚ “ b.

Remark 5.60. This is not how STmax is presented by Paul Larson in [Lar99],
however it follows from the results of that paper that both presentations are
equivalent assuming ADLpRq.

STmax is clearly a typical Pmax-variation and we will pick a specific witness

for this. Let ΨSTmax consist of

• ψ
STmax
0 pxq “ “x P 9I”,

• ψ
STmax
1 pxq “ “x “ 9s”,

• ψ
STmax
2 pxq “ “x “ 9a” and

• ψ
STmax
3 pxq “ “x “ 9s^ x is a Suslin tree”.

Note that ψ
STmax
3 pxq can be expressed by a Π1-formula.

Definition 5.61. Suppose that S is a Suslin tree.

piq ΓS “ tP | P is S-preserving and preserves stationary setsu.

piiq ∆-BMM``pSq is ∆-BFA``pΓSq for ∆ Ď PpRq.

Note that for a Suslin tree S, ΓΨSTmax

pS,Aq
is exactly ΓS for any A Ď ω1.

Theorem 5.62. Suppose that S is a strongly homogeneous Suslin tree. Then
MM``pSq ñ STmax-p˚q.

Proof. Let f be a cws for S. Then MM``pSq is equivalent to MM``pfq and
hence implies SRP by Lemma 3.69 so that NSω1 is saturated and it follows

that HpS,Aq is almost a STmax-condition for any set A Ď ω1 with ω
LrAs

1 “ ω1.

STmax accepts ♢-iterations by Corollary 5.58. Hence STmax-p˚q follows from
MM``pSq by the First Blueprint Theorem 4.44.

Theorem 5.63. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq STmax-p˚q.

piiq There is a strongly homogeneous Suslin tree S so that pPpRq XLpRqq-
BMM``pSq holds.
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Proof. The results in [Lar99] imply that STmax is a self-assembling Pmax-variation
under ADLpRq which holds as there is a proper class of Woodin cardinals. Let

A Ď ω1 with ω
LrAs

1 “ ω1. We have Γ
STmax

pS,Aq
pΨSTmaxq “ ΓS from Theorem 3.60

(generalized to uniform sequences of witnesses). The desired equivalence
now follows from the Second Blueprint Theorem 4.58.

We have some final remarks on canonical witnesses. The implementa-
tion of uniform sequences of witnesses is necessary to deduce the iteration
theorems of (semi)proper forcings preserving a distinguished Suslin tree.

Definition 5.64. A Suslin tree T is 2-free if whenever s, t P T are two
different nodes on the same level of T then T æ sˆ T æ t is a Suslin tree.

Lemma 5.65. It is consistent that there is a Suslin tree T and a canonical
witness f of ♢`pT q so that T considered as a forcing is f -proper.

Proof. We may assume that ♢ holds. Jensen showed that this implies the
existence of a 2-free (and even more) Suslin tree T , see [DJ74]. Lemma
5.53 tells us that there is a canonical witness f of ♢pT q and it follows from
Proposition 5.50 that f witnesses even ♢`pT q. Now suppose θ is sufficiently
large and X ă Hθ is countable with f, T P X. If t P XXT then there is some
s P T above t so that s ăT x where x P TδX is so that fpδXq “ predT pxq. As
T is 2-free, T̄ æ s̄ is a Suslin tree in MXrfpδ

Xqs and hence if A PMXrfpδ
Xqs

is a maximal antichain of conditions below s̄ in T̄ then A is countable in
MXrfpδ

Xqs, thus contained in T̄ăα for some α ă δX . It follows that πXrAs
is a maximal antichain in Tăα so that

s , 9GX πX̌rǍs ‰ H.

This shows that s is pX,T, fq-generic.

However a single canonical witness is enough for a strongly homogeneous
Suslin tree.

Proposition 5.66. If T is a strongly homogeneous tree and f is a canonical
witness of ♢pT q then the following is equivalent.

piq T is a Suslin tree.

piiq f witnesses ♢pT q.

piiiq f witnesses ♢`pT q.

Proof. Let θ be sufficiently large, regular and X ă Hθ countable with f, T P
X. Condition pµ.ivq in the definition of strong homogeneity guarantees the
following: For t P TδX let Gptq hold iff π´1

X rpredT ptqs is generic over MX .
Then Dt P TδXGptq is equivalent to @t P TδXGptq. It follows immediately
from Proposition 5.50 that piq-piiiq are equivalent.

Note that “T is a strongly homogeneous tree” is Σ1pT, ω1q and thus holds
in all ω1-preserving extensions.
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6 Suslin’s Minimum

We introduce Suslin’s Minimum``, a variant of Martin’s Maximum`` which
implies the existence of many Suslin trees and prove that it has Smax-p˚q as
a consequence.

Definition 6.1. piq We say that a Suslin tree is on ω1 if its underlying
set is ω1. Note that every Suslin tree is isomorphic to one on ω1.

piiq If P is a forcing and 9T is a P-name for a Suslin tree on ω1, then for a
filter g Ď P, we set

9T g :“ pω1,ď
g
9T
q

where
ď
g
9T
“ tpα, βq P ω1 ˆ ω1 | Dp P g p , α̌ ď 9T β̌u.

The idea behind Suslin’s Minimum`` is that it is MM`` restricted to
forcings additionally preserving all Suslin trees, but we can also evaluate
ω1-many names for Suslin trees to Suslin trees in V . We have to restrict to
names for Suslin trees on ω1 for this to be consistent.

Definition 6.2. Suslin’s Minimum``, denoted SM``, is the following state-
ment: Assume that

piq P is a forcing preserving stationary sets and all Suslin trees,

piiq D is a set of at most ω1-many dense subsets of P,

piiiq S is a set of at most ω1-many P-names for stationary subsets of ω1

and

pivq T is a set of at most ω1-many P-names for Suslin trees on ω1.

Then there is a filter g Ď P with

pSM``.iq g XD ‰ H for any D P D,

pSM``.iiq 9Sg “ tα ă ω1 | Dp P g p , α̌ P 9Su is stationary for any 9S P S and

pSM``.iiiq 9T g “ pω1,ď
g
9T
q is a Suslin tree for any 9T P T .

Suslin’s hypothesis, the nonexistence of a Suslin line, has been shown
equivalent to the nonexistence of a Suslin tree. In some sense, SM`` pos-
tulates a maximal failure of Suslin’s hypothesis which justifies the name
Suslin’s Minimum.

We note that Miyamoto has investigated the axiom MMpSuslinq which is
the weakening of SM`` in which pSM``.iiq and pSM``.iiiq are not required.
In contrast to SM``, MMpSuslinq does not imply the existence of a Suslin
tree on its own.
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Proposition 6.3. If SM`` holds then there are (many) Suslin trees.

Proof. There are a number of well known forcings that add a Suslin tree
while preserving all Suslin trees. Among them Cohen forcing, due to Shelah
[She84], or Jech’s forcing to add a Suslin tree [Jec67]. We note as a further
example that by choosing the forcing and suitable dense sets correctly, for
any set T of at most ω1-many Suslin trees, an application of SM`` yields a
Suslin tree S so that S ˆ T is Suslin for any T P T (this is more smoothly
achieved by applying BSM``, see the next definition). It follows that there
is a set of ω2-many (which turns out to be 2ω1 , so the maximal amount)
trees which are pairwise mutually Suslin. This can easily be improved.

Nonetheless, Miyamoto showed MMpSuslinq to be consistent with the
existence of a Suslin tree from a supercompact cardinal. We note that SM``

is a maximal forcing axiom in the sense that the class of forcings it applies to
cannot be increased. To see this, we introduce the natural bounded version
of SM``, which will also be helpful later on.

Definition 6.4. For X Ď R, BSM`` holds if

pBSM``.iq X is 8-universally Baire and

pBSM``.iiq for any forcing P which preserves stationary sets as well as all Suslin
trees we have

pHω2 ; NSω1 ,STqV ăΣ1 pHω2 ; P,NSω1 ,STqV
P
.

For ∆ Ď PpRq, ∆-BSM`` means X-BSM`` for all X P ∆.

We note that Lemma 4.41 implies that uB-BSM`` is a consequence of
SM``.

We justify the maximality of SM`` now.

Proposition 6.5. Suppose P is a forcing that kills a Suslin tree. Then
BFAptPuq fails.

Proof. Suppose T is a Suslin tree on ω1 killed in an extension by P. The
statement “T is not Suslin” is Σ1 over Hω2 and would thus reflect down to
V if BFAptPuq were to hold.

The two main results of this section are that SM`` can be forced from
a supercompact cardinal and that SM`` implies Smax-p˚q.
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6.1 Forcing SM``

Theorem 6.6. Suppose ZFC`“there is a supercompact cardinal” is consis-
tent. Then so is ZFC` SM``.

We will prove this by iterating semiproper forcings which preserve all
Suslin trees.

Lemma 6.7. Suppose κ is a supercompact cardinal. Then there is a nice
iteration P “ xPα, 9Qβ | α ď κ, β ă κy of semiproper forcings that forces
SM``.

Proof. By Fact 6.9, it is enough to force the version of SM`` that only
applies to semiproper forcings preserving all Suslin trees. We follow the
lines of the Foreman-Magidor-Shelah argument that gives a model of MM``.
This time, we opt to give details. Let f : κÑ Vκ be a Laver function, i.e. for
any x P V and λ we can find a elementary embedding

j : V ÑM

witnessing that κ is λ-supercompact so that

jpfqpκq “ x.

The iteration P is defined inductively so that if α ă κ then 9Qα “ fpαq if
fpαq is a Pα-name for a forcing with

,Pα “fpαq is semiproper and preserves all Suslin trees”

and

,Pα “ 9Qβ is the trivial forcing”

otherwise. We will show that V P |ù SM``. First note that P is semiproper
(and preserves all Suslin trees) by Corollary 5.57. Let G be P-generic over V .
Also observe that if all trees T P V rGαs that are Suslin in V rGαs are Suslin
in V rGs for any α ď κ. This is a consequence of Corollary 3.53 (generalized
to uniform sequences of witnesses). Assume that in V rGs

piq Q is a semiproper forcing that preserves all Suslin trees,

piiq D “ xDα | α ă ω1y are ω1-many dense subsets of Q,

piiiq S “ x 9Sα | α ă ω1y are ω1-many Q-names for stationary subsets of ω1

and

pivq T “ x 9Tα | α ă ω1y are ω1-many Q-names for Suslin trees on ω1.
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In V , we may find a P-name 9Q for Q that is forced to be a semiproper
forcing preserving all Suslin trees. We may further find an elementary em-
bedding

j : V ÑM

with jpfqpκq “ 9Q and λM Ď M for some large λ ą 2|Q|. Consider the
iteration

jpPq “ xP̂α, 9̂Qβ | α ď jpκq, β ă κy

and note that
P̂κ “ P and P̂κ`1 “ P ˚ 9Q.

Note that as κ is inaccessible and |Pα| ă κ for any α ă κ, P is κ-c.c. by
Fact 3.47. It follows that P preserves κ and thus P is the direct limit of
xPα | α ă κy. Thus in a further extension of V rGs, we may lift j to

j` : V rGs ÑM rHs

with G “ Hκ which gives 9QHκ “ Q. The closure of M guarantees that
j æ Q : Q Ñ j`pQq is in M rHs, as well as D,S, T P M rHs. Let h be the
slice of H at κ that is generic for Q and let g “ j`rhs P M rHs. Also note
that

j`pxDα | α ă ω1yq “ xj
`pDαq | α ă ω1y,

j`px 9Sα | α ă ω1yq “ xj
`p 9Sαq | α ă ω1y

and
j`px 9Tα | α ă ω1yq “ xj

`p 9Tαq | α ă ω1y.

Now we have
j`rhXDαs Ď g X jpDαq ‰ H,

Sα :“ 9Shβ “ tξ ă ω1 | Dp P g p ,j`pQq ξ̌ P j
`p 9Sαqu P pNS`

ω1
qMrHκ`1s,

ďh9Tα
“ tpβ, γq P ω1 ˆ ω1 | Dp P h h ,

MrHκs

Q β̌ ď 9Tα
γ̌u

“ tpβ, γq P ω1 ˆ ω1 | Dp P g p ,
MrHs

j`pQq
β̌ ďj`p 9Tαq

γ̌u

and
pω1,ď

g
9Tα
q is a Suslin tree in M rHκ`1s

for all α ă ω1. It follows that, for all α ă ω1, Sα is still stationary in
M rHs and pω1,ď

g
9Tα
q is still Suslin in M rHs. We may now pull the relevant

statement back via j` to V rGs and find that there must be a filter g1 Ď Q
so that for all α ă ω1

pg1.iq g1 XDα ‰ H,

pg1.iiq 9Sg
1

α P NS`
ω1

and

pg1.iiiq 9T g
1

is Suslin,

which is what we had to show.
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6.2 SM`` implies Smax-p˚q

We now introduce the Pmax-variation Smax.

Definition 6.8 (Woodin, [Woo10, Definition 7.4]). Smax-conditions are
generically iterable structures pM, I, aq so that

pSmax.iq M |ù FApσ-centeredq and

pSmax.iiq M |ù a Ď ω1 ^ ω
Lras

1 “ ω1. The order on Smax is given by

q “ pN, J, bq ă pM, I, aq “ p

iff there is an iteration

j : pÑ p˚ “ pM˚, I˚, a˚q

in N of length ωN1 ` 1 with

păSmax .iq a
˚ “ b,

păSmax .iiq I
˚ “ J XM˚ and

păSmax .iiiq whenever T P M˚ and M˚ |ù “T is a Suslin tree” then
N |ù “T is a Suslin tree”.

FApσ-centeredq is large enough of a fragment of MAω1 to still imply
Coding, ensuring generic iterations of Smax-conditions are uniquely deter-
mined by the image of their third component. That is, Smax has unique
iterations. The point is that this fragment is consistent with the existence
of Suslin trees, which MAω1 is not. Other than that, the difference be-
tween Pmax and Smax conditions lies solely in the more restrictive order
on Smax, namely condition păSmax .iiiq. It follows that Smax is a typical
Pmax-variation. Note that typicality of φSmax is witnessed by ΨSmax consist-
ing of

• ψSmax
0 pxq “ “x P 9I”,

• ψSmax
1 pxq “ “x “ 9a” and

• ψSmax
2 pxq “ “x is a Suslin tree”.

Let SPFApSuslinq denote the version of MMpSuslinq that only applies to
semiproper Suslin tree preserving forcings. We will make use of the following
fact.

Fact 6.9 (Miyamoto, [Miy02]). SPFApSuslinq implies SRP.

So the same is true under the stronger SM``. We are in good shape to
apply the Blueprint Theorems.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Theorem 6.10. SM`` implies Smax-p˚q.

Proof. Assume SM``. As all σ-centered forcings preserve all Suslin trees
and preserve stationary sets, FApσ-centeredq holds. Also SRP holds so NSω1

is saturated. If A is any subset of ω1 with ω
LrAs

1 “ ω1 then HA is almost a

Smax-condition. Smax accepts ♢-iterations by Corollary 5.58. Also ΓΨSmax

A is
exactly the class of stationary set preserving forcings preserving all Suslin
trees. Finally, FAΨSmax

A pΓΨSmax

A q follows from SM``, we leave the details
there to the reader. Smax-p˚q holds by the First Blueprint Theorem 4.44.

We remark on an interesting consequence of this. Woodin has introduced
the following axiom.

Definition 6.11 (Woodin, [Woo10, Definition 7.2]). Φ`
S is the statement

that for any A Ď ω1, there is B Ď ω1 so that39

pB.iq A P LrBs and

pB.iiq all trees T P LrBs Suslin in LrBs are Suslin in V .

Woodin proved that Φ`
S holds after forcing with Smax over canonical

models of determinacy.

Fact 6.12 (Woodin, [Woo10, Theorem 7.12]). Assume AD in LpRq. Then
LpRqSmax |ù Φ`

S .

Note that Φ`
S is a statement purely about Ppω1q so that Φ`

S is also a
consequence of Smax-p˚q. Woodin [Woo10, Remark 7.13 (1)] writes that
“Φ`

S is not obviously consistent with any large cardinals (above 07)” and
notes that by forcing over stronger models of determinacy, Φ`

S can be seen
consistent with a bit more than measurable cardinals, i.e. Woodin cardinals
and somewhat more. It follows from the results here that Φ`

S is consistent
with all natural large cardinals, assuming consistency of appropriate large
cardinals.

Theorem 6.13. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq Smax-p˚q.

piiq pPpRq X LpRqq-BSM``.

Proof. Theorem 7.12 in [Woo10] implies that Smax is self-assembling.

Claim 6.14. ΓΨSmax

A “ ΓSmax
A pΨSmaxq for any A Ď ω1 with ω

LrAs

1 “ ω1.

39Observe that if ω
LrBs

1 “ ω1, as is true for a cone of B Ď ω1 in constructibility degree,
then ♢ holds in LrBs, so that there are many Suslin trees in LrBs.
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7. A Forcing Axiom That Implies “NSω1 Is ω1-Dense”

Proof. Clearly ΓΨSmax

A is the class Γ of all stationary set preserving forcings
preserving all Suslin trees. Let V rGs be a generic extension by a forcing in
Γ and work in V rGs. It is not difficult to see that antichain sealing forcings
preserve all Suslin trees. Let P be the Shelah forcing at the least Woodin
cardinal δ to force “NSω1 is saturated”, but we use nice supports instead of
RCS-support, see [Sch11]. P is a nice iteration

P “ xPα, 9Qβ | α ď δ, β ă δy

of semiproper forcings of size ăδ. By Corollary 5.57, P is semiproper and
preserves all Suslin trees. Moreover, Pα forces SCCcof for cofinally many α ă
δ by Fact 3.12. It follows that Chang’s Conjecture holds in V rGsP and hence
NSω1 is saturated in any further c.c.c.-extension of V rGsP. See Theorem 2.4
in [BT82] for a proof of this. There is thus an extension V rGsrHs of V rGs
that preserves stationary sets as well as all Suslin trees and in which NSω1

is saturated and FApσ ´ centeredq holds.

The equivalence now follows from the Second Blueprint Theorem 4.58.

7 A Forcing Axiom That Implies “NSω1
Is ω1-Dense”

We formulate a forcing axiom that implies Qmax-p˚q. We go on and show
that it can be forced from a supercompact limit of supercompact cardinals.

7.1 Q-Maximum

Definition 7.1. Q-Maximum, denoted QM, holds if there is a witness f of
♢pωăω

1 q and FApΓq holds where

Γ “ tP | P preserves fu “ tP | @p P Colpω, ω1q S
f
p P pNS`

f q
V P
u.

So QM is the strengthening of MMpfq for f a witness of ♢pωăω
1 q, which

applies to all forcing preserving the f -stationarity only of all Sfp instead
of all f -stationary sets. We remark that the consistency of QM is a subtle
matter: If the role of Colpω, ω1q is replaced by, for example, the trivial forcing
then the result is the forcing axiom for all ω1-preserving forcings which is
clearly inconsistent. Indeed, Colpω, ω1q is, up to forcing equivalence, the
only forcing B for which

FAptP | P preserves fuq

is consistent for a witness f of ♢pBq (assuming large cardinals).

Lemma 7.2. If f witnesses QM then ηf is a dense embedding. In particular,
NSω1 is ω1-dense.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Proof. Suppose S Ď ω1 is so that

Sfp Ę S mod NSω1

for all p P Colpω, ω1q. Let P be the canonical forcing that shoots a club
through T :“ ω1 ´ S. That is p P P iff p Ď T is closed and bounded and
p ď q iff q is an initial segment of p.

Claim 7.3. P preserves f .

Proof. Let b P Colpω, ω1q, we have to show that Sfb is f -stationary in V P.

Let p P P, 9C a P-name for a club and x 9Di | i ă ω1y a sequence of P-names
for dense subsets of Colpω, ω1q. We will find q ď p with

q , Dξ P 9C X S f̌
b̌
@i ă ξ f̌pξq X 9Di ‰ H. (q)

Let θ be large and regular. Note that MMpfq holds and hence f witnesses

♢`pωăω
1 q. As T X Sfb is stationary, T X Sfb is f -stationary and we can find

some X ă Hθ with

pX.iq X is f -slim,

pX.iiq P, p, 9C, x 9Di | i ă ω1y P X and

pX.iiiq δX P T X Sfb .

Now find a decreasing sequence xpn | n ă ωy with

pp⃗.iq p0 “ p,

pp⃗.iiq @n ă ω pn P PXX and

pp⃗.iiiq for allD PMXrfpδ
Xqs dense in π1

XpPq, there is n ă ω with pn P πXrDs.

Set q “
Ť

năω pn Y tδ
Xu and note that q P P as δX P T . It is clear that q is

pX,P, fq-semigeneric so that if G is P-generic with q P G then

@i ă δX “ δXrGs fpδXq X 9DG
i ‰ H

as well as δX P 9CG X Sfb . Thus q indeed satisfies (q).

Thus FAptPuq holds. This implies that if G is P-generic then

pHω2 ; PqV ăΣ1 pHω2 ; PqV rGs

and as T contains a club in V rGs, this must already be true in V . This
means S is nonstationary which is what we had to show.

Remark 7.4. The argument here also proves the remark we made at the
beginning of Section 3: For any witness f of ♢pBq, ηf is a dense embedding
if and only if all f -preserving forcings are f -stationary set preserving.
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7. A Forcing Axiom That Implies “NSω1 Is ω1-Dense”

This yields an equivalent formulation of QM involving an already familiar
forcing axiom.

Lemma 7.5. The following are equivalent:

piq QM.

piiq NSω1 is ω1-dense and there is f a witness of ♢pωăω
1 q so that MMpfq

holds.

Proof. piqñpiiq: Clearly, if f witnesses QM then MMpfq holds. Also NSω1

is dense by Lemma 7.2.
piiqñpiq: Assume NSω1 is dense, f witnesses ♢pωăω

1 q and MMpfq holds. As
NSω1 is dense, we can find a witness f 1 of ♢pωăω

1 q so that

ηf 1 : Colpω, ω1q Ñ pPpω1q{NSω1q
`

is a dense embedding, see the proof of Lemma 2.12. We will show that f 1

witnesses QM, so let P be a forcing preserving f 1. As MMpfq holds, it is
enough to argue that P preserves f -stationary sets. Let S be f -stationary
and G be P-generic over V . Clearly, S is f 1-stationary in V rGs, we have to
show that S is also f -stationary. Work in V rGs and let θ be some sufficiently
large regular cardinal. We may now find some f 1-slim X ă Hθ with f, f 1 P

X. Let η̄f “ π´1
X pηf q, η̄f 1 “ π´1

X pηf 1q. Let g be the upwards closure of
η̄f 1rf 1pδXqs in ppPpω1q{NSω1q

`qMX . Note that g is generic over MX as ηf 1

is a dense embedding.

Claim 7.6. η̄´1
f rgs “ fpδXq.

Proof. Note that it suffices to show “ Ď ”. Suppose p P η̄´1
f rgs. This means

rS f̄p sNS
MX
ω1

P g and thus there is q P Colpω, ω1q with q P f 1pδXq and

MX |ù S f̄
1

q Ď Sfp mod NSω1

so that

X |ù Sf
1

q Ď S f̄p mod NSω1 .

As δX P Sf
1

q , this implies δX P Sfp , i.e. p P fpδXq.

As MMpfq holds, f witnesses ♢`pωăω
1 q and hence ηf is a complete em-

bedding. It follows that fpδXq is generic over MX , that is X is f -slim. This
shows that S is f -stationary.
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7.2 Q-iterations

Let us assume that ♢pωăω
1 q holds in V as witnessed by f .

Our goal is to force QM as witnessed by f . Our strategy for this will
differ to the standard construction of models of MM`` for example. For
MM, one iterates semiproper forcings and shows only a posteriori that in
fact MM holds, despite seemingly not allowing arbitrary stationary set pre-
serving forcings along the iteration. The reason why one does this is simple:
An iteration of stationary set preserving forcing, even of short length, can
collapse40 ω1. We do not know of a class of forcings that can play the role
of semiproperness when trying to force QM. Our approach is more straight-
forward: Instead of using a precise tool like semiproperness, we take out the
sledgehammer. We will cook up an iteration that directly allows essentially
arbitrary f -preserving forcings at limit steps. The price we pay is a stronger
large cardinal assumption, just one supercompact cardinal will not suffice.
Instead, we need a supercompact limit of supercompact cardinals. All things
considered, this price is cheap compared to the alternative of failure.
So what is the basic idea? As always, we want to imitate the argument of the
mother of all iteration theorems, the iteration theorem for proper forcings.
Suppose we have a full support iteration

P “ xPn, 9Qm | n ď ω,m ă ωy

and for the moment assume only that

,Pn “ 9Qn preserves ω1”.

There are (at least) two type of counterexamples we have to avoid: First
there is Shelah’s iteration of stationary set preserving forcings of the above
type that collapses ω1, see [She98, VII §5]. This is dealt with a regularity
condition we will impose. Further, if ω1 “

Ť

năω Sn is a partition of ω1 into
stationary sets so that

,Pn Sn P NSω1

then necessarily P collapses ω1. In our applications, the forcings we consider
can and will destroy many stationary sets. We try to motivate some addi-
tional reasonable constraints imply P to be ω1-preserving. For the moment,
we try to consider Shelah’s argument as a game: In the beginning there
some countable X ă Hθ as well as p0 P X X P. The argument proceeds
as follows: In round n, we have already constructed a pX,Pnq-semigeneric
condition qn P P æ n and have

qn , 9pn æ n P 9Gn X X̌r 9Gns.

40This is also true for iterations of f -stationary set preserving forcings for f some witness
of ♢pBq.
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Next, our adversary hits us with a dense subset D Ď P in X and we must
find 9pn`1 P V

Pn and some pX,Pn`1q-semigeneric qn`1 with qn`1 æ n “ qn
and41

qn`1 , 9pn`1 P Ď ^ pn`1 æ n` 1 P 9Gn`1 X X̌r 9Gn`1s.

Our job is to survive this game for ω-many steps. If we have a winning
strategy then we can find a pX,Pq-semigeneric condition, so in particular P
preserves ω1.

Destroying stationarity makes it significantly more difficult to survive
the above game: Suppose for example that

p0p0q , Š P NSω1

for some S P X with δX P S. Then there is no hope of finding a pX,P1q-
semigeneric condition q with q ď p0 æ 1. Hence, we must already be careful
with what X we start the game. This leads us to the following definitions.

Definition 7.7. Suppose θ is sufficiently large and regular, X ă Hθ is
countable. If I is an ideal on ω1, we say that X respects I if for all A P IXX
we have δX R A.

Note that all countable X ă Hθ respect NSω1 and countable Y ă Hθ

with f P Y respects NSf if and only if Y is f -slim.

Definition 7.8. Suppose P is a forcing and 9I P V P is a name for an ideal
on ω1. For p in P, we denote the partial evaluation of 9I by p by

9Ip :“ tS Ď ω1 | p , Š P 9Iu.

Back to the discussion, we need to start with an X so that X respects
9Ip0æ1 where 9I is a name for the nonstationary ideal. This gives us a shot at
getting past the first round. Luckily, there are enough of these X.

Definition 7.9. Let A be an uncountable set with ω1 Ď A and I a normal
uniform ideal on ω1. Then S Ď rAsω is projective I-positive if for any S P I`

the set

tX P S | δX P Su

is stationary in rAsω.

Proposition 7.10. Suppose θ is sufficiently large and regular. Let I be a
normal uniform ideal on ω1. Then

S “ tX P rHθs
ω | X ă Hθ respects Iu

is projective I-positive.

41Here, we consider 9pn also as a Pn`1-name.
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Proof. Let C be a club in rHθs
ω and assume that all elements of C are

elementary substructures of Hθ and contain I as an element. Let

X⃗ :“ xXα | α ă ω1y

be a continuous increasing chain of elements in C. Let X :“
Ť

αăω1
Xα and

let

A⃗ :“ xAα | α ă ω1y

be an enumeration of X X I. Let C Ď ω1 be the set of α so that

pC.iq δXα “ α and

pC.iiq A⃗ æ α is an enumeration of Xα X I

and note that C is club. Let A “ ▽αăω1Iα. As I is normal, A P I. Then
C ´A is a complement of a set in I and for any α P C ´A we have

δXα “ α R Iβ

for all β ă α. Hence Xα P S X C.

Of course, the problem continues. What if we have found a suitable q1
and now we work in V rG1s with q1 P G1. At the very least, we need that
XrG1s respects 9Ip0ær1,2q, where 9I is now a P1,2-name for the nonstationary
ideal. Ensuring this is a matter of being able to pick the right q1 to begin
with. This motivates the following class of forcings.

Definition 7.11. We say that a forcing P is respectful if P preserves ω1 and
the following is true: Whenever

• θ is sufficiently large and regular,

• X ă Hθ is countable with P P X,

• 9I P X is a P-name for a normal uniform ideal and

• p P PXX

then exactly one of the following holds:

pRes.iq Either there is some pX,Pq-semigeneric q ď p so that

q , “X̌r 9Gs respects 9I”

or

pRes.iiq X does not respect 9Ip.
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Roughly, this condition states that we can find a P-generic filter G with
p P G so that X Ď XrGs respects 9IG as long as there is no obvious obstruc-
tion to it.

Remark 7.12. If P is respectful and preserves stationary sets then P is
semiproper. However, the converse is not true in general. Similarly, a re-
spectful f -stationary set preserving forcing is f -semiproper, which follows
from plugging in a name for NSf as 9I in the definition of respectfulness.

We require42 now that

,Pn “ 9Qn is respectful”

for all n ă ω. We then aim to make sure (assuming 9pn`1 is already defined)
to find qn`1 in round n so that in addition to the prior constraints,

qn`1 , “X̌r 9Gn`1s respects 9I”

where 9I is a Pn`1 name for the ideal of sets forced to be nonstationary by
9pn`1pn` 1q. Consider 9I as a Pn-name :I for a 9Qn-name. By respectfulness,
this reduces to avoiding an instance of the “bad case” pRes.iiq, namely we
should make sure that whenever Gn is Pn-generic with qn P Gn then

XrGns respects
´

:IGn

¯pn`1pn`1q

where pn`1 “ 9p
Gn`1

n`1 . he next key insight is that this reduces to

“XrGns respects J :“ tS Ď ω1 | pn`1pnq , Š P NSω1u”

which we have (almost)43 already justified inductively, assuming 9Qn`1 only
kills new stationary sets: Our final requirement44 is that

,Pn`1 “ 9Qn`1 preserves stationary sets which are in V r 9Gns”

for all n ă ω. The point is that trivially
´

:IGn

¯pn`1pnq

only contains sets in

V rGns, so all such sets will be preserved by 9Qn`1. The sets that are killed
are then already killed in the extension by 9QGn

n .
Modulo some details we have shown the following.

Theorem 7.13. Suppose P “ xPn, 9Qm | n ď ω,m ă ωy is a full support
iteration so that

42This excludes the first counterexample due to Shelah, but not yet all the counterex-
amples of the second kind.

43We made sure of this if pn`1 is replaced by pn in the definition of J , we ignore this
small issue for now.

44It is readily seen that this eliminates the counterexamples of the second kind.
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pP.iq ,Pn
9Qn is respectful and

pP.iiq ,Pn`1
9Qn`1 preserves stationary sets which are in V r 9Gns”

for all n ă ω. Then P does not collapse ω1.

Two issues arise when generalizing this to longer iterations. The first
issue is the old problem that new relevant indices may appear along the
iteration in the argument, which we deal with by using nice supports. The
second problem is that it seemingly no longer suffices that each iterand
individually is respectful. For longer iterations, say of length γ, the argument
then requires that

,α “ 9Pα,β is respectful”

for sufficiently many α ă β ă γ. This is problematic as we will not prove
an iteration theorem of any kind for respectful forcings45. This is where we
take out the sledgehammer.

Definition 7.14. p;q holds if and only if all ω1-preserving forcings are re-
spectful.

Lemma 7.15. SRP implies p;q.

Proof. Let P, θ, 9I, p be as Definition 7.11. It is easy to see that pRes.iq and
pRes.iiq cannot hold simultaneously. It is thus enough to prove that one of
them holds. Let λ be regular, 2|P| ă λ ă θ and λ P X and consider the set

S “ tY P rHλs
ω |Y ă Hλ ^␣pDq ď p q is

pY,Pq-semigeneric and q , “Y̌ r 9Gs respects 9I”qu.

By SRP, there is a continuous increasing elementary chain

Y⃗ “ xYα | α ă ω1y

so that

pY⃗ .iq P, p, 9I P Y0 and

pY⃗ .iiq for all α ă ω1, either Yα P S or there is no Yα Ď Z ă Hθ with Z P S.

Let S “ tα ă ω1 | Yα P Su.

Claim 7.16. p , Š P 9I.

45Indeed it seems that no useful iteration theorem for respectful forcings is provable in
ZFC, see Subsection 11.5.
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Proof. Let G be generic with p P G and let I “ 9IG. Assume toward a con-
tradiction that S is I-positive. Note that xYαrGs | α ă ω1y is a continuous

increasing sequence of elementary substructure of H
V rGs

θ . Hence there is a
club C of α so that for α P C

δYα “ δYαrGs “ α

and thus there is a pYα,Pq-semigeneric condition q ď p, q P G. Hence by
definition of S, for any α P SXC, we may find some Nα P IXYαrGs so that
δYα P Nα. By normality of I, there is some I-positive T Ď S X C and some
N so that N “ Nα for all α P T . But then for α P T , we have

α “ δY P N

so that T Ď N . But N P I, contradiction.

Thus if δX P S, then S witnesses pRes.iiq to hold. Otherwise, δX R S.
Note that δYδX “ δX as Y⃗ P X. We find that YδX Ď X XHλ ă Hλ. Thus,
XXHλ R S, so that there must be some q ď p that is pXXHλ,Pq-semigeneric
and

q , “p X XHλqr 9Gs respects 9I”.

This q witnesses that pRes.iq holds.

We will get around this second issue by forcing SRP often along the
iteration. Remember that what we really care about is preserving a witness
f of ♢pωăω

1 q along an iteration of f -preserving forcings, so fix such an f
now. It will be quite convenient to introduce some short hand notation.

Definition 7.17. Suppose P is a forcing and p P P. Then we let IPp denote
9Ip where 9I is a P-name for NSf . That is

IPp :“ tS Ď ω1 | p , Š P NSfu.

Definition 7.18. Suppose f witnesses ♢pBq. An f -ideal is an ideal I on
ω1 so that

piq whenever S P I` and xDi | i ă ω1y is a sequence of dense subsets of
Colpω, ω1q, then

tα P S | @β ă α fpαq XDβ ‰ Hu P I
`

piiq and Sfb P I
` for all b P B.

Recall that NSf is clearly an f -ideal and it is normal and uniform by
Lemma 2.20.
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Proposition 7.19. Suppose P is a forcing that preserves f and p P P. Then
IPp is a normal uniform f -ideal.

Condition pP.iiq should now be replaced by requiring the next forcing of
the iteration to kill the f -stationarity only of new sets. This restricts the
forcings we allow later in the iteration, but on the other hand we want to
incorporate basically arbitrary f -preserving forcings into our iteration if we
want to force QM. The solution is to often kill the f -stationarity of as many
sets as possible while still preserving f .

Observation 7.20. The following are equivalent for any S Ď ω1:

1. There is an f -preserving forcing P with ,P Š P NSf .

2. Sfp Ę S mod NSf for all p P Colpω, ω1q.

The nontrivial direction follows from the proof of Lemma 7.2.

Definition 7.21. Suppose f witnesses ♢pωăω
1 q. We say that a forcing P

freezes NSω1 along f if for any P-generic G we have

piq f witnesses ♢pωăω
1 q in V rGs and

piiq for any S P Ppω1q X V , we either have S P NS
V rGs
ω1 or there is p P

Colpω, ω1q with Sfp Ď S mod NS
V rGs
ω1 .

The point is that if P freezes NSω1 along f then no further f -preserving
forcing 9Q P V P can kill the f -stationarity of sets in V . It is nontrivial to
prove such forcings to exist from reasonable assumptions, we will do so in
Lemma 7.41.

Proposition 7.22. Suppose f witnesses ♢pωăω
1 q. Suppose P freezes NSω1

along f and
,P “ 9Q preserves f̌”.

Assume G ˚H is generic for P ˚ 9Q. Then

NS
V rGs

f X Ppω1q
V “ NS

V rGsrHs

f X Ppω1q
V

In particular, for any pp, 9qq P P ˚ 9Q we have

IP˚ 9Q
pp, 9qq

“ IPp .

Proof. “ Ď ” is trivial, so assume S P pPpω1q X V q ´ NS
V rGs

f . As P freezes
NSω1 along f , there must be some b P Colpω, ω1q with

Sfb Ď S mod NSV rGs
ω1

As 9QG preserves f , 9QG preserves f -stationarity of Sfb , hence S is f -stationary
in V rGsrHs.
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We hope to have motivated the following definition.

Definition 7.23. Suppose f witnesses ♢pωăω
1 q. A Q-iteration (w.r.t. f) is

a nice iteration P “ xPα, 9Qβ | α ď γ, β ă γy which satisfies

piq ,Pα “ 9Qα preserves f”,

piiq ,Pα`1 p;q and

piiiq if α` 1 ă γ then ,Pα`1 “ 9Qα`1 freezes NSω1 along f”

for all α ă γ.

The main result of this section is the following “iteration theorem”.

Theorem 7.24. Suppose f witnesses ♢pωăω
1 q. All Q-iterations (w.r.t. f)

preserve f .

Lemma 7.25. Suppose f witnesses ♢pωăω
1 q and P is a forcing with the

following property: For any sufficiently large regular θ and p P P there is a
normal uniform f -ideal I so that

tX P rHθs
ω | X ă Hθ ^ P, p P X ^ Dq ď p q is pX,P, fq-semigenericu

is projective I-positive. Then P preserves f .

Proof. Assume p P P, θ is sufficiently large and regular. Let b P Colpω, ω1q,

9⃗D “ x 9Dα | α ă ω1y

be a sequence of P-names for dense subsets of Colpω, ω1q and 9C a P-name
for a club in ω1. We will find q ď p so that

q , Dα P S f̌b X
9C@β ă α f̌pαq X 9Dβ ‰ H.

By our assumption, there is some normal uniform f -ideal I so that

tX P rHθs
ω | X ă Hθ ^ P, p P X ^ Dq ď p q is pX,P, fq-semigenericu

is projective I-positive. It follows that we can find some countable X ă Hθ

so that

pX.iq P, p, 9⃗D, 9C P X as well as

pX.iiq b P fpδXq

and some q ď p that is pX,P, fq-semigeneric. If G is then any P-generic
with q P G, we have

X Ď XrGs is f -slim

and hence δX P 9CG as well as

@β ă δX fpδXq X 9DG
β ‰ H.
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We also need to resolve a small issue that we glossed over in the sketch
of a proof of Theorem 7.13.

Lemma 7.26. Suppose f witnesses ♢pωăω
1 q. Further assume that

• P is a respectful, f -preserving forcing and p P P,

• θ is sufficiently large and regular,

• X ă Hθ is countable, respects IPp and P, p P X and

• MXrfpδ
Xqs |ù “D is dense below π´1

X ppq in π
´1
X pPq”.

Then there are Y, q with

piq X Ď Y ă Hθ is countable,

piiq q ď p,

piiiq Y respects IPq , in particular Y is f -slim and

pivq q P πY rµ
`
X,Y pDqs.

Proof. We may assume that X is an elementary substructure of

H :“ pHθ; P,⊴q

where ⊴ is a wellorder of Hθ. As P is respectful and X respects IPp , there is
a pX,Pq-semigeneric condition r ď p so that

r , “X̌r 9Gs respects NSf̌”

, i.e. r is pX,P, fq-semigeneric. Let G be P-generic with r P G. Then XrGs
is f -slim. Let Z “ XrGsXV , note that µ`

X,Z exists by Proposition 2.18. By
Proposition 3.33, there is thus some q ď p, q P G with

q P πZrµ
`
X,ZpDqs.

Finally, note that q and Y :“ HullHpXYtquq have the desired properties.

Proof of Theorem 7.24. Let P “ xPα, 9Qβ | α ď γ, β ă γy be a Q-iteration.
We may assume inductively that Pα preserves f for all α ă γ. The successor
step is trivial, so we may restrict to γ P Lim. Note that we may further
assume that p;q holds in V , otherwise we could work in V P1 . Let p P P and
let I :“ IQ0

pp0q
. I is a normal uniform f -ideal by Proposition 7.19. Now let θ

be sufficiently large and regular, X ă Hθ countable with

pX.iq P, p, f P X and

pX.iiq X respects I.
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By Proposition 7.10 and Lemma 7.25, it suffices to find q ď p that is
pX,P, fq-semigeneric. Note that X is f -slim as I is a f -ideal. Let

h : ω Ñ ω ˆ ω

be a surjection with i ď n whenever hpnq “ pi, jq.
Let δ denote δX . We will construct a fusion structure

T, xppa,nq, T pa,nq | a P Tn, n ă ωy

in P as well as names
B

9Xpa,nq, 9Zpa,nq
´

9D
pa,nq

j

¯

jăω
, 9Ipa,nq | a P Tn, n ă ω

F

so that for any n ă ω and a P Tn

pF.iq T0 “ t1u, p
p1,0q “ p, 9Xp1,0q “ X̌, 9Ip1,0q “ Ǐ,

pF.iiq T p1,0q P X is a nested antichain that p is a mixture of with T
p1,0q

0 “ t1u,

pF.iiiq a ,lhpaq
9Zpa,nq “ 9Xpa,nq X V ,

pF.ivq
´

9D
pa,nq

j

¯

jăω
is forced by a to be an enumeration of all dense subsets

of π´1
9Zpa,nq

pP̌q in

M 9Zpa,nq

”

}fpδq
ı

,

pF.vq a ď ppa,nq æ lhpaq,

pF.viq lhpaq is not a limit ordinal,

pF.viiq a ,lhpaq p̌
pa,nq, Ť pa,nq, 9Glhpaq P

9Xpa,nq,

pF.viiiq a ,lhpaq
9Ipa,nq “ I

9Qlhpaq

p̌pa,nqplhpaqq
and

pF.ixq a , “X̌ Ď 9Xpa,nq ă H
V r 9Glhpaqs

θ̌
is countable and respects 9Ipa,nq”.

Moreover, for any b P sucnT paq

pF.xq b æ lhpaq ,lhpaq “p̌pb,n`1q, Ť pb,n`1q P 9Xpa,nq, in particular lhpb̌q,Plhpǎq,lhpb̌q P

9Xpa,nq”,

pF.xiq b ,lhpbq
9Xpa,nqr 9Glhpaq,lhpbqs Ď 9Xpb,n`1q and

pF.xiiq if hpnq “ pi, jq and c “ prediT pbq then

b ,lhpnq p̌
pb,n`1q P π 9Xpa,nqr 9µ`

c,ap
9D

pc,iq
j qs.
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Here, µ`
c,a denotes46

µ`
9Zpc,iq, 9Zpa,nq

: M 9Zpc,iqrf̌pδ̌qs ÑM 9Zpa,nqrf̌pδ̌qs.

We define all objects by induction on n ă ω.

T0 “ t1u, p
p1,0q, T p1,0q, 9Xp1,0q, 9Zp1,0q

´

9D
p1,0q

j

¯

jăω
, 9Ip1,0q

are given by pF.iq-pF.ivq and pF.viiiq. Suppose we have already defined

Tn,

B

ppa,nq, T pa,nq, 9Xpa,nq, 9Zpa,nq,
´

9D
pa,nq

j

¯

jăω
| a P Tn

F

and we will further construct

Tn`1,

B

ppb,n`1q, T pb,n`1q, 9Xpb,n`1q, 9Zpb,n`1q,
´

9D
pb,n`1q

j

¯

jăω
| b P Tn`1

F

.

Fix a P Tn. Let E be the set of all b so that

pE.iq b P Plhpbq and lhpbq ă γ,

pE.iiq lhpaq ď lhpbq and b æ lhpaq ď a,

and there are a nested antichain S in P, s P P and names 9X, 9I with

pE.iiiq S= T pa,nq,

pE.ivq s ď ppa,nq is a mixture of S,

pE.vq if hpnq “ pi, jq and c “ prediT paq then

b ,lhpbq š P π 9Zpa,nqr 9µ`
c,ap

9D
pc,iq
j qs,

pE.viq lhpbq is not a limit ordinal,

pE.viiq b æ lhpaq ,lhpaq š, Š P 9X,

pE.viiiq b ,lhpbq š æ lhpbq P 9Glhpbq,

pE.ixq b ,lhpbq
9Xpa,nq Ď 9Xpa,nqr 9Glhpaq,lhpbqs Ď 9X ă H

V r 9Glhpb̌qs

θ̌
,

pE.xq b ,lhpbq “ 9X is countable and respects 9I”,

pE.xiq b ,lhpbq
9I “ I

9Qlhpbq

šplhpbqq
and

pE.xiiq if S0 “ tc0u then lhpbq “ lhpc0q and b ď c0.
46There is some slight abuse of notation here in an effort to improve readability.
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Claim 7.27. E æ lhpaq :“ tb æ lhpaq | b P Eu is dense in Plhpaq.

Proof. Let a1 ď a and let G be Plhpaq-generic with a1 P G. By pF.vq, ppa,nq æ

lhpaq P G. Work in V rGs. Let hpnq “ pi, jq and c “ prediT paq. Let

Xpc,iq “

´

9Xpc,iq
¯Glhpcq

and Xpa,nq “

´

9Xpa,nq
¯G

as well as Zpc,iq “ Xpc,iq X V , Zpa,nq “ Xpa,nq X V . Find r P T
pa,nq

1 with
r æ lhpaq P G. As ppa,nq is a mixture of T pa,nq, we have

r ď ppa,nq æ lhprq.

Let r̂ “ r"ppa,nq æ rlhprq, γq. Note that r̂ P Xpa,nq, as

ppa,nq, T pa,nq, G P Xpa,nq

by pF.viiq. Moreover, r̂ æ lhpaq P G. Let Q :“ 9QG
lhpaq

and

D :“ µ`
c,app

9Di
jq
Glhpcqq PMZpa,nqrfpδqs ĎMXpa,nqrfpδqs.

Subclaim 7.28. There are s, Y with

piq Xpa,nq Ď Y ă H
V rGs

θ ,

piiq s ď ppa,nq,

piiiq s æ lhpaq P G,

pivq s P πY rµ
`

Xpa,nq,Y
pDqs and

pvq Y respects IQsplhpaqq
.

Proof. Let

D0 :“ tt P D | πXpa,nqptq ď ppa,nq ^ πXpa,nqptq æ lhpaq P Gu

and D1 be the projection of D0 onto π´1
Xpa,nqpQq. Observe that

MXpa,nqrfpδqs |ù “D1 is dense below π´1
Xpa,nqpp

pa,nqplhpaqq in π´1
Xpa,nqpQq”.

Applying Lemma 7.26 with (making use of the notation there)

• P “ 9Q,

• p “ ppa,nqplhpaqq,

• X “ Xpa,nq and

• D “ D0,
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we find some countable Y and some s0 with

piq Xpa,nq Ď Y ă H
V rGs

θ ,

piiq s0 ď ppa,nqplhpaqq,

piiiq s0 P πY rµ
`

Xpa,nq,Y
pD1qs and

pivq Y respects IQs0 .

By definition of D1, there is s ď ppa,nq with

ps.iq s æ lhpaq P G,

ps.iiq s P πY rµ
`

Xpa,nq,Y
pDqs and

ps.iiiq splhpaqq “ s0.

Y, s have the desired properties.

We can now apply Fact 3.44 in Y and get a nested antichain S P Xpa,nq

with

pS.iq s is a mixture of S,

pS.iiq if S0 “ tdu then lhprq ď lhpdq, d æ lhprq ď r and lhpdq is not a limit
ordinal and

pS.iiiq S= T pa,nq.

Let 9X be a name for Y r 9Glhpaq,lhpdqs and 9I a name for I
9Qlhpdq

splhpdqq
.

Subclaim 7.29. In V rGs, we have

9Isælhpdq “ I
Plhpaq,lhpdq`1

sælhpdq`1 “ IQsplhpaqq
.

Proof. The first equality is simply by definition of 9I. The second equality
follows from Proposition 7.22. Here we use that Q freezes NSω1 along f and
that Plhpaq,lhpdq`1 preserves f by our inductive hypothesis.

It follows that
Y respects 9Isælhpdq.

As lhpaq is not a limit ordinal, p;q holds in V rGs, so that Plhpaq,lhpdq is re-
spectful by Lemma 7.15. Thus there is b P Plhpaq,lhpdq, b ď s æ lhpdq so
that

b ,lhpbq “Y̌ Ď Y̌ r 9Gs respects 9I”.

Since b æ lhpaq P G, we may assume further that b æ lhpaq ď a1. s, S, 9X, 9I
witness b P E.
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To define Tn`1, fix a maximal antichain A Ď E æ lhpaq, and for any e P A
choose be P E with be æ lhpaq “ e. We set sucnT paq “ tbe | e P Au. For any

b P sucnT paq, let S, s, 9X, 9I witness b P E. We then let

• ppb,n`1q “ s, T pb,n`1q “ S, 9Xpb,n`1q “ 9X, 9Ipb,n`1q “ 9I,

• 9Zpb,n`1q be a name for 9X X V and

•
´

9D
pb,n`1q

j

¯

jăω
be a sequence of names that are forced by b to enumer-

ate all dense subsets of π´1
9Zpb,n`1q

pPq in M 9Zpb,n`1q

”

}fpδq
ı

.

This finishes the construction.

By Fact 3.44, there is a mixture q of T . Let G be P-generic with q P T .
By Fact 3.46, in V rGs there is a sequence xan | n ă ωy so that for all n ă ω

p⃗a.iq a0 “ q0,

p⃗a.iiq an`1 P sucnT panq and

p⃗a.iiiq ppan,nq P G.

For n ă ω, let αn “ lhpanq ă γ. For n ă ω we let

Xn :“
´

9Xpan,nq
¯Gαn

and also

Xω “
ď

năω

XnrGαn,γs.

Further, for n ď ω let

Zn :“ Xn X V and πn :“ πZn .

We remark that

XnrGαn,γs Ď XmrGαm,γs ă H
V rGs

θ

follows inductively from pF.viiq and pF.ixq for n ď m ă ω so that Xω ă

H
V rGs

θ . We aim to prove that

X Ď Xω is f -slim.

In fact, we will show

pZω.iq X Ď Zω,

pZω.iiq Zω is f -slim and

pZω.iiiq π
´1
ω rGs is generic over Mωrfpδqs,
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which implies the above.

Claim 7.30. Zω “
Ť

năω Zn.

Proof. “ Ě ” is trivial, so we show “ Ď ”. Let x P Zω and find i ă ω with
x P XirGαi,γs. Note that there is 9x P Zi a P-name for a set in V with x “ 9xG.
Let D PMi be the dense set of conditions in π´1

n pPq deciding π´1
i p 9xq. There

must be some j ă ω so that

´

9D
pai,iq
j

¯G
“ D.

Now find n with hpnq “ pi, jq. We then have

ppan`1,n`1q P πnrµ
`
ai,an`1

pDqs

by pF.xiiq. We have that ppan`1,n`1q decides 9x to be some z P Xn, and as
ppan`1,n`1q P G,

x “ 9xG “ z P Xn X V “ Zn.

As X Ď Xn is f -slim by pF.ixq for n ă ω, pZω.iq and pZω.iiq follow at
once. It remains to show pZω.iiiq.
As Zω is f -slim and by Claim 7.30, we have that

xMωrfpδqs, µ
`
n,ω | n ă ωy “ lim

ÝÑ
xMnrfpδqs, µ

`
n,m | n ď m ă ωy

for some pµ`
n,ωqnăω. Let E P Mωrfpδqs be dense in π´1

ω pPq. Then for some

i, j ă ω, E “ µ`
i,ωpDq for

D :“
´

9D
pai,iq
j

¯G
.

Find n with hpnq “ pi, jq. By pF.xiiq,

ppan`1,n`1q P πnrµ
`
i,npDqs Ď πωrµ

`
i,ωpDqs “ πωrEs.

As ppan`1,n`1q P G, we have E X π´1
ω rGs ‰ H, which is what we had to

show.

7.3 The Qmax-variation Q´
max

We will have to do some work in order to find a forcing which freezes
NSω1 along a witness f of ♢pωăω

1 q. The main idea is to find the cor-
rect Pmax-variation to throw into the ♢-p˚q-forcing. Let us first introduce
Woodin’s Qmax.

Definition 7.31. A condition p P Qmax is a generically iterable structure
p “ pN, I, fq with
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pQmax.iq N |ù “f guesses Colpω, ω1q-filters” and

pQmax.iiq N |ù “ηf : Colpω, ω1q Ñ pPpω1q{Iq
` is a dense embedding”, where ηf

is the embedding associated to f .

The order on Qmax is given by

q “ pM,J, hq ăQmax p

iff there is an iteration

j : pÑ p˚ “ pN˚, I˚, f˚q

in q with f˚ “ h.

We mention that it follows from Lemma 2.12 that if pN, I, fq is a Qmax-
condition then N |ù “f witnesses ♢`pωăω

1 q”.
Forcing that Hf is almost a Qmax-condition for some f essentially amounts
to forcing “NSω1 is ω1-dense”. We replace Qmax by an equivalent forcing for
which this is easier to achieve.

Definition 7.32. A condition p P Q´
max is a generically iterable structure

of the form p “ pN, I, fq so that

pN ; P, Iq |ù “f witnesses ♢`
I pω

ăω
1 q”.

The order on Q´
max is given by q :“ pM,J, hq ăQ´

max
pN, I, fq “: p iff there

is an iteration
j : pÑ p˚ “ pN˚, I˚, f˚q

in q so that

păQ´
max

.iq f˚ “ h and

păQ´
max

.iiq if S P J` X p˚ then there is b P Colpω, ωq1q with Shb Ď S mod J .

We note that Q´
max is essentially unchanged if condition păQ´

max
.iiq is

dropped, but demanding it is convenient for us.

Proposition 7.33 (Woodin, [Woo10, Definition 6.20]). Suppose Ppω1q is
closed under A ÞÑ A7 and I is a normal uniform ideal. Suppose f guesses
Colpω, ω1q-filters. The following are equivalent:

piq f witnesses ♢`
I pω

ăω
1 q.

piiq For any A Ď ω1,

tα ă ω1 | fpαq is not generic over LrAX αsu P I

and for all b P B, Sfb P I
`.
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The argument is due to Woodin. We provide it for convenience of the
reader.

Proof. We only have to show piqñpiiq. Let θ ě ω2 be regular, S P I` and
X ă Hθ countable with

piq A, I, f P X and

piiq δX P S.

If follows that fpδXq is generic over MX . By elementarity A7 P X and more-
over,

π´1
X pA

7q “ pAX δXq7.

Thus ppδXq`qLrAXδX s PMX so that

PpδXqLrAXδX s ĎMX

Thus fpδXq is generic over LrAX δXs as well. This shows

tα ă ω1 | fpαq is generic over LrAX αsu X S ‰ H.

As S was an arbitrary I-positive set, we conclude

tα ă ω1 | fpαq is not generic over LrAX αsu P I.

Lemma 7.34. Suppose J is a normal uniform ideal, h witnesses ♢`
J pω

ăω
1 q,

and Ppω1q is closed under A ÞÑ A7. For any p “ pN, I, fq P Q´
max there is

an iteration
j : pÑ p˚ “ pN˚, I˚, f˚q

so that

piq f˚ “ h mod J (so in particular f˚ witnesses ♢`
J pω

ăω
1 q) and

piiq if S P J` XN˚ then there is b P Colpω, ω1q with S
f˚

b Ď S mod J .

Proof. Let x be a real coding p and let D be the club of x-indiscernibles
below ω1. By induction along ω1 we will define a filter g Ď Colpω,ăω1q. Let

α⃗ :“ xαi | i ă ω1y

be the increasing enumeration of D. Assume that g æ αi is already defined.
First we define gpαiq:
Case 1: hpαiq is generic over Lrx, g æ αis. Then let gpαiq “ hpαiq.
Case 2: Case 1 fails. Then let gpαiq be some generic for Colpω, αiq over
Lrx, g æ αis.
Next, we choose g æ pαi, αi`1q to be any generic for Colpω, pαi, αi`1qq over
Lrx, g æ αi ` 1s.
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Claim 7.35. g is generic over Lrxs.

Proof. α⃗ enumerates a club of Lrxs-regular ordinals. Thus for any i ă ω1,
Colpω,ăαiq has the αi-c.c. in Lrxs. It follows by induction that g æ αi is
Colpω,ăαiq-generic over Lrxs and finally that g is Colpω,ăω1q-generic over
Lrxs.

By induction on α ă ω1, we now define a generic iteration

xpi, σi,j , Ui | i ď j ď αy

of p0 “ p. Here, Ui denotes the generic filter that produces the ultrapower
σi,i`1.
Let ηα denote the map

pησ0,αpfqq
pα : Colpω, ωpα1 q Ñ ppPpω1q{σ0,αpIqq

`qpα .

Simply pick Uα least, according to the canonical global wellorder in

Lrx, g æ ωpα1 ` 1s

so that

pU.iq Uα is ppPpω1q{σ0,αpIqq
`qqpα-generic over pα and

pU.iiq ηαrgpω
pα
1 qs Ď Uα.

This is possible as gpωpα1 q is Colpω, ωpα1 q-generic over pα, as

pα |ù “ηpα is a regular embedding”

and as pα is countable in Lrx, g æ ωpα1 ` 1s. Uα induces the generic ultra-
power σα,α`1 : pα Ñ Ultppα, Uαq “: pα`1.

Finally we get a generic iteration map

σ :“ σ0,ω1
: pÑ p˚ :“ pω1 “ pN

˚, I˚, f˚q.

Claim 7.36. f˚ “ h mod J .

Proof. f˚ and g agree on the club of iteration points, i.e. we have f˚pωpα1 q “
gpωpα1 q for any α ă ω1 by the argument of Proposition 2.11. Here we use
that Uα extends πpαrgpαqs.
Moreover,

tα ă ω1 | hpαq is not generic over Lrx, g æ αsu P J

by Proposition 7.33 as h witnesses ♢`
J pω

ăω
1 q. By construction of g, it follows

that tα ă ω1 | hpαq ‰ gpαqu P J . As J is a normal uniform ideal, we can
conclude

tα ă ω1 | f
˚pαq ‰ hpαqu P J.
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It follows that f˚ witnesses ♢`
J pω

ăω
1 q. Now let S P J` XN˚. We have

to show the following.

Claim 7.37. Sf
˚

b Ď S mod J for some b P Colpω, ω1q.

Proof. We will prove that the intersection of D with Sf
˚

b ´ S is bounded
below ω1 for some b. Find α P D so that

pα.iq there is S̄ P pα with σα,ω1pS̄q “ S and

pα.iiq α P S.

By pα.iiq, there must be some b P gpαq with

b ,
Lrx,gæαs

Colpω,αq
S̄ P 9Uα

where 9Uα is a name for the least filter U that is generic over pα and contains
ηαr 9gs, where 9g is now the canonical name for the generic. Now suppose

α ă β P Sf
˚

b XD. There is then an elementary embedding

j : Lrxs Ñ Lrxs

with

pj.iq jpαq “ β and

pj.iiq critpjq “ α.

We have that j lifts to an elementary embedding

j` : Lrx, g æ αs Ñ Lrx, g æ βs

so that

b “ jpbq ,
Lrx,gæβs

Colpω,βq
j`

`

S̄
˘

P j`
´

9Uα

¯

.

Clearly, j`
´

9Uα

¯gpβq

“ Uβ and thus

β P σβ,ω1

´

j`
`

S̄
˘

¯

as b P f˚pβq “ gpβq. Note that all points in D are iteration points and recall
that f˚ and g agree on iteration points.

Subclaim 7.38. j`
`

S̄
˘

“ σα,β
`

S̄
˘

.
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Proof. The reason is that, since α is a limit ordinal, pα is the direct limit
along xpi, σi,k | i ď k ă αy and thus there is some γ ă α and ¯̄S P pγ with

σγα

´

¯̄S
¯

“ S̄. Hence

j`
`

S̄
˘

“ j`

ˆ

σγ,α

´

¯̄S
¯

˙

“ j`pσγ,αq

ˆ

j`
´

¯̄S
¯

˙

“ σγ,β

´

¯̄S
¯

“ σα,β

ˆ

σγ,α

´

¯̄S
¯

˙

“ σα,β
`

S̄
˘

.

Here, we use j`pσγ,αq “ σγ,β in the third equation. This holds as our lift j`

satisfies j`pg æ αq “ g æ β and so it is easy to see that j`pxUi | i ă αyq “
xUi | i ă βy so that

j`pxpi, σi,k | i ď k ă αyq “ xpi, σi,k | i ď k ă βy.

All in all, β P σβ,ω1

´

σα,β
`

S̄
˘

¯

“ S. Thus

´

Sf
˚

b ´ S
¯

XD Ď α

so that Sf
˚

b Ď S mod J .

Proposition 7.39 (Folklore?). Suppose there is a precipitous ideal on ω1.
Then Ppω1q is closed under A ÞÑ A7.

Proof. It is easy to see that R is closed under x ÞÑ x7. Let I be a precipitous
ideal and let j : V Ñ M “ UltpV, gq be the generic ultrapower of V in the
extension V rgs, g generic for I`. Then A “ jpAq X ωV1 P M and is coded
by a real in M . By elementarity, R XM is closed under x ÞÑ x7. Thus A7

exists in M Ď V rgs. As forcing cannot add a sharp, A7 P V .

Lemma 7.40. Assume AD in LpRq. The inclusion Qmax ãÑ Q´
max is a

dense embedding.

Proof. It is easy to see that if p, q P Qmax then

q ăQmax pô q ăQ´
max

p.

Now let p P Q´
max and find x a real coding p. Our assumptions imply by

Woodin’s analysis of Qmax under ADLpRq that there is q “ pM,J, hq P Qmax

with x7 PM . By Proposition 7.39,

M |ù “Ppω1q is closed under A ÞÑ A7”.
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Thus we may apply Lemma 7.33 inside M and find an iteration

j : pÑ p˚ “ pN˚, I˚, f˚q

so that
q1 :“ pM,J, f˚q P Qmax

and j witnesses q1 ăQ´
max

p.

It is not obvious how to even prove construct a single Qmax-condition
assuming only ADLpRq. Woodin worked with a variant Q˚

max of Qmax instead
to analyze the Qmax-extension of LpRq. We remark that this can be done
with Q´

max as well. The arguments are, modulo Lemma 7.34, quite similar
to the arguments in the Q˚

max analysis.

7.4 Consistency of QM and forcing “NSω1 is ω1-dense”

We are now in position to force QM and answer Woodin’s Question. We
repeat it here.

Question (Woodin). Assume the existence of some large cardinal. Is there
a semiproper partial order P with

V P |ù “NSω1 is ω1-dense” ?

The first step this to find a forcing which freezes NSω1 along f assuming
large cardinals and that f witnesses ♢pωăω

1 q.
We will finally reap what we have sown by replacing Qmax with Q´

max.

Lemma 7.41. Suppose f witnesses ♢pωăω
1 q, there is a Woodin cardinal and

V is closed under X ÞÑM 7
1pXq. Then there is a f -preserving forcing which

freezes NSω1 along f .

Proof. Use the Woodin cardinal to make NSω1 saturated while turning f
into a witness of ♢`pωăω

1 q by f -semiproper forcing in a generic extension
V rgs using Theorem 3.60. Observe that

pHω2 ,NSω1 , fq
V rgs

is a almost a Q´
max-condition in V rgs. Work in V rgs. Next we want to apply

Theorem 4.20 with Vmax “ Q´
max for the dense set D “ Q´

max. Note that the
universe is closed under X ÞÑ X7 and as D is Π1

2, D is 8-universally Baire.
We cannot guarantee full generic absoluteness for small forcings, however
we actually only need that for any forcing P of size ď 2ω2 we have that

piq pQ´
maxq

V rgsP X V rgs “ pQ´
maxq

V rgs and

piiq pQ´
maxq

V rgsP is a Pmax-variation in V rgsP

149
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piq is again guaranteed by the closure under X ÞÑ X7. The only nontrivial
thing one has to verify for piiq is that Q´

max has no minimal conditions in
V rgsP. This follows from the closure of R under x ÞÑ M 7

1pxq, the argument
is similar to Corollary 8.8.
Thus P♢ “ P♢pQ´

max, f,Q´
maxq exists and in a further extension V rgsrhs by

P♢ we have:
Q´

max

q0 qω1 “ pNω1 , Iω1 , fq

p0 pωq0
1

pω1

ppHω2q
V rgs,NS

V rgs
ω1 , fqQ´

max

P σ0,ω1

P Pµ0,ωq0
1

µωq0
1 ,ω1

“
P

So that

pP♢.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,

pP♢.iiq µ0,ωq0
1

witnesses q0 ăQ´
max

p0,

pP♢.iiiq µ0,ω1 “ σ0,ω1pµ0,ωq0
1
q and

pP♢.ivq the generic iteration σ0,ω1
: q0 Ñ qω1 is a ♢-iteration.

Claim 7.42. f witnesses ♢pωăω
1 q in V rgsrhs.

Proof. By Lemma 4.19 and pP♢.ivq, Iω1 “ NS
V rgsrhs

f XNω1 , in particular f
witnesses ♢pωăω

1 q in V rgsrhs.

It remains to show that the extension V Ď V rgsrhs has “frozen NSVω1
along

f”. Let S P Ppω1q
V . It follows from pP♢.iiq, pP♢.iiiq and the definition of

ăQ´
max

(especially păQ´
max

.iiq) that one of the following holds:

• Either S P Iω1 ,

• or for some p P Colpω, ω1q we have Sfp Ď S mod Iω1 .

As any ♢-iteration is correct, Iω1 “ NS
V rgsrhs
ω1 XNω1 . It follows that

• either S P NS
V rgsrhs
ω1 ,

• or for some p P Colpω, ω1q we have Sfp Ď S mod NS
V rgsrhs
ω1 ,

which is what we had to show.

Remark 7.43. Instead of closure of V under X ÞÑM 7
1 we could just as well

have assumed that there is a second Woodin cardinal with a measurable
above.
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Theorem 7.44. Suppose f witnesses ♢pωăω
1 q and there is a supercompact

limit of supercompact cardinals. Then there is a f -preserving forcing exten-
sion in which f witnesses QM.

Proof. Let κ be a supercompact limit of supercompact cardinals and

L : Vκ Ñ Vκ

an associated Laver function. We describe a Q-iteration w.r.t. f

P “ xPα, 9Qβ | α ď κ, β ă κy

that forces QM. For any α ă κ, 9Qα is a two step-iteration of the form

9Qα “ 9Q0
α ˚

:Q1
α

with | 9Qα| ă κ. If α is a successor (or 0) then

piq 9Q0
α is forced to be a f -preserving forcing that freezes NSω1 along f

and

piiq :Q1
α is a name for a f -preserving partial order forcing SRP.

Note that 9Q0
α exists by Lemma 7.41 and :Q1

α exists by Corollary 3.76.

If α is a limit ordinal, then

piq 9Q0
α is Lpαq if that is a Pα-name for a f -preserving forcing and the

trivial forcing else,

piiq :Q1
α is as in the successor case.

It is clear that this constitutes a Q-iteration and hence P preserves f
and in particular ω1 is not collapsed. P is κ-c.c. by Fact 3.47. As we use
f -preserving forcings guessed by L at limit steps, QM holds in the extension
as witnessed by f by the usual argument.

If one is only interested in forcing “NSω1 is ω1-dense”, a slightly weaker
large cardinal assumption is sufficient.

Theorem 7.45. Suppose f witnesses ♢pωăω
1 q and κ is an inaccessible limit

of ăκ-supercompact cardinals. Then there is a f -preserving forcing exten-
sion in which NSω1 is ω1-dense.

Proof. Indeed any nice iteration

P “ xPα, 9Qβ | α ď κ, β ă κy

so that for all γ ă κ

Vκ |ù “Pγ is a Q-iteration w.r.t. f”
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preserves f and forces “NSω1 is ω1-dense”. To see this, first of all note that
P is κ-c.c. by Fact 3.47. Now any Pγ for γ ă κ preserves f by Theorem 7.24
applied in Vκ and it follows immediately that P preserves f . Suppose now
that G is P-generic and

V rGs |ù S P NS`
ω1
.

There must be some nonlimit γ ă κ with S P V rGγs. As 9QGγ
γ freezes

NSω1 along f in V rGγs, there must be some b P Colpω, ω1q with Sfb Ď S
mod NSω1 in V rGγ`1s, hence in V rGs.

Neither of these results answers Woodin’s question, as Woodin asks
specifically for a semiproper forcing, but Q-iterations are not stationary
set preserving if NSω1 is not ω1-dense to begin with. However, we have one
more trick up our sleeves: For once we will pick f more carefully.

Lemma 7.46. Suppose S⃗ “ xSα | α ă ω1y is a sequence of pairwise disjoint
stationary sets in ω1 and ♢pSαq holds for all α ă ω1. Then there is f
witnessing ♢pωăω

1 q so that for all α ă ω1, there is p P Colpω, ω1q with

Sfp Ď Sα.

Proof. From ♢pSαq, we get a witness fα of ♢pωăω
1 q so that fαpβq is the

trivial filter if β R S, see (the proof of) Proposition 2.15. Let xbα | α ă ω1y

be an enumeration of some maximal antichain in Colpω, ω1q of size ℵ1. Now
define f : ω1 Ñ Hω1 as follows: For β P Sα we let

fpβq “ tp P Colpω, βq | Dp1 ď pDq P fαpβq p
1 ď bα

"qu.

Note that there is at most one α with β P Sα. If β is not in any Sα, let fpβq

be the trivial filter. It is now clear that Sfbα Ď Sα, but we still need to verify
that f indeed witnesses ♢pωăω

1 q. So let p P Colpω, ω1q and

D⃗ “ xDα | α ă ω1y

be a sequence of dense subsets of Colpω, ω1q. We have that show that

tβ ă ω1 | p P fpβq ^ @γ ă β fpβq XDγ ‰ Hu

is stationary. So let C be a club in ω1. Find α so that bα is compatible with
p and note that we may assume further that p ď bα. Hence we can write p
as p “ bα

"q. For γ ă ω1, let

D1
γ “ tr P Colpω, ω1q | bα

"r P Dγu

and note that D1
γ is dense. As fα witnesses ♢pωăω

1 q, we may find β P C
large enough so that

pβ.iq p P Colpω, βq,
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pβ.iiq q P fαpβq and

pβ.iiiq @γ ă β fαpβq XD
1
γ ‰ H.

It follows that p P fpβq and that

@γ ă β fpβq XDγ ‰ H.

Corollary 7.47. Assume there is a supercompact limit of supercompact car-
dinals. Then there is a semiproper forcing P with V P |ù QM.

Proof. By otherwise taking advantage of the least supercompact, we may
assume all stationary-set preserving forcings are semiproper. Next, we force
with

P0 “ Colpω1, 2
ω1q.

Let G be P0-generic over V . There is then a partition xTα | α ă ω1y of ω1

into stationary sets so that whenever S P V is stationary in ω1, then TαXS
is stationary for all α ă ω1. Also, there is an enumeration

xSα | α ă ω1y

of all stationary sets in V . Now in V rGs,

xSα X Tα | α ă ω1y

is a sequence of pairwise disjoint stationary sets. Moreover, ♢T holds for
any stationary T Ď ω1. By Lemma 7.46, there is a witness f of ♢pωăω

1 q

so that for any α ă ω1 there is p P Colpω, ω1q with Sfp Ď pSα X Tαq. Thus

for any stationary S P V , S contains some Sfp . Note that any further f -

preserving forcing preserves the stationarity of any Sfp and hence does not
kill any stationary S P V . By Theorem 7.44, there is an f -preserving P1 that
forces QM. It follows that back in V , the two-step forcing P0 ˚ 9P1 preserves
stationary sets, hence is semiproper, and forces QM.

Similarly, can prove the following from Theorem 7.45.

Corollary 7.48. Assume there is an inaccessible κ that is a limit of ăκ-
supercompact cardinals. Then there is a stationary set preserving forcing P
with

V P |ù “NSω1 is ω1-dense”.

Assuming one more (sufficiently past κ-) supercompact cardinal below
κ, one can replace stationary set preserving forcing by semiproper forcing.

So the answer to Woodin’s question is yes assuming sufficiently large
cardinals.
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7.5 QM implies Qmax-p˚q

We apply the Blueprint Theorems to show that the relation between QM
and Qmax-p˚q is analogous to the one of MM`` and p˚q.
Typicality of Qmax is witnessed by ΨQmax consisting of the formulae

• ψQmax
0 pxq “ “x P 9I”,

• ψQmax
1 pxq “ “x “ 9f” and

• ψQmax
2 pxq “ “x “ 9f ^ x witnesses ♢pωăω

1 q”.

Note that ψQmax
2 pxq is (in context equivalent to) a Π1-formula.

Theorem 7.49. QM implies Qmax-p˚q.

Proof. Suppose f witnesses QM. Then MMpfq holds and this entails SRP
by Lemma 3.69. Hf is almost a Qmax-condition by Lemma 7.2. Qmax accepts
♢-iterations by Lemma 4.19. Qmax-p˚q now follows from the First Blueprint
Theorem 4.44.

Definition 7.50. For ∆ Ď PpRq, ∆-BQM states that there is f witnessing
♢pωăω

1 q so that

∆-BFAptP | P preserves fuq

holds.

We mention that already BQM “ H-BQM is enough to prove “NSω1

is ω1-dense”. In fact on can prove the following in a similar fashion as
Lemma 7.5.

Lemma 7.51. The following are equivalent for any ∆ Ď PpRq:

piq ∆-BQM.

piiq NSω1 is ω1-dense and there is f a witness of ♢pωăω
1 q with ∆-BMMpfq.

In contrast, BMM does not imply “NSω1 is saturated” (while MM does
of course). See Lemma 10.103 in [Woo10]47.

Theorem 7.52. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq Qmax-p˚q.

piiq pPpRq X LpRqq-BQM.

47It is an open problem whether BMM implies “NSω1 is precipitous”.
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Proof. Let Q:
max be defined in the same way as Q´

max, except that păQ´
max

.iiq
is dropped in the definition of the order. Note that AD holds in LpRq.
Lemma 7.40 shows that the inclusion Qmax ãÑ Q:

max is a dense embedding.
Let Q;

max be the suborder of Q:
max consisting only of conditions pM, I, fq P

Q:
max with pM ; P, Iq |ù ψACpIq. Results of Woodin, see Theorem 6.30 and

Theorem 6.80 in [Woo10], imply that Qmax is self-assembling and that there
are densely many conditions pM, I, fq P Qmax with pM ; P, Iq |ù ψACpIq
(assuming ADLpRq). It follows that Q;

max is self-assembling and dense in
Q:

max. The point is that Q;
max has unique iterations by Fact 5.11 (while

Q:
max does not).

Consequently, it suffices to show that Q;
max-p˚q is equivalent to piiq. Q;

max is

a typical Pmax-variation and this is witnessed by ΨQ;
max :“ ΨQmax . Suppose

f witnesses ♢pωăω
1 q. Then

ΓΨQ;
max

f “ ΓQ;
max

f pΨQ;
maxq

by Theorem 3.60 as there is a proper class of Woodin cardinals. This equality
is the reason we do not work with Qmax directly. The equivalence now follows
from the Second Blueprint Theorem 4.58.

Finally, we remark that one can show that fragments of QM hold in
Qmax-extensions of canonical models of determinacy. For example QMpcq,
i.e. QM for forcings of size at most continuum, holds in the Qmax-extension
of models of ADR ` “Θ is regular” ` V “ LpPpRqq and BQM holds in the
Qmax-extension of suitable R-mice.
Finally we want to mention that Woodin has formulated a forcing axiom
FAp♢pωăω

1 qqrcs somewhat similar to QMpcq and has proven that it holds in
the Qmax-extension of a model of ADR ` “Θ is regular” ` V “ LpPpRqq,
see Theorem 9.54 in [Woo10]48 The global version FAp♢pωăω

1 qq of Woodin’s
axiom does not imply “NSω1 is ω1-dense”. The reason is that if f witnesses
♢pωăω

1 q and MM``pfq holds then FAp♢pωăω
1 qq is true, however NSω1 is not

ω1-dense.

8 The Pmax-Variation Fmax

We pay our dues and show that Cmax is self-assembling, however we will not
work with Cmax directly. The ♢-forcing approach offers a uniform treatment
of

• semiproper forcing and hence MM``,

48We remark once again that Woodin has defined ♢pωăω
1 q slightly different than we

have here.
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• f -semiproper forcing and hence MM``pfq for f a witness of ♢pCq or
♢pωăω

1 q as well as

• semiproper forcing preserving a Suslin tree T and hence MM``pT q.

As we have shown in Section 5, these forcing axioms are related to Pmax,
Cmax and STmax (if T is strongly homogeneous) respectively. This suggest
that there should be a unified approach treating to Pmax, Cmax and STmax.
We present such an approach in this section.

Definition 8.1. A condition p P Fmax is a generically iterable structure of
the form49

p “ pM, I,B, f , aq

with

pFmax.iq pM ; P, Iq |ù ψACpIq,

pFmax.iiq M |ù “f uniformly witnesses ♢`
I pBq” and

pFmax.iiiq M |ù “a is a subset of ω1 with ω
Lras

1 “ ω1”.

For q, p P Fmax, we have q ăFmax p if and only if there is a generic
iteration

µ : pÑ p˚

of p in q of length ωN1 ` 1 with

păFmax .iq I
q X p˚ “ Ip

˚

,

păFmax .iiq Bp˚

“ Bq, fp˚

“ f q and ap
˚

“ aq.

Note that Fmax has unique iterations by pFmax.iq and Fact 5.11.
As we said already in the beginning of this section, Fmax is a sort of amal-
gamation of different nicer Pmax-variations.

Definition 8.2. If P is a forcing then we call a suborder Q Ď P a component
of P if no p P P´Q is compatible with any q P Q.

In fact we will have that Pmax,Cmax and STmax are (assuming ADLpRq

forcing equivalent to) components of Fmax. Thus Fmax is not homogeneous
and thus the Fmax-extension of LpRq is not exactly canonical, even though
the components mentioned above produce canonical extensions of LpRq, as-
suming ADLpRq of course. We view Fmax as a creature brought to life by
different components that do not want to fit together, similar to Franken-
stein’s monster. This explains the letter F.

49We will take liberties to write Mp for M , Ip for I, etc. and also to confuse p with M .
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8.1 The Fmax-extension of LpRq

For the rest of this section we will pretend that if pM, I,B, f , aq is a Fmax-
condition then f is a usual witness of ♢pBq in M and not a sequence of
uniform witnesses. In essence we pretend that f is constant. As before, all
arguments will generalize.

Definition 8.3. Suppose g Ď Fmax is a filter.

piq Ppω1qg is the set of all X Ď ω1 so that there is p P g and X̄ P p as well
as an iteration µ : pÑ p˚ guided by g with X P p˚.

piiq Bg “
Ť

pPg Bp, fg “
Ť

pPg f
p and ag “

Ť

pPg a
p.

Lemma 8.4. Suppose pM, Iq is a generically iterable structure and ♢ holds.
Then there is a ♢-iteration of pM, Iq.

Proof. A standard trick shows that under ♢, a seemingly stronger principle
holds: There is a sequence

a⃗ “ xaβ | β ă ω1y

and a partition S “ tSi | i ă ω1u of ω1 into ω1-many stationary sets so that
a⃗ witnesses ♢S for all S P S simultaneously. Let us enumerate S as

xSα,n | α ă ω1, n ă ωy.

We fix a uniform way of coding sequences of the form Z “ xZ⃗i | i ă ω1y

where Z⃗i P Ppω1q
ω1 for all i ă ω1 into a subset of ω1. For Z⃗ P Ppω1q

ω1 and
α ă ω1, Z⃗ ææ α denotes the map

αÑ Ppαq, β ÞÑ Z⃗pβq X α

And for Z “ xZ⃗i | i ă ω1y as above, α ă ω1, we define

Z æææ α “ xZ⃗i ææ α | i ă αy.

We require from the coding that if A codes Z then on a club, A X α codes
Z æææ α. We leave it to the reader to find such a coding.
We define a generic iteration

xpMα, Iαq, µα,β | α ď β ď ω1y

of pM0, I0q “ pM, Iq by induction. We only have to define the generic
filter gα for any stage α. At each stage, we will choose some enumeration
xXα

n | n ă ωy of I`
α XMα.

So suppose pMα, Iαq is defined.
Case 1: aα codes a sequence xZ⃗i | i ă αy so that for all i ă α
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pZ⃗.iq Z⃗i P Ppαqα and

pZ⃗.iiq Di is dense in I`
α XMα, where Di :“ ranpZ⃗iq.

Let β, n be unique with α P Sβ,n. Then let gα be an I`
α XMα-generic filter

over Mα so that

pgα.iq gα meets any Di for all i ă α and

pgα.iiq if β ď α then µβ,αpX
β
n q P gα.

Case 2: Case 1 fails. Again let β, n be unique with α P Sβ,n. Then let gα be
an arbitrary I`

α XMα-filter generic over Mα with pgα.iiq.

It remains to show that µ “ µ0,ω1
: M0 Ñ Mω1 is a ♢-iteration. Let

S P I`
ω1
XMω1 and xDi | i ă ω1y a sequence of dense subsets of I`

ω1
XMω1

and let Z⃗i enumerate Di in ordertype ω1. Let A Ď ω1 be a code for

Z :“ xZ⃗i | i ă ω1y.

Find β ă ω1 with S P ranpµβ,ω1q, say S “ µβ,ω1pS̄q. There is now n ă ω

with S̄ “ Xβ
n . Next, we may find a club C Ď ω1 so that for all α P C

pC.iq AX α codes Z æææ α,

pC.iiq ωMα
1 “ α,

pC.iiiq ranpµα,ω1q XDi “ Z⃗irαs for all i ă α and

pC.ivq µ´1
α,ω1

rDis is dense in I`
α XMα for all i ă α.

Let E be the club of iteration points of µ, i.e. E “ tωMα
1 | α ă ω1u. It

follows from the construction of the generic iteration that S contains a tail
of E XSβ,n. As a⃗ witnesses ♢Sβ,n

, there is a stationary set T Ď S such that
aα “ AX α for all α P T .

Claim 8.5. T X C Ď tα P S | @i ă α gα X µ
´1
α,ω1

rDis ‰ Hu.

Proof. Let α P T XC. As α P T , aα “ AXα and by pC.iq, aα codes Z æææ α.
Let

D̄i :“ ranpZi ææ αq

for i ă α. It follows from pC.iiq and pC.iiiq that

D̄i “ µ´1
α,ω1

rDis

for all i ă α. Next, pC.ivq implies that D̄i is dense in I`
α X Mα for all

i ă α and hence gα has been defined according to Case 1. By pgα.iq, we can
conclude

gα X µ
´1
α,ω1

rDis “ gα X D̄i ‰ H

for all i ă ω1.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

As T is stationary, tα P S | @i ă α gα X µ´1
α,ω1

rDis ‰ Hu is stationary,
which is what we had to show.

Corollary 8.6. Assume ♢. Let

p “ pM, I,B, f, aq

be a Fmax-condition. Then there is a generic iteration

j : pÑ p˚ “ pM˚, I˚,B˚, f˚, a˚q

so that

piq f˚ witnesses ♢pB˚q and

piiq I˚ “ NSf˚ X p˚.

Proof. This follows immediately from Lemma 8.4 and Lemma 4.19.

Fact 8.7 (Woodin). Suppose M is a countable transitive model of ZFC,
I PM and

M |ù “I is a normal uniform precipitous ideal”.

If xpMα, Iαq, µα,β | α ď β ď γy is any generic iteration of pM0, I0q “ pM, Iq
and γ P OrdXM then Mγ is wellfounded.

Corollary 8.8. Suppose R is closed under x ÞÑ M 7
1pxq. Then for any real

x and Fmax-condition p, there is a Fmax-condition q with

pq.iq q ăFmax p,

pq.iiq x PM q.

pq.iiiq M q |ù ZFC and

pq.ivq M q |ù “Iq “ NSω1 is saturated”.

Proof. Let x P R and y be a real coding p. Let z “ x ‘ y and set M “

M 7
1pzq}κ where κ is the critical point of the active extender of M 7

1pzq. Note
that ♢ holds in M . By Corollary 8.6, in M , there is a generic iteration

µ : pÑ p˚ “ pM˚, I˚,B˚, f˚, a˚q

so that f˚ witnesses ♢pB˚q and I˚ “ NSf˚ X p˚. By Theorem 3.60, there is
a f˚-stationary set preserving forcing extension M rgs of M with

piq M rgs |ù “NSω1 is saturated”,

piiq M rgs |ù “f˚ witnesses ♢`pB˚q” and
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8. The Pmax-Variation Fmax

piiiq M rgs |ù ψAC.

Let

q :“ pM rgs,NSMrgs
ω1

,B˚, f˚, a˚q.

Note that q is generically iterable by piq, Fact 8.7 and the choice of M . Thus
q P Fmax. The iteration µ : pÑ p˚ now witnesses q ăFmax p. Wehave

I˚ “ NSMrgs
ω1

X p˚

since I˚ “ NS
Mrgs

f˚ X p˚, by piiq and as the extension M Ď M rgs preserved
f˚-stationary sets.

It follows that Fmax is a Pmax-variation.

Applying the methods we developed so far, the following can be proven
analogously as the corresponding results for Pmax.

Lemma 8.9. If R is closed under x ÞÑM 7
1pxq then Fmax is σ-closed.

Lemma 8.10. Assume AD in LpRq. Then for any X Ď R, X P LpRq, for
any p P Fmax there is q “ pM, I,B, f, aq ăFmax p so that

piq pM, Iq is X-iterable and

piiq pHM
ω1
, X XMq ă pHω1 , Aq.

Theorem 8.11. Suppose AD holds in LpRq. Let g be Fmax-generic over
LpRq. Then in LpRqrgs we have

piq Ppω1q “ Ppω1qg,

piiq fg witnesses ♢`pBgq,

piiiq NSω1 is saturated,

pivq ψAC is true and

pvq the axiom of choice holds.

Proof. piq, piiiq´pvq can be shown just as for Pmax, from Lemma 8.10. Also,
piiq follows from Lemma 4.49.

Corollary 8.12. If ADLpRq holds then Fmax is self-assembling.

It follows that Cmax is self-assembling under ADLpRq.

We can now apply the Blueprint Theorems directly to Fmax, we leave
the details to the reader.
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Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Theorem 8.13. Suppose f witnesses ♢pBq. Then MM``pfq implies Fmax-p˚q
and moreover, there is a filter witnessing Fmax-p˚q that produces B, f, A for
some A Ď ω1.

Theorem 8.14. Suppose there is a proper class of Woodin cardinals and f
witnesses ♢pBq. The following are equivalent:

piq There is a filter witnessing Fmax-p˚q that produces B, f, A for some A.

piiq pPpRq X LpRqq-BMM``pfq.

9 Maximal Models of d “ ℵ1

We continue here what we begun in Subsection 5.4, that is we provide Σ2-
sentences ϕ that Shelah-Zapletal proved to be Π2-compact with instances of
MM`` ñ p˚q. We will do so here for

ϕd “ “d “ ℵ1”

and consider the bounding number in Section 10. On the forcing side,
Miyamoto has proven an iteration theorem for semiproper forcing not adding
unbounded reals. This yields the consistency of MM`` conditioned on the
existence of a witness of d “ ℵ1.
We will show in this section that these two approaches cohere in the sense
that this forcing axiom implies Pϕd-p˚q where Pϕd is the forcing Shelah-
Zapletal constructed to prove the Π2-compactness of ϕd. The dominating
number is defined as follows.

Definition 9.1. piq ď˚ denotes the partial order of eventual domination
on ωω, i.e. if f, g : ω Ñ ω are functions then f ď˚ g iff there is some
k ă ω so that @n ě k fpnq ď gpnq.

piiq A family D Ď ωω is dominating if for any f P ωω there is g P D that
eventually dominates f , i.e. f ď˚ g.

piiiq The dominating number, denoted by d, is the least cardinality of which
there is a dominating family, that is

d :“ mint|D| | D Ď ωω is dominatingu.

Definition 9.2 (Shelah-Zapletal,[SZ99]). A sequence d⃗ “ xdα | α ă ω1y of
reals is called a good dominating sequence if

pd⃗.iq tdα | α ă ω1u is a dominating family,

pd⃗.iiq if α ď β ă ω1 then dα ď
˚ dβ and

161



9. Maximal Models of d “ ℵ1

pd⃗.iiiq for any function h P ωω the set

Sh :“ tα ă ω1 | f ď dα pointwiseu

is stationary.

If I is a normal uniform ideal on ω1, then d⃗ is a I-good dominating sequence
if pd⃗.iq-pd⃗.iiq hold and Sh P I

` for any h P ωω.

Fact 9.3 (Shelah-Zapletal, [SZ99]). The following are equivalent.

piq d “ ℵ1.

piiq There is a good dominating sequence.

We translate the forcing Pd“ℵ1 of Shelah-Zapletal to a Pmax-variant suit-
able for our context. Essentially, we replace iterations coming from the sta-
tionary tower forcing at a Woodin cardinal with iterations given by forcing
with precipitous ideals on ω1.

Definition 9.4. Conditions in Pd“ℵ1
max are generically iterable structures of

the form

p “ pM, I, d⃗, aq

so that

pPd“ℵ1
max .iq pM ; P, Iq |ù ψACpIq,

pPd“ℵ1
max .iiq pM ; P, Iq |ù “d⃗ is a I-good dominating sequence” and

pPd“ℵ1
max .iiiq M |ù “a Ď ω1 and ω

Lras

1 “ ω1”.

The order is given by q “ pN, J, e⃗, bq ăd“ℵ1 p iff there is a generic iteration

j : pÑ p˚ “ pM˚, I˚, d⃗˚, a˚q

of length ωq1 ` 1 in q with

păd“ℵ1 .iq I
˚ “ J XM˚,

păd“ℵ1 .iiq d⃗
˚ “ e⃗ and

păd“ℵ1 .iiiq a
˚ “ b.

It follows with methods of Woodin and results of Shelah-Zapletal [SZ99]
that Pd“ℵ1 and Pd“ℵ1

max achieve the same thing.

Corollary 9.5. Assume V “ LpRq |ù AD. Then Pd“ℵ1 and Pd“ℵ1
max are

forcing equivalent.
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9.1 The forcing axiom MM``
pd “ ℵ1q

Definition 9.6. A forcing P is ωω-bounding if whenever G is P-generic then
pωωqV is a dominating family in V rGs.

Definition 9.7. The axiom MM``pd “ ℵ1q holds if

piq d “ ℵ1 and

piiq FA``pstationary set preserving and ωω-boundingq is true.

As usual, proving the consistency of MM``pd “ ℵ1q goes through the
principle SPFA``pd “ ℵ1q which is MM``pd “ ℵ1q restricted to ωω-bounding
semiproper forcings. The relevant iteration theorem is:

Fact 9.8 (Miyamoto, [Miy01]). Assume CH. If

P “ xPα, 9Qβ | α ď γ, β ă γy

is a nice iteration of limit length γ so that

,Pα “ 9Qα is semiproper and ωω-bounding“

for all α ă γ then P is semiproper and ωω-bounding.

To be precise, Miyamoto has proven the above result for so called simple
iterations, the version above then follows from results of Miyamoto on the
relation between nice iterations and simple iterations50.
The consistency of MM``pd “ ℵ1q is essentially proven as Theorem 3.3 in
[Miy01], even though it is not spelled out explicitly. We give only a few
details.

Theorem 9.9. If ZFC ` “there is a supercompact cardinal” is consistent,
then so is ZFC`MM``pd “ ℵ1q.

Proof. (Sketch) We modify the construction of a model of MM`` from a
supercompact. Start in a model V |ù ZFC ` CH ` “κ is supercompact”.
Let P be the nice iteration of ωω-bounding semiproper forcings of length
κ where each iterand is chosen by a Laver function on κ, cf. the proof of
Lemma 6.7. By Fact 9.8, P is semiproper and ωω-bounding. It follows that
D “ pωωqV is a dominating family of size ω1 in V P and thus d “ ℵ1 holds
in V P. It follows that SPFA``pd “ ℵ1q holds in V P. In particular,

V P |ù “Every (pruned) tree of height ω1 which is semiproper has a branch”

as forcing with such trees does not add reals. Miyamoto has shown that this
implies SRP, see Lemma 3.5 in [Miy01]. Thus all stationary set preserving
forcings are semiproper, so that MM``pd “ ℵ1q holds true.

50We also note that nothing in this section changes if we would use simple iterations
instead of nice iterations.
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9. Maximal Models of d “ ℵ1

9.2 Pd“ℵ1
max -p˚q-forcing

We want to apply the theory of Section 4 to the Pmax-variation Pd“ℵ1
max . How-

ever, Pd“ℵ1
max does not seem to accept ♢-iterations and because of this we need

to come up with a replacement for Theorem 4.20.

Theorem 9.10. Suppose that

piq generic projective absoluteness holds for generic extensions by forcings
of size ω2,

piiq NSω1 is saturated and Ppω1q
7 exists,

piiiq pHω2 ,NSω1 , d⃗, Aq is almost a Pd“ℵ1
max -condition and

pivq D Ď Pd“ℵ1
max is 2ω2-universally Baire and dense in Pd“ℵ1

max in any generic
extension by a forcing of size 2ω2, as witnessed by trees T, S with
prT s “ D.

Then there is a ωω-bounding forcing Pd so that in V Pd
the following picture

exists
prT s

q0 qω1

p0 pωN
1

pω1

ppHω2q
V ,NSVω1

, d⃗, AqPd“ℵ1
max

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“
P

so that

pPd.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,

pPd.iiq µ0,ωN
1

witnesses q0 ăd“ℵ1 p0,

pPd.iiiq µ0,ω1 “ σ0,ω1pµ0,ωN
1
q and

pPd.ivq σ0,ω1
: q0 Ñ qω1 is a correct iteration51.

We go on and give a sketch of the proof, it is quite similar to the proof
of Theorem 4.20. Let κ denote ω3 and assume ♢κ. It is along the lines
of Section 4, i.e. we modify the forcing of Asperó-Schindler to the given
context and add a condition that potential certificates have to satisfy in
order to establish the appropriate preservation. We borrow all notation
from Section 4 (in the special case that Vmax “ Pd“ℵ1

max ). The changes to
the language etc. are straightforward. However we store an additional bit

51We could also arrange σ0,ω1 to be a ♢-iteration, but we have no use of this.

164



Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

of information in potential certificates, namely for every ξ P K a natural
number kξ. Thus potential certificates are of the form

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, kξ, Xξ | ξ P Kyy.

We do not put any demand on kξ for potential certificates except that kξ is
an integer. To the language we add formulas of the form

x 9kξ “ ky

for ξ ă κ, k ă ω that capture this in the obvious way. That is, for Σ to
pλ-)precertify C, we demand that if ξ P K then

x 9kξ “ ky P Σ ô kξ “ k

for all k ă ω.

We now start to describe an additional condition that we will exploit in
the end to show Pd to be ωω-bounding. The idea is as follows: In the end,
Pd adds a semantic certificate

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, kξ, Xξ | ξ P Kyy

We want to show that every function f : ω Ñ ω in V Pd
is dominated by a

point dξ of the good dominating sequence d⃗. The strategy to achieve this

is: Find a stage λ P C so that the reduct to Qλ of (a code for) a name 9f is
exactly Aλ. The sentence xξ ÞÑ λy should then capture that the evaluation of
9f is eventually dominated by dξ. We make this precise now. The following

definition is part of the induction on λ P C Y tκu that eventually defines
Pd “ Pd

κ.

Definition 9.11. For λ̄ P C X λ, a λ̄-code for a real is a set

Z Ď Pd
λ̄ ˆ ω ˆ ω

so that

pZ.iq for any p P Pd
λ̄

and n ă ω there is q ď p and k ă ω with pq, n, kq P Z,

pZ.iiq if pp, n, kq, pp, n, lq are both in Z then k “ l and

pZ.iiiq if pp, n, kq P Z and q ď p then pq, n, kq P Z.

If Σ is a precertificate and Z0 Ď Z then the evaluation of Z0 by Σ is defined
as

ZΣ
0 “ tpn, kq P ω ˆ ω | Dp P rΣs

ăω pp, n, kq P Z0u

Note that this is a (potentially partial) function ZΣ : ω Ñ ω.

165



9. Maximal Models of d “ ℵ1

Let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, Xξ | ξ P Kyy

be a λ-precertificate certified by Σ. C is a semantic λ-certificate and Σ a
syntactic λ-certificate if additionally

pΣ.8qd“ℵ1 if ξ P K and E Ď Pd
λξ

is dense and definable over

pQλ; P,Pd
λξ
, Aλξq

from parameters in Xξ then Xξ X E X rΣs
ăω ‰ H and

pΣ.9qd“ℵ1 whenever ξ P K and Z “ Aλξ is a λξ-code for a real then for any
kξ ď n ă ω

ZΣpnq ď dξpnq.

pΣ.8qd“ℵ1 is exactly the genericity condition of Asperó-Schindler adapted
to the context here. pΣ.9qd“ℵ1 is a new “preservation condition”. Note that
If C is a semantic certificate certified by Σ, then pΣ.8qd“ℵ1 guarantees that
ZΣ is a total function on ω if ξ P K and Z “ Aλξ is a λξ-code for a real.

Definition 9.12. Conditions p P Pd
λ are finite sets of Lλ formulae so that

V Colpω,ω2q |ù “DΣ Ď Lλ Σ certifies p”.

Lemma 9.13. Suppose λ P C Y tκu and g Ď Pd
λ is a filter that meets any

dense subset of Pd
λ which is definable over

pQλ; P,Pd
λ, Aλq

Then
Ť

g is a syntactic λ-certificate.

Proof. We will only show that
Ť

g satisfies pΣ.9qd“ℵ1 . Let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, kξ, Xξ | ξ P Kyy

be the semantic precertificate that comes from g. Now suppose ξ P K and
Z “ Aλξ is a λξ-code for a real. Suppose kξ ď n ă ω. Let

p “ txξ ÞÑ λξy, x 9kξ “ kξyu P g

and let q ď p. Find Σ that certifies q and find

C1 “ xxM 1
i , µ

1
i,j , N

1
i , σ

1
i,j | i ď j ď ω1y, xpk

1
n, α

1
nq | n ă ωy, xλ1

ρ, k
1
ρ, X

1
ρ | ρ P K

1yy

the corresponding semantic certificate. Then ξ P K 1 and k1
ξ “ kξ as p P

rΣsăω. Thus using pΣ.8qd“ℵ1 , we find r P rΣsăω, r ď q and l ă ω so that

pr, n, lq P Z
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and by pΣ.9qd“ℵ1 , l ď dξpnq.
This is a density argument which shows that there is s ď p, s P g and
j ď dξpnq with ps, n, jq P Z. This shows

Z
Ť

gpnq “ j ď dξpnq.

The above argument is the reason we had added the bit kξ for ξ P K to
the information a certificate carries. If we had not done this, we would still
get dξ ę

˚ Z
Ť

g in the argument above, but it is no longer clear whether dξ
eventually dominates Z

Ť

g.

The next two lemmas can be proven exactly as in [AS21]. For the first
one, recall that SRP is a consequence of MM``pd “ ℵ1q, so that the universe
is closed under X ÞÑM 7

ωpXq.

Lemma 9.14. Pd
minC ‰ H.

Lemma 9.15. Pd preserves stationary sets.

In order to prove Pd to be ωω-bounding, the following fact is crucial.

Fact 9.16 (Shelah-Zapletal, [SZ99, Corollary 2.5]). Let M be a countable
transitive model of ZFC and let Q PM be a forcing, 9f PMQ with

piq M |ù 1Q , “ 9f is a dominating real” and

piiq for any g P pωωqM , there is p P Q with

M |ù p , “ǧ ď 9f pointwise”.

Let h P ωω, not necessarily in M . Then there is a filter G Ď Q generic over
M so that h ď˚ 9fG.

Lemma 9.17. Pd is ωω-bounding.

Proof. ω1 will always denote ωV1 in the following argument.
Assume 9f P V Pd

and q P Pd forces 9f to be an element of ωω. We define a
κ-code Ẑ Ď Pd ˆ ω ˆ ω for a real: We let pq, n, kq P Ẑ iff

q , 9fpňq “ ǩ.

Next, find λ P C with p P Pd
λ so that

Z :“ Aλ “ Ẑ XQλ.

Then by elementarity, Z is a λ-code for a real. We will find ξ ă ω1 with

pY txξ Ñ λyu P Pd.

Let h be Colpω, ω2q-generic over V .
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Claim 9.18. In V rhs, there are filters g Ď Pd
λ and G which satisfy conditions

piq and piiq below.

piq g meets all dense E Ď Pd
λ that are definable over

pQλ; P,Pd
λ, Aλq.

Let

C “ xxMi, µi,j , Ni, σi,j | i ď j ď ω1y, xpkn, αnq | n ă ωy, xλξ, kξ, Xξ | ξ P Kyy

be the certificate corresponding to g.

piiq G is generic over Nω1 for pI`qNω1 and if

j : Nω1 Ñ UltpNω1 , Gq “: Nω1`1

is the resulting ultrapower then

Z
Ť

g ď˚ dω1

where jpd⃗q “ xdα | α ă ω
Nω1`1

1 y.

Proof. Work in a further extension W of V rhs in which a sufficiently large
cardinal has been collapsed to ω. In W , there will be a filter g1 Ď Pd

λ that is
V -generic. Let

C1 “ xxM 1
i , µ

1
i,j , N

1
i , σ

1
i,j | i ď j ď ω1y, xpk

1
n, α

1
nq | n ă ωy, xλ1

ρ, k
1
ρ, X

1
ρ | ρ P K

1yy

be the corresponding semantic certificate. By applying Fact 9.16 in W , we
find a filter G1 that is pI`q

N 1
ω1 -generic over N 1

ω1
so that if

j : N 1
ω1
Ñ UltpN 1

ω1
, Gq “: N 1

is the resulting ultrapower and

jpd⃗q “ xdα | α ă ωN
1

1 y

then
Z

Ť

g1

ď˚ dω1 .

Here we use that d⃗ is a good dominating sequence to meet all assumptions
of Fact 9.16. The existence of filters with these properties is Σ1

1 in a real
code for pQλ; P,Pd

λ, Aλq, so such filters exist in V rhs by absoluteness.

Let g,G P V rhs be filters as above. The remaining argument is close
to the proof of Lemma 4.32, we carry it out briefly. Note that N0 is still
generically iterable in V rhs. Extend the iteration

xNi, σi,j | i ď j ď ω1y
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to one of length κ “ ω
V rhs

1 ` 1, say to

xNi, σi,j | i ď j ď κy

so that the ultrapower σω1,ω1`1 : Nω1 Ñ Nω1`1 is given by G. This also
extends the iteration of M0 to one of length κ ` 1 and we can lift its tail
which is an iteration of pHV

ω2
,NSVω1

q to an iteration

xM`
i , µ

`
i,j | ω1 ď i ď j ď κy

of M`
0 “ V . Let µ` :“ µ`

ω1,κ and M` :“ M`
κ . Find k ă ω so that for all

k ď n ă ω, Z
Ť

gpnq ď dω1pnq and set

q “ µ`ppq Y txω1 ÞÑ µ`pλqyu.

Claim 9.19. q P µ`pPdq.

Proof. Let C˚ denote

xxMi, µi,j , Ni, σi,j | i ď j ď κy, xpkn, µ
`pαnqq | n ă ωy, xλ˚

ξ , k
˚
ξ , X

˚
ξ | ξ P K

˚yy

where

xxMi, µi,j , Ni, σi,j | i ď j ď κy, xpkn, µ
`pαnqq | n ă ωy, xλ˚

ξ , X
˚
ξ | ξ P K

˚yy

is defined as in Claim 4.34, k˚
ξ “ kξ for ξ P K and k˚

ω1
“ k. Let Σ` precertify

C˚ with µ`r
Ť

gs Ď Σ`, we will show that Σ` indeed certifies C˚. We will
only argue that pΣ.9qd“ℵ1 is satisfied at ξ “ ω1. Note that µ`pZq “ µ`pAλq
is a µ`pλq-code for a real in M` w.r.t. µ`pPdq. It is easy to see that

µ`pZqΣ
`

“ Z
Ť

g

and we have

Z
Ť

gpnq ď dω1pnq

for all k ď n ă ω by our choice of g,G.

Thus by elementarity, in V there must be ξ ă ω1 so that

q :“ pY txξ ÞÑ λyu P Pd.

It is now straightforward to show that q , 9f ď˚ ďξ.
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9.3 MM``
pd “ ℵ1q implies Pd“ℵ1

max -p˚q

Pd“ℵ1
max is a typical Pmax-variation and this is witnessed by Ψd“ℵ1 consisting

of

• ψd“ℵ1
0 pxq “ “x P 9I”,

• ψd“ℵ1
1 pxq “ “x “

9⃗
d”,

• ψd“ℵ1
2 pxq “ “x “ 9a” and

• ψd“ℵ1
3 pxq “ “x “

9⃗
d^ x is a dominating sequence”.

Theorem 9.20. MM``pd “ ℵ1q implies Pd“ℵ1
max -p˚q.

Proof. Assume MM``pd “ ℵ1q. By Fact 9.3 there is a good dominating

sequence d⃗. Let A Ď ω1 with ω
LrAs

1 “ ω1. We have already seen that SRP is
a consequence of MM``pd “ ℵ1q and thus NSω1 is saturated and ψAC holds.
It follows that

pHω2 ,NSω1 , d⃗, Aq

is almost a Pd“ℵ1
max -condition. Arguing as in the proof of the First Blueprint

Theorem 4.44 with Theorem 9.10 in place of Theorem 4.20 shows that
Pd“ℵ1
max -p˚q holds.

Next up we define the relevant bounded forcing axioms in an effort to
find an equivalence of Pd“ℵ1

max -p˚q in terms of a forcing axiom assuming large
cardinals exist.

Definition 9.21. For ∆ Ď PpRq, ∆-BMM``pd “ ℵ1q holds if

piq d “ ℵ1 and

piiq ∆-BFAptP | P is ωω-bounding and stationary set preservinguq is true.

BMM``pd “ ℵ1q is H-BMM``pd “ ℵ1q.

Theorem 9.22. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq Pd“ℵ1
max -p˚q.

piiq pPpRq X LpRqq-BMM``pd “ ℵ1q.

Proof. Results of Shelah-Zapletal in [SZ99] together with methods of Woodin
imply that Pd“ℵ1

max is self-assembling.

Claim 9.23. We have

ΓΨd“ℵ1

pd⃗,Aq
“ ΓPd“ℵ1

max

pd⃗,Aq
pΨd“ℵ1q

whenever d⃗ is a good dominating sequence and A Ď ω1 with ω
LrAs

1 “ ω1.

170



Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Proof. Let V rGs be any ωω-bounding and stationary set preserving ex-
tension of V . We have to show that there is a further ωω-bounding and
stationary-set preserving extension of V rGs in which H

pd⃗,Aq
is almost a

Pd“ℵ1
max -condition. We may assume CH in V rGs, otherwise force with Addpω1, 1q.

Observe that there is a proper class of Woodin cardinals in V rGs. Let
V rGsrHs be an extension by the forcing P constructed in the proof of The-
orem 3.60 in the case that B “ t1u is the trivial forcing. Thus in V rGsrHs

pH.iq NSω1 is saturated and

pH.iiq ψAC holds.

P is a nice iteration of semiproper antichain-sealing forcings, forcings of the
form PpS, T q from Lemma 3.57 and σ-closed forcings. All these forcings are
semiproper and σ-distributive, the latter follows by arguments similar to the
proofs of f -semiproperness 3.57 and the proof that antichain sealing forcings
are stationary set preserving (if the antichain to be sealed is maximal). It
follows from Fact 9.8 that P is semiproper and ωω-bounding. It follows that
d⃗ is still a good dominating sequence in V rGsrHs.

The proof of the Second Blueprint Theorem 4.58 with Theorem 4.20
replaced by Theorem 9.10 gives the desired equivalence.

10 Maximal Models of b “ ℵ1

We show that the results of section 9 also holds for the cardinal invariant
dual to d, the bounding number invariant b.

Definition 10.1. piq For f : ω Ñ ω and F Ď ωω, we say that f dominates
F if f eventually dominates every member of F .

piiq A family F Ď R is called unbounded if it is not dominated by any
f P ωω.

piiiq b is the least size of an unbounded family, i.e.

b :“ mint|F | | F Ď ωω is unboundedu.

In case that b “ ℵ1, there are particularly nice sequences witnessing this.

Definition 10.2. A sequence u⃗ “ xuα | α ă ω1y is called an unbounded
sequence if

piq uα ď
˚ uβ for all α ă β ă ω1,

piiq any uα is increasing and

piiiq tuα | α ă ω1u is an unbounded family.
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u⃗ is a good unbounded sequence if additionally

pivq for any s P ăωω, the set

tα ă ω1 | s ď uα æ dompsq pointwiseu

is stationary.

Fact 10.3 (Shelah-Zapletal, [SZ99]). The following are equivalent:

piq b “ ℵ1.

piiq There is a good unbounded sequence.

If u⃗ is an unbounded sequence, we say that a forcing P preserves u⃗ if u⃗
is still unbounded in V P.

10.1 The forcing axiom MM``
pb “ ℵ1q

We want to identify the maximal MM``-style forcing axiom conditioned on
b “ ℵ1. In order to be able to prove the consistency of it, we will need a
suitable iteration theorem.

Theorem 10.4. Suppose u⃗ is an unbounded sequence. If

P “ xPα, 9Qβ | α ď γ, β ă γy

is a nice iteration so that for all α ă γ

,Pα “ 9Qα is semiproper and preserves ˇ⃗u”

then P preserves u⃗.

This can be recast to resemble Fact 9.8.

Corollary 10.5. Assume CH. If P “ xPα, 9Qβ | α ď γ, β ă γy is a nice iter-
ation of semiproper forcings of limit length and Pα does not add dominating
reals for all α ă γ, then P does not add dominating reals.

We will prove Theorem 10.4 by applying yet another result of Miyamoto.

Fact 10.6 (Miyamoto, [Miy02]). Let P “ xPα, 9Qβ | α ď γ, β ă γy be a nice
iteration of semiproper forcings, θ sufficiently large and regular, X ă Hθ

countable with P P X. For any limit ordinal β ď γ, p P Pβ X X and
xEn | n ă ωy, if for all n ă ω

piq En Ď Pβ and
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piiq for all r ď p, all α ă β and any Pα-name 9Y we have

,Pα “if X̌ Ď 9Y , 9Gα P 9Y ă H
V r 9Gαs

θ̌
is countable, ř P 9Y , ř æ α̌ P 9Gα

then there is s P Ěn X 9Y with s ď ř and s æ α̌ P 9Gα”,

then there is q P Pβ, q ď p so that for all n ă ω

q , Ěn X 9G ‰ H.

Proof of Theorem 10.4. The proof is by induction on γ, so we may assume
that Pβ preserves u⃗ for all β ă γ. Assume now that p P P and p forces that
9f is an element of ωω. Let θ be sufficiently large and regular and X ă Hθ

countable with P, p, u⃗, 9f P X. For n ă ω define

En :“ tq P P | DA P rωsn @m P A q , 9fpmq ă ǔδX pmqu.

We will show that the assumptions of Fact 10.6 are satisfied. Let n ă ω. Let
r ď p, α ă γ and assume that Gα is Pα-generic and countable Y P V rGαs
with

pY.iq X Ď Y ă H
V rGαs

θ and

pY.iiq r,Gα P Y and r æ α P Gα.

In Y , we may define a descending sequence xrm | m ă ωy in 9PGα
α,γ so that for

all m ă ω

pr⃗.iq rm ď r and

pr⃗.iiq rm , 9fpm̌q “ ǐm for some im ă ω.

Define the function h P ωω by hpmq “ im. Then h P Y . As Pα preserves u⃗,
there is some ξ ă δY “ δX so that

uξ ę
˚ h

and as uξ ď
˚ uδX we have

uδX ę
˚ h.

Thus rm P Y X En and rm æ α P Gα for all large enough m ă ω.
It follows that there is q ď p so that

q , @n ă ω Ěn X 9G ‰ H

and thus q , ǔδX ę
˚ 9f .

Definition 10.7. MM``pb “ ℵ1q holds if

piq b “ ℵ1 and
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piiq FA``pΓq holds where

Γ :“ tP | P preserves stationary sets and all unbounded sequencesu.

Note that this is once again a maximal forcing axiom. If u⃗ is an un-
bounded sequence and P is a forcing so that

,P “u⃗ is bounded”

then FAptPuq fails.
As always, we first formulate a SPFA``-style axiom which we show

equivalent to MM``pd “ ℵ1q. It turns out that in this case, it does not
matter whether we iterate all semiproper forcings which preserve a distin-
guished unbounded sequence or all semiproper forcings which preserve all
unbounded sequences. Both approaches end up with “the same model”.
This was trivially true before in Section 9, as one cannot destroy one domi-
nating sequence without destroying all dominating sequences, but here the
situation is more subtle. We reflect this in our presentation.

Definition 10.8. Let u⃗ be an ω1-sequence of reals. SPFA``pu⃗q holds if u⃗
is an unbounded sequence and

FA``psemiproper forcings preserving u⃗q

holds.

We will show the following.

Lemma 10.9. MM``pb “ ℵ1q is equivalent to Du⃗ SPFA``pu⃗q.

Definition 10.10 (Shelah-Zapletal, [SZ99]). Two unbounded sequences

xuα | α ă ω1y, xvα | α ă ω1y

are locked if there is x P rωsω so that for all α ă ω1

piq there is β ă ω1 with uα æ x ď
˚ vβ æ x and

piiq there is β ă ω1 with vα æ x ď
˚ uβ æ x.

Fact 10.11 (Shelah-Zapletal, [SZ99]). There is a forcing52 P so that

pP.iq P is proper,

pP.iiq P preserves all unbounded sequences and

pP.iiiq any two unbounded sequences in V are locked in V P.

52In fact, the forcing is simply Mathias forcing.
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The following is an immediate consequence.

Proposition 10.12. If u⃗ is an unbounded sequence and SPFA``pu⃗q holds
then any forcing that preserves u⃗ in fact preserves all unbounded sequences.

The following can be proven exactly as in Section 9.

Proposition 10.13. Du⃗ SPFA``pu⃗q implies SRP and hence that all sta-
tionary set preserving forcings are semiproper.

Lemma 10.9 is a consequence of Proposition 10.12 and 10.13.

Theorem 10.14. If ZFC`“there is a supercompact cardinal” is consistent,
then so is ZFC`MM``pb “ ℵ1q.

Proof. (Sketch) Start with a model V |ù ZFC`CH` “κ is supercompact”.
Thus there is an unbounded sequence u⃗. Let P be the nice iteration of
semiproper forcings preserving u⃗ with the iterands chosen by some Laver
function on κ. Then P is semiproper and preserves u⃗ by Theorem 10.4,
hence b “ ℵ1 in V P. The usual argument shows that

V P |ù FA``psemiproper forcings preserving u⃗q

thus SPFA``pu⃗q holds in V P. By Lemma 10.9, P forces MM``pb “ ℵ1q.

Pb“ℵ1 and Pb“ℵ1
max are defined in the same way as Pd“ℵ1 and Pd“ℵ1

max with
“good dominating sequence” replaced by “good unbounded sequence”. We
denote the order on Pb“ℵ1

max by ăb“ℵ1 . Shelah-Zapletal have proven analogous
results for Pb“ℵ1 as they did for Pd“ℵ1 .

10.2 Pb“ℵ1
max -p˚q-forcing

Theorem 10.15. Suppose that

piq generic projective absoluteness holds for generic extensions by forcings
of size ω2,

piiq NSω1 is saturated and Ppω1q
7 exists,

piiiq pHω2 ,NSω1 , u⃗, Aq is almost a Pb“ℵ1
max -condition and

pivq D Ď Pd“ℵ1
max is 2ω2-universally Baire and dense in Pd“ℵ1

max in any generic
extension by a forcing of size 2ω2, as witnessed by trees T, S with
prT s “ D.

Then there is a u⃗-preserving forcing Pb so that in V Pb
the following picture

exists
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prT s

q0 qω1

p0 pωN
1

pω1

ppHω2q
V ,NSVω1

, u⃗, AqPb“ℵ1
max

P σ0,ω1

P Pµ0,ωN
1

µωN
1 ,ω1

“
P

so that

pPb.iq µ0,ω1 , σ0,ω1 are generic iterations of p0, q0 respectively,

pPb.iiq µ0,ωN
1

witnesses q0 ăb“ℵ1 p0,

pPb.iiiq µ0,ω1 “ σ0,ω1pµ0,ωN
1
q and

pPb.ivq σ0,ω1
: q0 Ñ qω1 is a correct iteration.

The argument is similar to the proof of Theorem 9.10. Assume ♢κ and
define the club C and forcings pPb

λqλPCYtκu by induction as usual. In the

definition of potential certificates, the good dominating sequences d⃗ are now
replaced by good unbounded sequences u⃗. In this case, we do not have to add
additional information to certificates. The correct “genericity conditions”
for a syntactic λ-precertificate Σ to be a full λ-certificate are now:

pΣ.8qb“ℵ1 If ξ P K and E Ď Pb
λξ

is dense and definable over

pQλ; P,Pb
λξ
, Aλξq

from parameters in Xλξ then

E XXξ X rΣs
ăω ‰ H

and

pΣ.9qb“ℵ1 whenever ξ P K and Z “ Aλξ is a λξ-code for a real then uξ ę
˚ ZΣ.

In this case it might be more natural to amalgamate both conditions as
in Section 4, but we try to keep as close to Section 9 as possible.

Lemma 10.16. Pb
minpCq

‰ H.

The following can be proved in a similar fashion as Lemma 9.13.

Lemma 10.17. If λ P C Y tκu and g Ď Pb
λ is a filter that meets and dense

E Ď Pb
λ definable with parameters over

pQλ; P,Pb
λ, Aλq

then
Ť

g is a syntactic λ-certificate.
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Lemma 10.18. Pb preserves stationary sets.

Relevant to this specific situation is now:

Lemma 10.19. u⃗ is an unbounded sequence in V Pb
, in particular Pb does

not add dominating reals.

Fact 10.20 (Shelah-Zapletal, [SZ99]). LetM be a countable transitive model
of ZFC and let Q PM be a forcing, 9f PMQ with

piq M |ù,Q “ 9f is an unbounded real” and

piiq for any s P ăωω, there is p P Q with

M |ù p , “š ď 9f æ dompšq pointwise.”

Let h P ωω, not necessarily in M . Then there is a filter G Ď Q generic over
M so that 9fG ę˚ h.

This is not explicitly stated in [SZ99] but follows immediately from Claim
5.9 of that paper.

Proof of Lemma 10.19. Let p P Pb and 9f a name for an element of ωω and
let Z be the natural κ-code for a real for 9f . Repeat the argument of Lemma
10.19. The version of Claim 9.18 here now demands of g,G that

uω1 ę
˚ Z

Ť

g

which can be achieved using Fact 10.20. To do this, use that u⃗ is a good
unbounded sequence. The rest of the argument works as before and shows
that we can find ξ ă ω1 so that

q “ pY txξ ÞÑ λyu P Pb

where λ P C is large enough with Aλ “ Z XQλ. Clearly q , ǔξ ę
˚ 9f .

10.3 MM``
pb “ ℵ1q implies Pb“ℵ1

max -p˚q

Pb“ℵ1
max is a typical Pmax-variation and this is witnessed by Ψb“ℵ1 consisting

of

• ψb“ℵ1
0 pxq “ “x P 9I”,

• ψb“ℵ1
1 pxq “ “x “ 9⃗u”,

• ψb“ℵ1
2 pxq “ “x “ 9a” and

• ψb“ℵ1
3 pxq “ “x “ 9⃗u^ x is an unbounded sequence”.
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Theorem 10.21. MM``pb “ ℵ1q implies Pb“ℵ1
max -p˚q.

Proof. One can argue analogous to the proof of Theorem 9.20. Use Theorem
10.15 instead of Theorem 9.10.

Theorem 10.22. Suppose there is a proper class of Woodin cardinals. The
following are equivalent:

piq Pb“ℵ1
max -p˚q.

piiq pPpRq X LpRqq-BMM``pb “ ℵ1q.

Proof. Results in [SZ99] imply that Pb“ℵ1
max is self-assembling. A similar proof

as for Theorem 9.22 works. Use Theorem 10.4 instead of Fact 9.8 to show

ΓΨb“ℵ1

pu⃗,Aq “ ΓPb“ℵ1
max

pu⃗,Aq
pΨb“ℵ1q

whenever u⃗ is a good unbounded sequence and A Ď ω1 satisfies ω
LrAs

1 “ ω1.

11 Appendix

We prove a few more results mostly related to ♢-forcing that did not fit in
earlier.

11.1 A version of Martin’s axiom conditioned on ♢pBq

The following is almost certainly due to Shelah.

Fact 11.1. The following are equivalent for any forcing P:

piq P satisfies the countable chain condition.

piiq For any sufficiently large regular θ and any countable X ă Hθ with
P P X, any p P P is pX,Pq-generic.

See for example [Mek84]. This suggest a natural version of c.c.c. forcings
conditioned on a witness f of ♢pBq.

Definition 11.2. Suppose f witnesses ♢pBq. A forcing P is f -c.c.c. if for
any sufficiently large regular θ and any f -slim X ă Hθ, any condition in P
is pX,P, fq-generic.

We have f -c.c.c. ñ f -proper^ c.c.c.. Lemma 5.65 gives an example of a
f -proper c.c.c. forcing which is not f -c.c.c..

We get a natural analog of Fact 11.1.

Proposition 11.3. Suppose f witnesses ♢pBq. The following are equivalent
for any forcing P:
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piq Whenever θ is sufficiently large regular, X ă Hθ is f -slim with P P X
and MXrfpδ

Xqs |ù “A Ď P̄ is a maximal antichain” then πXrAs is a
maximal antichain in P.

piiq P is f -c.c.c..

It is straightforward to see that if P is f -c.c.c. and ,P “ 9Q is f -c.c.c.”
then P ˚ 9Q is f -c.c.c..

Lemma 11.4. Suppose f witnesses ♢pBq and P “ xPα, 9Qβ | α ď γ, β ă γy
is a finite support iteration of f -c.c.c. forcings. Then P is f -c.c.c..

Proof. We proceed by induction and only prove the limit step. So assume
that γ P Lim and let θ be sufficiently large and regular, X ă Hθ be f -slim
with P P X. Suppose that D P MXrfpδ

Xqs is dense in P̄, we will show that
πXrDs is predense in P. Suppose p P P. As γ is a limit, there is α P X X γ
so that suppppq XX Ď α. Let

E “ tq P P̄ᾱ | Dr P D r æ ᾱ “ q æ ᾱu

and note that E PMXrfpδ
Xqs is dense in P̄ᾱ. By induction, Pα is f -c.c.c. and

hence πXrEs is predense in Pα. Find some q P Pα with q ď p æ α so that q
is below some condition πXprq P πXrEs. By definition of E, there is s P P̄
so that s æ ᾱ “ r and s P D. By choice of α,

suppppq X psupppπXpsqq ´ supppqqq “ H

and hence t “ q Y πXpsq is a condition, t ď p and t is clearly below a
condition in πXrDs.

This allows us to force a fragment of Martin’s Axiom that is consistent
with ♢pBq with f -c.c.c. forcing.

Definition 11.5. Suppose f witnesses ♢pBq and κ is an uncountable car-
dinal.

piq MAκpfq holds if for any f -c.c.c. forcing P and any collection D of at
most κ-many dense subsets of P there is a filter g Ď P with gXD ‰ H
for all D P D.

piiq MApfq states that MAκpfq holds for all uncountable cardinals κ ă 2ω.

Suppose κ is weakly compact, that is for every A Ď κ there is a κ-model53

and an elementary embedding j : M Ñ N with critpjq “ κ and N transitive.
We say that L : κÑ Vκ is a Laver function for κ weakly compact if for any
A,B Ď κ there is j : M Ñ N as before with A PM and jpLqpκq “ B.

53A κ-model is a model transitive M of sufficiently much of ZFC of size κ with κ`1 ĎM
and Măκ

ĎM
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Fact 11.6 (Hamkins, [Ham00]). If κ is weakly compact then there is a Laver
function for κ weakly compact in a forcing extension which does not add
subsets of ω1.

Theorem 11.7. Suppose f witnesses ♢pBq and there is a Laver function
for κ weakly compact. Then there is a f -c.c.c. forcing P so that in V P

piq 2ω “ κ and

piiq MApfq holds.

Proof (Sketch). Let L be a Laver function for κ weakly compact. Let P be
the finite support iteration of f -c.c.c. forcings as guessed by L. Then P is
f -c.c.c. and as Cohen forcing is f -c.c.c., 2ω “ κ in V P. The typical lifting
argument shows that in V P, MApfq holds restricted to all forcings of size κ.
This suffices for full MApfq: Suppose Q is any f -c.c.c. forcing in V P and
D is a set of dense subsets of Q of size ăκ. We have that Q is c.c.c. and
κ “ 2ω, so Q has a complete subforcing Q0 Ď Q with DXQ0 dense in Q0 for
all D P D. Clearly, Q0 if f -c.c.c. and hence there is a filter g Ď Q0 meeting
all DXQ0 for D P D which in turn generates a filter ĝ Ď Q which meets all
D P D.

It seems likely that the large cardinal can be removed, though we have
not tried to do so. If additionally f witnesses ♢`pBq in V , then f will still
witness ♢`pBq in V P, so we can have MApfq ` “f witnesses ♢`pBq” and
the continuum large.

Lemma 11.8. Suppose f witnesses ♢`pBq. Then f witnesses ♢`pBq in
any generic extension by f -c.c.c. forcing.

Proof. Suppose P is f -c.c.c., G is P-generic over V and θ is sufficiently large,
regular. Let S P V rGs be stationary in ω1, we have to show that S is f -

stationary. Let C Ď
”

H
V rGs

θ

ıω
be a club. As P is c.c.c., we can find some

countable Y ă H
V rGs

θ with

pX.iq f, κ P Y P C,

pX.iiq δY P S,

pX.iiiq X :“ Y XHV
θ P V and

pX.ivq Y “ XrGs.

As f witnesses ♢`pBq in V , X is f -slim and as P is f -c.c.c., G trivially
contains a pX,P, fq-generic condition, hence Y “ XrGs is f -slim.
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11.2 More consequences of PFApfq

Many interesting structural consequences of PFA are in fact already im-
plied by Todorčević’s P -ideal dichotomy or by Moore’s Mapping Reflection
Principle pMRPq. Among them are e.g. 2ω “ ω2, global failure of square
and the Singular Cardinal Hypothesis. Unfortunately, if ♢pωăω

1 q holds then
both the P -ideal dichotomy and MRP fail. For The P -ideal dichotomy, this
immediately follows from a result of Todorčević.

Fact 11.9 (Todorčević, [Tod00]). If the P -ideal dichotomy holds then there
are no Suslin trees.

By Fact 5.6, ♢pωăω
1 q entails the existence of a Suslin tree and hence the

failure of the P -ideal dichotomy. We now introduce MRP.

Definition 11.10. Suppose A is an uncountable set.

piq For a P rAsăω and N P rAsω, we define

ra,N s “ tB P rAsω | a Ď B Ď Nu.

piiq The Ellentuck topology on rAsω is generated by basic open sets ra,N s
for all a P rAsăω and N P rAsω.

piiiq We say that a map Σ with range in PprAsωq is open if ΣpXq is open
in rAsω equipped with the Ellentuck topology for all X P dompΣq.

pivq If θ is regular and X ă Hθ is countable with A P X then a set S Ď rAsω
is X-stationary if CXSXX is nonempty for all clubs C Ď rAsω, C P X.

Definition 11.11 (Moore, [Moo05]). Suppose A is uncountable and

Σ: C Ñ PprAsωq

so that

pΣ.iq for some regular θ “ θΣ ě ω2, C is a club of countable elementary
substructures of Hθ and

pΣ.iiq Σ is open and for all X P C, ΣpXq is X-stationary in rAsω.

Then we call Σ an open stationary set mapping .

Definition 11.12 (Moore, [Moo05]). The Mapping Reflection Principle
MRP holds if for any open stationary set mapping

Σ: C Ñ PprAsωq

there is a continuous increasing chain X⃗ :“ xXα | α ă ω1y of elements of C
so that if α P ω1 X Lim then there is some β ă α with

@ξ P pβ, αq Xξ XA P ΣpXαq.
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Proposition 11.13. MRP implies ␣♢pωăω
1 q.

Proof. Suppose f witnesses ♢pωăω
1 q. We employ the same trick as in the

proof of Proposition 5.15, namely we consider fpαq as a maximal filter in
Colincpω, αq for all α ă ω1. Let rα “ ranp

Ť

fpαqq for α ă ω1 and we will
assume that rα is cofinal in α for all limit α ă ω1. Let C be the set of all
countable X ă Hω2 . We define Σ: C Ñ rω1s

ω by

ΣpXq “ tY P rδXsω | supY R rδX u.

If Y P ΣpXq is nonempty then there is a maximal point α P rδX Y t0u
below supY . If β P Y, β ą α then rtβu, Y s Ď ΣpXq and hence Σ is open.
Now we show that ΣpXq is X-stationary. If C P X, C Ď ω1 is club then,
as otppC X δXq “ δX and otpprδX q “ ω, it follows easily that there is
α P C X LimX δX with α R rδX . Hence α P C XX X ΣpXq.
Let X⃗ :“ xXα | α ă ω1y witness the instance of MRP given by Σ. Let
C “ tα ă ω1 | α “ δXαu. Note that this is club and for all α P C, rα X C is
bounded in α. Let θ ą ω2 be regular. As f witnesses ♢pωăω

1 q, we can find
some f -slim Y ă Hθ with C P Y . As fpδY q is generic over Y , rδY X C is
unbounded in δY , but also δY P C, contradiction.

Remark 11.14. The relevant instance of MRP used above is Example 2.5
in [Moo05].

As SRP and MRP are both reflection principles that follow from MM and
PFA respectively and already imply many of their celebrated consequences,
it is natural to ask about the relation between these principles. As MM is
stronger than PFA, one should not expect MRP ñ SRP and indeed there
are well known models in which MRP holds and SRP fails. For example
Beaudoin [Bea91] constructs a model of PFA in which there is a stationary
subset of tα ă ω2 | cofpαq “ ωu which does not reflect54. All such sets
reflect under SRP, so SRP fails. Also Shelah [She98, XVII Theorem 3.3]
shows that PFA does not imply “NSω1 is saturated”.
What about the reverse implication? As of yet, no model of SRP^␣MRP
appears in the literature.

Corollary 11.15. Suppose ZFC ` “There is a supercompact cardinal” is
consistent. Then so is ZFC` SRP`␣MRP.

Any model of MMpfq where f witnesses ♢pωăω
1 q works. Justin Moore

asked the author whether there are strong club guessing sequences in these
models of SRP`␣MRP, as they would constitute strong counterexamples
to MRP. For sets a, b, a Ď˚ b holds if a´ b is finite.

54S Ď ω2 reflects if there is some α ă ω2 of cofinality ω1 so that S X α is stationary
in α.
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Definition 11.16. A strong club guessing sequence is a sequence

xCα | α P ω1 X Limy

so that

pC⃗.iq Cα Ď α is cofinal and of ordertype ω for all α P LimX ω1

pC⃗.iiq For any club C Ď ω1 we have Cα Ď
˚ C for all but possibly nonstation-

ary many α P C X Lim.

We will show that under QM there are no such sequences. The technique
we use to do so shows that even though QM does not have a `, some
arguments that seem to require a `-style forcing axiom can be carried out
for QM.

Lemma 11.17. If BQM holds then there is no strong club guessing sequence.

Proof. Suppose C⃗ :“ xCα | α P ω1 X Limy satisfies pC⃗.iq from the definition
of a strong club guessing sequence. We will show that pC⃗.iiq fails. Suppose
that f witnesses BQM.

Claim 11.18. In V Addpω1,1q, there is a club C so that

tα P C | Cα Ę
˚ Cu X T P NS`

f

for all f -stationary T P V .

Proof. Let θ be large enough regular, X ă Hθ be f -slim and p P Addpω1, 1qX
X. Then it is straightforward to find some q ď p which is pX,Addpω1, 1q, fq-
generic so that CδX Ę

˚ Limpq´1rt1usq. This shows that if G is Addpω1, 1q-
generic and A Ď ω1 is the generic subset added by G then C “ LimpAq
works.

Let G be Addpω1, 1q-generic and C P V rGs as provided by Claim 11.18.
Let

S :“ tα P C | Cα Ę
˚ Cu

and note that ω1 ´ S does not contain any of the Sfp mod NSf . If P is the
forcing to shoot a club through S then the argument from Lemma 7.2 shows
that P is f -preserving in V rGs. Thus in V rGsP, S contains a club and hence
the statement “There are clubs C,D Ď ω1 with Cα Ę C for all α P C XD”
reflects down to V by BQM.

Fact 11.9 and Proposition 11.13 leave open how to derive for example
global failure of square from PFApfq. It also does not seem like Todorčević’s
original proof of this in [Tod84] from PFA generalizes to PFApfq. Nonethe-
less, we aim to give a proof of the following result.
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Theorem 11.19. Suppose f witnesses ♢pBq and PFApfq holds. Then

piq ␣lpκq for all cardinals κ ě ω2 and

piiq SCH holds.

We will do so by suitably modifying MRP. More concretely, we will
adapt the notion of X-stationarity to the ♢-context as we should take into
account clubs that “come from MXrfpδ

Xqs”. The proof of Proposition 11.13
will then no longer go through as it relied on otppC X δXq “ δX for a club
C P X. However, arguments on larger structures should not be affected as
much as collapsing ω1 is a small forcing.

Definition 11.20. Suppose A is an uncountable set,f witnesses ♢pBq, θ ě
ω2 is regular and X ă Hθ is f -slim with A P X. A set S Ď rAsω is X-f -
stationary in rAsω if for all C PMXrfpδ

Xqs so that

MXrfpδ
Xqs |ù “C is club in rĀsω”

there is some Y P C with πXrY s P S.

Definition 11.21. Suppose A is uncountable, f witnesses ♢pBq and

Σ: C Ñ PprAsωq

with

pΣ.iq for some regular θ “ θΣ ě ω2, C consists of f -slim substructures
X ă Hθ with A P X,

pΣ.iiq almost all f -slim X ă Hθ are in C, i.e. rHθs
ω ´ C is f -nonstationary

and

pΣ.iiiq Σ is open and for all X P C, ΣpXq is X-f -stationary in rAsω.

Then we call Σ an open f -stationary set mapping .

Definition 11.22. If f witnesses ♢pBq then the f -Mapping Reflection Prin-
ciple f -MRP holds if for any open f -stationary set mapping Σ: C Ñ PprAsωq
there is a continuous P-chain xXα | α ă ω1y of countable elementary sub-
structures of HθΣ so that for

S “ tα ă ω1 | Xα is f -slimu

we have

pX⃗.iq if α P S then Xα P C and

pX⃗.iiq if α P S X Lim then there is some β ă α so that for all β ă ξ ă α,
Xξ XA P ΣpXαq.
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Lemma 11.23. Suppose f witnesses ♢pBq. Then PFApfq implies f -MRP.

Proof. Suppose Σ: C Ñ PprAsωq is an open f -stationary set mapping and
let θ “ θΣ. We may assume A P Hθ. Let P be the forcing consisting of
approximations of successor length to a sequence that f -MRP dictates to
exist in the instance of Σ. More precisely, a condition p P P is a continuous
P-chain

p “ xXα | α ď βy

of length some β ` 1 ă ω1 so that pX⃗.iq and pX⃗.iiq hold for

S “ Sp :“ tα ď β | Xα is f -slimu.

The order on P is given by end-extensions. We will show that P is f -proper.
Let λ ą θ` be sufficiently large and regular, X ă Hλ be f -slim with P P X.

Claim 11.24. For any p P PXX and dense D Ď π´1
X pPq, D PMXrfpδ

Xqs,
there is q ď p so that q P πXrDs and ΣpYαq X A P ΣpX X Hθq for all
α P lengthpqq ´ lengthppq.

Proof. As ΣpX XAq is X-f -stationary, we can find some Y ă Hθ` so that

pY.iq p,Σ P Y Ď X,

pY.iiq πXrDs X Y is dense in PX Y and

pY.iiiq Y XA P ΣpX XHθq

since the set

tπ´1
X rY s | Y ă Hθ` satisfies pY.iq and pY.iiqu XMXrfpδ

Xqs

is believed by MXrfpδ
Xqs to contain a club in rπ´1

X pHθ`qsω. As Σ is open,
there is some finite a Ď Y X A so that ra, Y X As Ď ΣpX X Hθq and note
that a P X. Now we can easily find Z P Y so that a Ď Z and

p1 “ p"Z

is a condition in P. By pY.iiq, there is q P πXrDs, q P Y so that q ď p1. If

q “ xZα | α ď βy

and Zα does not appear in p, then a Ď Zα P Y and hence Zα P ra, Y s Ď
ΣpX XHθq as desired.

Now suppose p P PXX. Using the claim above, it is straightforward to
construct a sequence p⃗ “ xpn | n ă ωy descending in P so that

pp⃗.iq p0 “ p,
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pp⃗.iiq for any dense D Ď π´1
X pPq, D P MXrfpδ

Xqs, there is n ă ω so that
pn P πXrDs and

pp⃗.iiiq for n ă ω, if Z appears in pn but not in p then Z XA P ΣpX XHθq.

It follows that

q “

˜

ď

năω

pn

¸

"pX XHθq

is a condition in P and that q is pX,P, fq-generic. Thus P is f -proper. Note
that if G is P-generic, then

Ť

G is necessarily a sequence of length ω1, as
otherwise ω1 would be collapsed. Hence the set

Dα “ tp P P | lengthppq ě αu

is dense in P for all α ă ω1. By PFApfq, there is a filter G Ď P that meets all
Dα, α ă ω1. It follows that

Ť

G witnesses the instance of f -MRP for Σ.

Proposition 11.25. Suppose B is c.c.c. and f witnesses ♢pBq. If A is
uncountable, θ is sufficiently large and regular and X ă Hθ is f -slim with
A P X then any X-stationary subset of rAsω is X-f -stationary.

Proof. Assume that S Ď rAsω is X-stationary. Suppose C P MXrfpδ
Xqs so

that
MXrfpδ

Xqs |ù “C is club in rĀsω”.

Note that
MX |ù “Ā is uncountable and B̄ is c.c.c.”

and hence there is D PMX with

MX |ù “D is club in rĀsω”

and D Ď C. As S is X-stationary,

H ‰ πXpDq XX X S Ď πXrCs X S.

Corollary 11.26. If B is c.c.c. and f witnesses ♢pBq then PFApfq implies
MRP.

This also holds if f is replaced by a sequence f uniformly witnessing
♢pBq. Thus this generalizes a result of Miyamoto published in [MY13], who
has shown that if S is a (coherent) Suslin tree then PFApSq implies MRP.

In order to prove Theorem 11.19, we have no other choice but to go
through the arguments of Moore and Viale that prove these consequences
from MRP and check that f -MRP suffices.
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Definition 11.27 (Todorčević). Suppose κ is an uncountable regular car-
dinal. lpκq holds if there is a sequence xCα | α ă κX Limy so that

pC⃗.iq Cα Ď α is cofinal and closed below α for all α ă κ,

pC⃗.iiq if β ă α ă κ and β is a limit point of Cα then Cβ “ Cα X β and

pC⃗.iiiq there is no club C Ď κ so that Cα “ C X α for all limit points α of C.

We call C⃗ a lpκq-sequence.

Lemma 11.28. Suppose f witnesses ♢pBq and f -MRP holds. Then ␣lpκq
for all regular κ ě ω2.

We adapt the argument given in Section 6 of [Moo05].

Proof. Suppose κ ě ω2 is regular and C⃗ :“ xCα | α ă κy is a lpκq-sequence.
Let θ ą 2κ regular and let C consist of all f -slim X ă Hθ with C⃗ P X.
Define Σ : C Ñ rκsω via

ΣpXq “ tY P rX X κsω | supY R CsuppXXκqu.

We will only show that ΣpXq is X-f -stationary for all X P C, the rest works
as in Section 6 of [Moo05]. So suppose that D PMXrfpδ

Xqs so that

MXrfpδ
Xqs |ù “D is club in rκ̄sω”.

Consider E “ tsuppY q | Y P Du. Then E P MXrfpδ
Xqs and E Ď κ̄ is

unbounded.

Claim 11.29. E Ę π´1
X rCsuppXXκqs.

Proof. Otherwise C “
Ť

tC̄α | α is a limit point of Eu P MXrfpδ
Xqs is co-

herent with xC̄α | α ă κ̄y :“ π´1
X pC⃗q. But π´1

X pC⃗q is a lpκ̄q-sequence in MX

and small forcing cannot destroy a lpκ̄q-sequence, contradiction.

This shows that there is Y P D with suppπXrY sq R CsuppXXκq, i.e. πXrY s P
ΣpXq.

We now turn to proving SCH from f -MRP. Matteo Viale studied certain
covering properties in his PhD thesis that allowed him to give elegant proofs
of SCH or large fragments thereof from a range of different assumptions,
including MRP.

Definition 11.30 (Viale, [Via08]). Suppose κ is an infinite cardinal. A
covering matrix is a sequence D “ xKpn, αq | n ă ω, α ă κy so that for all
α ă κ and n ă ω

pD.iq α` 1 “
Ť

măωKpm,αq,
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pD.iiq |Kpn, αq| ă κ,

pD.iiiq Kpn, αq Ď Kpm,αq for all n ď m ă ω,

pD.ivq for all β P pα, κq, there is m ă ω with Kpn, αq Ď Kpm,βq and

pD.vq for all X P rκsω, there is γX ă κ so that for all β ă κ and m ă ω there
is l ă ω so that Kpm,βq XX Ď Kpl, γXq.

Definition 11.31 (Viale, [Via08]). Suppose D is a covering matrix at an
infinite cardinal κ. The covering property CPpDq holds for D if there is an
unbounded A Ď κ so that rAsω is covered by D, that is

rAsω Ď
ď

trKpn, βqsω | n ă ω, β ă κu.

Recall that the Singular Cardinal Hypothesis (SCH) states that for any
singular cardinal λ, if 2cofpλq ă λ then λcofpλq “ λ`.

Fact 11.32 (Viale, [Via08]). Suppose whenever κ “ λ` and λ is a singular
cardinal of countable cofinality, and D is a covering matrix at κ with all
entries closed sets of ordinals, then CPpDq. Then SCH holds.

Lemma 11.33. Suppose f witnesses ♢pBq and f -MRP holds. Then SCH
holds true.

We will follow Section 7 of [Via08].

Proof. Suppose κ “ λ`, λ is a singular cardinal, cofpλq “ ω and D “

xKpn, βq | n ă ω, β ă κy is a covering matrix at κ with all Kpn, βq closed
sets of ordinals. We will show that CPpDq holds, so that SCH then follows
from Fact 11.32. So suppose CPpDq fails. Let xCα | α ă κ, cofpαq “ ωy
be a ladder system, that is Cα Ď α is cofinal of ordertype ω for α ă κ,
cofpαq “ ω. Let θ be sufficiently large, regular. For X ă Hθ countable, let
γX denote the ordinal γXXκ from pD.vq and let ξX :“ suppX X κq. Let C be
the set of all f -slim X ă Hθ with D P X. Define Σ: C Ñ Pprκsωq by

ΣpXq “ tY P rX X κsω | suppY q R Kp|CξX X suppY q|, γXqu.

We will only show that ΣpXq is f -X-stationary. Let us work in MXrfpδ
Xqs

for the moment and note that κ̄ is a regular cardinal there. Let C Ď rκ̄sω

be a club. We can find h : κ̄ăω Ñ κ̄ω so that

tZ P rκ̄sω | hrZăωs Ď rZsωu Ď C.

Let D “ tα ă κ̄ | hrαăωs Ď rαsωu, a club in κ̄. We may find some countable
N ă pHκ̄` ; P, HMX

κ̄` q with D, D, h P N . Let

n :“ | suppπXrN X κ̄sq X CξX | ă ω
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and find some α P N X κ̄ so that

n “ |πXpαq X CξX |.

For p P fpδXq, let
Ap :“ tβ ă κ̄ | p , β̌ P 9Au

where 9A P MX is a B̄-name with 9AfpδXq “ D ´ α. For some p P fpδXq, Ap
must be unbounded in κ̄. Note that LimpApq Ď D as D is a club, so that
B :“ LimpApq X pE

κ̄
ωq
MX P MX is unbounded in κ̄, too. By assumption, B

is not covered by D̄ so that there is some Z P
`

rBsω
˘MX with Z Ę K̄pn, βq

for all β ă κ̄. By elementarity,

πXrZs “ πXpZq Ę Kpn, γXq

so we may pick some ζ P Z ´ π´1
X rKpn, γXqs. By elementarity of N in

ˆ

H
MX rfpδXqs

κ̄` ; P, HMX

κ`

˙

we may assume without loss of generality that Z P N so that ζ P N as well.
Let Y0 P N be a cofinal subset of ζ of ordertype ω and let Y be the closure
of Y0 under h so that Y P C. As ζ P D, suppY q “ ζ.

Claim 11.34. πXrY s P ΣpXq.

Proof. First observe that πXpζq “ suppπXrY sq as cofpζqMX “ ω and hence
πX is continuous at ζ. We have suppπXrY sq “ πXpζq R Kpn, γXq and α ă ζ,
Y Ď N implies | suppπXrY sq X CξX | “ | suppπXrN X κ̄sq X CξX | “ n.

It follows that ΣpXq is indeed f -X-stationary. Now let xXi | i ă ω1y

witness the instance of f -MRP at Σ. Let

C “ tξXα | α ă ω1u

and ξ˚ “ supαăω1
ξXα . It is a consequence of pD.iq that there is some n ă ω

so that
C XKpn, ξ˚q

is unbounded in ξ˚. As Kpn, ξ˚q is closed, C Ď Kpn, ξ˚q mod NSξ˚
. With-

out loss of generality we may assume C Ď Kpn, ξ˚q as we could otherwise
throw away nonstationary many elements of xXi | i ă ω1y. Let α ă ω1 be a
limit so that Xα is f -slim. There is now some β ă α so that

Xν X κ P ΣpXαq

for all ν P pβ, αq. We can also find some m ă ω so that

Kpn, ξ˚q X pXα X κq Ď Kpm, γXαq
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by our choice of γXα . As ξXα “ supνăα ξXν , we can find some ν P pβ, αq
large enough with

l :“ |CξXα
X ξXν | ě m.

We have that

ξXν R Kpl, γXαq

but ξXν P Kpn, ξ˚q X pC X ξXαq Ď Kpn, ξ˚q X pX X κq, contradiction.

This completes the proof of Theorem 11.19.

Moore’s proof of 2ω1 “ ω2 from MRP does not seem to go through for
f -MRP in case f witnesses ♢pωăω

1 q. However this is essentially the only
problematic case.

Lemma 11.35. Suppose there is b P B so that B æ b preserves ω1 and f
witnesses ♢pBq. Then f -MRP implies 2ω1 “ ω2. Thus if PFApfq holds then
2ω “ ω2.

We leave this one for the reader to check. This still leaves open the
size of the continuum under PFApfq if f witnesses ♢pωăω

1 q. We note that
Todorčević’s original proof of 2ω “ ω2 from PFA does not apply either, as
it goes through the open coloring axiom. The open coloring axiom implies
b “ ω2, while b “ ω1 follows from ♢pωăω

1 q.

Question 11.36. Suppose f witnesses ♢pωăω
1 q and PFApfq holds. Must

2ω “ ω2?

A negative answer would be seriously surprising.

11.3 When is Namba forcing f-semiproper?

In this section we will investigate Namba forcing in the context of f -semiproper
forcings where f witnesses ♢pBq. Let us first fix some notation.

Definition 11.37. Assume T Ď ωăω
2 is a tree.

piq For t P T , the set of ordinals immediately succeeding T is defined as

succT ptq “ tα ă ω2 | t
"α P T u.

piiq We say t P T splits iff |succT ptq| “ ω2.

piiiq For n ă ω and t P T we let t P splitnpT q iff t splits and there are
exactly n proper initial segments of t that split.

pivq If t P splitnpT q and m ď n then t æsp m is the unique initial segment
s Ď t which is in splitmpT q.
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pvq The stem of T , denoted by stempT q, is defined (if it exists) as the
largest t P T with

@s P T s ď t_ t ď s.

pviq If t P T then T æ t “ ts P t | s ď t_ t ď su.

Trees grow upwards in our notation, as they should.

Definition 11.38. Namba forcing, denoted Nm, consists of trees p Ď ωăω
2 so

that for any t P p, there is t ďT s that splits. The order on Nm is inclusion.

Shelah was interested in the question when Nm is semiproper and proved
the following theorem.

Fact 11.39. (Shelah, [She98, XII Theorem 2.2]) The following are equiva-
lent:

piq Nm is semiproper.

piiq There is a semiproper forcing P with cofpωV2 q
V P
“ ω.

piiiq SCCcof holds.

We generalize this result here and prove Nm to be f -semiproper if and
only if a variant of SCCcof .

Definition 11.40. Suppose f witnesses ♢pBq. f -SCCcof holds iff for any
sufficiently large regular θ and f -slim X ă Hθ the following is true: There
are cofinally many α ă ω2 so that there is an f -slim X Ď Y ă Hθ with
α P Y .

Theorem 11.41. Suppose f witnesses ♢pBq. The following are equivalent:

piq Nm is f -semiproper.

piiq There is an f -semiproper forcing P with cofpωV2 q
V P
“ ω.

piiiq f -SCCcof holds.

We remark that the proof of the interesting direction piiiqñpiq we present
here differs significantly from Shelah’s proof, who used games to show Nm
to be semiproper from SCCcof . Instead, we produce pX,Nm, fq-semigeneric
conditions directly.

Proof. piqñpiiq: This holds as the generic branch given by Namba forcing
witnesses cofpωV2 q “ ω in V Nm.

piiqñpiiiq: Let P be a f -semiproper forcing so that cofpωV2 q
V P
“ ω. Let

θ be sufficiently large and regular and

X ă pHθ; P,Ÿq “: H
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be f -slim, where Ÿ is some wellorder on Hθ. Let α ă ω2. By assumption,
there is q P P that is pX,P, fq-semigeneric, so that if G is P-generic with
q P G then both

δXrGs “ δX

and XrGs is f -slim. Also, XrGs X ωV2 is cofinal in ωV2 . Let α ă β P XrGs
and let

Y :“ HullHpX Y tβuq.

We have Y P V , Y Ď XrGs X V hence X Ď Y and β P Y . Moreover, XrGs
is f -slim and as Y Ď XrGs, Y is f -slim as well.

piiiqñpiq: Let θ be sufficiently large and

X ă pHθ; P,Ÿq “: H

countable and f -slim, where again Ÿ is some wellorder of Hθ. For a set
t P Hθ, we let

Xt :“ HullHpX Y ttuq.

Furthermore, we choose some

h : ω Ñ ω ˆ ω

surjective with i ď n whenever hpnq “ pi, jq. h will be used for bookkeeping
purposes.
Now let p P Nm XX and let us assume stemppq “ H for convenience. We
will define a descending sequence xpn | n ă ωy through Nm and sets

xDt
j | t P splitlhptqpp

lhptqq, j ă ωy

satisfying

pp⃗.iq p0 “ p,

pp⃗.iiq @n ď m ă ω splitnpp
mq “ splitnpp

nq,

pp⃗.iiiq for n ă ω and t P splitnpp
nq, X Ď Xt and Xt is f -slim,

pp⃗.ivq for n ă ω and t P splitnpp
nq, xDt

j | j ă ωy is an enumeration of all

dense subsets of NmMXt that are in MXtrfpδ
Xqs,

pp⃗.vq for n ă ω and t P splitnpp
nq, pn æ t P Xt and

pp⃗.viq if hpnq “ pi, jq and t P splitn`1pp
n`1q then

pn`1 æ t P πXtrµ
`
tæspi,tpD

tæspi
j qs.
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Here, µ`
s,t denotes

µ`
Xs,Xt

: MXsrfpδ
Xqs ÑMXtrfpδ

Xqs.

We also let Mt denote MXt and πt :“ πXt if Xt is defined.
Suppose pn is defined already. We will prune pn to get to pn`1, but we are
not allowed to change splitnpp

nq. For any t P splitnpp
nq, we will find a set

St P rsuccpnptqs
ω2

and find strengthenings qt,α ď pn æ t"α for any α P St. p
n`1 will then be

all the qt,α glued together. We let

St :“ tα P succpnptq | X Ď Xt"α is f -slimu.

Claim 11.42. St is cofinal in ω2.

Proof. Let γ ă ω2. By pp⃗.iiiq, X Ď Xt and Xt is f -slim. By f -SCCcof there
is then γ ď ξ ă ω2 and Y ă Hθ with Xt Ď Y , Y is f -slim and γ P Y . By
pvq, pn æ t P Xt Ď Y . As

Y |ù |succpnætptq| “ ω2

there must be some α P Y , α ě ξ with α P succpnætptq. Clearly, α P St.

For any α P St, we choose qt,α to be some condition in NmXXt"α below
pn æ t"α that is in

πXt"αrµ
`
tæspi,t"αpD

tæspi
j qs

where hpnq “ pi, jq. This is possible as

MXt"αrfpδ
Xqs |ù “µ`

tæspi,t"αpD
tæspi
j q is dense in Nm”.

This defines pn`1. To see that pp⃗.iiiq holds for n ` 1, note that if s P
splitn`1pp

n`1q, t “ s æsp n and α unique with

t Ď t"α Ď s

Then Xs “ Xt"α, as s is definable from qt,α, and

pn`1 æ s “ pn`1 æ t"α P Xt"α

by construction.

By pp⃗.iiq, there exists a fusion q P Nm below all pn, n ă ω. Simply
define q as the downwards closure of

Ť

năω splitnpp
nq. We will show that q

is pX,Nm, fq-semigeneric. Let G be Nm-generic with q P G and let b “
Ş

G
be the generic branch. Let Xb :“ XrGs X V . By Proposition 3.33, it is
enough to show that
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pXb.iq X Ď Xb,

pXb.iiq Xb is f -slim and

pXb.iiiq π
´1
Xb
rGs is generic over MXb

rfpδqs.

Claim 11.43. Xb “
Ť

tPbXt.

Proof. The inclusion Ě is true as X Ď XrGs, b P XrGs and thus XYb Ď Xb.
To see Ď, let 9x P X be a Nm-name with

,Nm 9x P V.

Then the set of conditions deciding the value of 9x must be

D “ πXpD
H

j q

for some j ă ω. Find n ă ω with hpnq “ p0, jq and let t be the unique node
in bX splitn`1pqq . Then q æ t P G and q æ t ď pn`1 æ t so that

pn`1 æ t P G.

By pp⃗.viq, we have
pn`1 æ t P πtrµ

`
H,tpD

H

j qs Ď D

so that pn`1 æ t decides 9x to be y for some y. By pp⃗.vq, pn`1 æ t P Xt and
hence 9xG “ y P Xt.

pXb.iq and pXb.iiq follow from the above as Xt for t P b is f -slim and
satisfies X Ď Xt by pp⃗.iiiq. It remains to show pXb.iiiq. Set

Mb :“MXb
and πb :“ πXb

.

It follows from Claim 11.43 that we can let

xMbrfpδ
Xqs, µ`

t,b | t P by “ lim
ÝÑ
xMsrfpδ

Xqs, µ`
s,t | s ď t P by.

Hence if D PMbrfpδ
Xqs is dense in NmMb , then for some s P b and j ă ω,

D “ µ`
s,bpD

s
j q.

We may assume that s is a splitting node of q, say s P splitipqq. Find n with
hpnq “ pi, jq. Let t be the unique node in b X splitn`1pqq. Then as before
we get

pn`1 æ t P G

and also by pp⃗.viq
pn`1 æ t P πtrµ

`
s,tpD

s
j qs.

Note that πt ˝ µs,t “ πb ˝ µs,b. It follows that

pn`1 æ t P GX πbrDs

so that π´1
b rGs XD ‰ H. This establishes pXb.iiiq.

Remark 11.44. Observe that if we plug in B “ t0u the trivial forcing in
the theorem above, we recover exactly Shelah’s result Fact 11.39.
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11.4 The MM``
pfq-Fmax-p˚q diagram

This subsection is joint work with Ralf Schindler.

Definition 11.45. Vmax is rich if for all p P Vmax and X P PpRq X LpRq,
there is q ăVmax p so that

piq q is X-iterable and

piiq pHq
ω1 , Pq ă pHω1 , Pq.

In practice, establishing richness of a Pmax-variation Vmax makes use of
(the full power of) AD and is a crucial ingredient in showing that Vmax is
self-assembling.

We take a closer look at the different axiom related and investigate their
relationship. For the rest of the section, we will assume that Vmax is a
Pmax-variations with all the good and convenient features and the V has
sufficiently many large cardinals. Assume that

• there is a proper class of Woodin cardinals,

• Vmax has unique iterations and accepts ♢-iterations,

• Vmax is typical and this is witnessed by a set ΨVmax of pΣ1 Y Πiq-
formulae,

• ΓΨ
A “ ΓVmax

A pΨq and this class contains all σ-closed forcings,

• Vmax is rich and self-assembling and

• nVmax “ 0 (this is purely for convenience).

We also fix some set A, think of A as some set produced by forcing with
Vmax.

Under these assumptions, we find the following diagram:
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Vmax-p˚q``,uB
A

Vmax-p˚q`,uBA

Vmax-p˚q``
A

Vmax-p˚q`A

MM``pAq

MM``
c pAq

uB-BMM``pAq MMcpAqMM``pA, cq

Vmax-p˚quBA

Vmax-p˚qA

pPpRq X LpRqq-BMM``pAq BMM``pAq

/

/

/

We use a number of shorthand notation for principles we already defined
as well as some principles we have not defined earlier.

Definition 11.46. Vmax-p˚q`A is the statement: For any X Ď R there is
B Ď R such that

paq` LpB,Rq |ù AD` and

pbq` there is a Vmax-filter g generic over LpB,Rq so that X P LpB,Rqrgs
and g produces A.

Vmax-p˚q`,uBA is the statement: For any X Ď R there is B Ď R such that
paq` and pbq` from above hold and additionally

pcq` all sets of reals in LpB,Rq are universally Baire.

Vmax-p˚q``
A holds if there is a pointclass Σ so that

paq`` LpΣ,Rq |ù AD` and

pbq`` there is a Vmax-filter g generic over LpΣ,Rq so that PpRq P LpΣ,Rqrgs
and g produces A.

Vmax-p˚q``,uB
A holds if paq`` and pbq`` from above hold for Σ “ uB and

additionally

pcq`` all sets of reals in LpuB,Rq are universally Baire, i.e.

PpRq X LpuB,Rq “ uB.
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Definition 11.47. piq MM``pAq is short for

FAΨ
ApΓ

Ψ
Aq

and MMpAq denotes

FApΓΨ
Aq.

piiq MM``
c pAq is MM``pAq restricted to instances where the dense sets

are generated55 by maximal antichains of size ďc. MMcpAq is the
analogous fragment of MMpAq.

piiiq MM``pA, cq is MM``pAq restricted to all forcings of size ďc.

pivq For a pointclass ∆, ∆-BMM``pAq is short for

∆-BFAΨ
ApΓ

Ψ
Aq

where we omit ∆ if ∆ “ H.

pvq For a pointclass Γ, Vmax-p˚qΓA holds if

(a) all sets in Γ are determined and

(b) there is a filter g Ď Vmax so that

pg.iq if D P Γ is (or rather codes) a dense set in Vmax then
g XD ‰ H,

pg.iiq Ppω1q “ Ppω1qg and

pg.iiiq g produces A.

We omit Γ if Γ “ PpRq X LpRq.

All implications in the upper left rectangle of the diagram are trivial, we
note that the vertical implications holds as suitably nice Vmax-names for a
subset of ω1 can be coded as sets of reals. We want to mention that Woodin
has proved the following remarkable theorem.

Fact 11.48 (Woodin,[Woo]). p˚q` and p˚q`` are equivalent.

Here, p˚q` and p˚q`` denote DA Pmax-p˚q`A, DA Pmax-p˚q``
A respectively.

The exact relation between p˚q` and MM`` is still a mystery. Woodin
demonstrated that p˚q` is false in the standard model of MM`` (i.e. in
the ones that result after iterating semiproper forcings guided by a Laver
function on a supercompact cardinal). However, whether or not p˚q` is
consistent with MM`` (or MM for that matter) remains open.

The only new implication in the diagram is Vmax-p˚q`,uBA ñ MM``
c pAq,

which we aim to prove now.

55A dense set D Ď P is generated by A if D “ tp P P | Da P A p ď au.
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Theorem 11.49. Suppose there is a proper class of Woodin cardinals. Then
Vmax-p˚q

`,uB
A implies MM``

c pAq.

Definition 11.50. Let M “ xM ; P, C0, . . . , Cny be a transitive structure
and ζ a Σ1-formula with one free variable in the language tP, 9Rψ | ψ P Ψu.
Then ΩpM, ζq is the statement that there is a transitive structure M̄ of size

ω1 as well as an embedding µ : M̄ÑM so that pHθ; P, R
ψ
A | ψ P Ψq |ù ζpM̄q

for any/all large enough regular θ.

Claverie-Schindler [CS12] have proven the following fact in the MM-
context. Their argument generalizes to:

Fact 11.51. Let κ be a regular uncountable cardinal. Then the following
are equivalent:

piq MM``
c pAq.

piiq Whenever P is a pΨ, Aq-preserving forcing and

M “ xM ; P, A0, . . . , Any

is a transitive structure of size at most c and ζ a Σ1-formula in the
language tP, 9Rψ | ψ P Ψu with one free variable then

pV ; P, RψA | ψ P ΨqV |ù ΩpM, ζq ô pV P; P, RψA | ψ P ΨqV
P
|ù ΩpM, ζq.

In the remainder of this section we will sometimes confuse sets H with
the structure pH; P, RψA | ψ P ΨqH for readability purposes. We will take
a look at how to establish MM``

c pAq via lovely Vmax conditions. Suppose
that B is a set of reals and G is a Vmax-generic filter so that

• LpB,Rq |ù AD`,

• G is generic over LpB,Rq and produces A and

• Ppω1q Ď LpB,Rq.

We will try to show that piiq of Fact 11.51 holds for instances “in LpB,RqrGs”.
Let M be a transitive structure of size c, we may assume that M is of the
form xM ; P, Cy. In V , there is a surjection of R onto c. This yields a model
R on R of the form

R “ xR; I, Cy

as well as an equivalence relation „P V on R so that

R{ „ – M.

Note that „ really is definable from R by x „ y iff @z P R zIRx ô zIRy.
Let us additionally assume that

xR; I, Cy P LpB,RqrGs.
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If N is any structure on the reals in the same signature as R then by N we
will denote the transitive isomorph (if it exists) of N { „ where „ is defined
as above, so for example R “ M. Let 9I and 9C be canonical Vmax-names
for I and C in LpB,Rq in the sense that

9I “

"

´

~px, yq, p
¯

| p ,Vmax px̌, y̌q P
9I

*LpB,Rq

and
9C “ tpx̌, pq | p , x̌ P 9CuLpB,Rq.

Definition 11.52. Let ζ be a Σ1-formula with one free parameter in the
signature tP, 9Rψ | ψ P Ψu. Let us call a condition p “ pN, J, aq P Vmax

lovely w.r.t. R, ζ if there are g, d P N so that for all y0, . . . , yn P d and all
P-formulas θ we have

p♡.iq g Ď Vmax is a filter with p ăVmax q for all q P g and d Ď R,

p♡.iiq p is T ‘ 9I ‘ 9C-iterable56 where

T “ tpq, θ1, z0, . . . zmq | m ă ω ^ q , pR, 9I, 9Cq |ù θ1pž0, . . . , žnqu,

p♡.iiiq g decides57 pR; 9I, 9Cq |ù θpy̌0, . . . , y̌nq,

p♡.ivq if Dq P g q , pR; 9I, 9Cq |ù Dx θpx, y̌0, . . . , y̌nq then there is x P d and
r P g with

r , pR; 9I, 9Cq |ù θpx̌, y̌0, . . . , y̌nq

and

p♡.vq pN ; P, RψA | ψ P ΨqN |ù ζpR1q where R1 “ pd; p 9I XNqg, p 9C XNqgq (in

particular p 9C XNqg Ď d and similarly for 9I).

Proposition 11.53. If p is lovely (w.r.t. R, ζ) as witnessed by pg, dq and

j : pÑ q

is a countable iteration of p then q is lovely (w.r.t. R, ζ) as witnessed by
pjpgq, jpdqq.

Proof. It is clear that conditions p♡.iq and p♡.iiq remain true. Conditions
p♡.iiiq-p♡.vq can be phrased as first order statements about T Xp, 9IXp and
9C X p as well as d and g. By p♡.iiq, jpT X pq “ T X q and similar for 9I, 9C

and hence by elementarity of j these statements remain true for pjpgq, jpdqq
in q.

56A‘B denotes a canonical way to code two sets of reals into one set of reals.
57g decides φ if there is p P g with p , φ or p ,‰ φ.
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Lemma 11.54. Suppose that there is p P G that is lovely w.r.t R, ζ and let

j : pÑ p˚ “ pN˚, J˚, Aq

be the G-iteration of p. Let

R0 :“ pjpdq, p 9I XN˚qjpgq, p 9C XN˚qjpgqq.

Then V |ù ζpR0q and R0 ă R.

Proof. We will focus on the latter first. We start by showing that R0 is
indeed a substructure of R. We will prove

p 9C XN˚qjpgq “ C X jpdq

and an analogous argument yields the corresponding statement about I. It
follows from p♡.vq and the elementarity of j that p 9C XN˚qjpgq Ď jpdq. Now
suppose y P jpdq and since y appears in a countable iterate of p along p’s
G-iteration, we may assume y P d using Proposition 11.53. Then g decides
whether or not y̌ P 9C by p♡.iiiq and since g Ď G by p♡.iq, g forces the same
decision as G, that is

pDq P g q , y̌ P 9Cq iff y P C.

Since the name 9C is chosen canonically, this means

y P p 9C XN˚qjpgq iff y P C.

Next, we will apply the Tarski criterion to check for elementarity of R0 in
R. So assume y0, . . . , yn P jpdq and

R |ù Dx θpx, y0, . . . , ynq.

As above, we may assume that in fact y0, . . . , yn P d. By p♡.iiiq, there is
q P g that decides whether or not

pR; 9I, 9Cq |ù Dx θpx, y̌0, . . . , y̌nq

and by p♡.iq and as p P G, we have q P G. Thus we can conclude

q , pR; 9I, 9Cq |ù Dx θpx, y̌0, . . . , y̌nq.

By p♡.ivq, there is x P d and r P g so that

r , pR; 9I, 9Cq |ù θpx̌, y̌0, . . . , y̌nq.

Thus x P jpdq and R |ù θpx, y0, . . . , ynq as desired.
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Finally, V |ù ζpR0q holds true as

pN˚; P, RψA | ψ P ΨqN
˚

|ù ζpR0q

by p♡.vq, the elementarity of j and, since

pN˚; P, RψA | ψ P ΨqN
˚

ăΣ1 pHω2 ; P, RψA | ψ P ΨqLpB,RqrGs “ pHω2 ; P, RψA | ψ P ΨqV

and ζ is Σ1, the truth of ζ about R0 in pN˚; P, RψA | ψ P ΨqN
˚

is upwards

absolute to pHω2 ; P, RψA | ψ P Ψq. Note that R0 is of size at most ω1 as
N˚ has size ω1. Finally, the elementarity of R0 in R yields an elementary
embedding µ : R0 Ñ R.

Thus if there are enough lovely conditions with correct iterations then
MM``

c pfq holds true.

Proof of Theorem 11.49. We make use of the lovely strategy. Let P be a
pΨ, Aq-preserving forcing. Again it will be enough to check that

V P |ù ΨpR, ζq ñ V |ù ΨpR, ζq

for ζ an appropriate Σ1-formula and a structure R of the form pR; I, Cq. By
Vmax-p˚q`,uBA , there is a set B of reals and a filter G Ď Vmax so that

piq LpB,Rq |ù AD`,

piiq all sets of reals in LpB,Rq are universally Baire,

piiiq G is generic over LpB,Rq and produces A,

pivq R P LpB,RqrGs and

pvq Ppω1q Ď LpB,RqrGs.

Again, we may take names 9I and 9C in LpB,Rq for I and C respectively as
before. Let T be defined as before and let S “ T ‘ 9C ‘ 9I. It suffices to
show that there is a p in G which is lovely w.r.t. R, ζ. Let H be P-generic
so that in V rHs there is a witness X for ζpRq. As ΓΨ

A “ ΓVmax
A pΨq and since

we assumed that all σ-closed forcings are contained in this class, there is a
further pΨ, Aq-preserving generic extension V rHsrhs of V rHs in which

ph.iq NSω1 is saturated,

ph.iiq p “ pHω2 ,NSω1 , Aq
V rHsrhs is almost a Vmax-condition and

ph.iiiq |R| “ ω1.
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Note that ζpRq still holds true in

pHω2 ; P, RψA | ψ P ΨqV rHsrhs.

Work in a further extension W in which p is countable, so that p P Vmax

then.

Claim 11.55. In W , p is lovely w.r.t. R, ζ.

Proof. Let g :“ G and d :“ RV . We will prove that pg, dq witness p to be
lovely. We will make frequent use of

pLpB,RV q; P, B, S, x | x P RV q
p♣q
” pLpB˚,RV rHsrhsq; P, B˚, S˚, x | x P RV q

which is a consequence of the existence of a proper class of Woodin cardinals
in V .

Clearly, g is a Vmax-filter and d is a set of reals. All conditions in g are
above p as the extension V Ď V rHsrhs is pΨ, Aq-preserving and by the proof
of Claim 4.57. Hence p♡.iq holds. By construction, p is S˚-iterable where S˚

is the version of S in V rHsrhs and we can write S˚ as T ˚‘ 9I˚‘ 9C˚. By p♣q,
T ˚ has the correct meaning, so that p♡.iiq holds true. To establish p♡.iiiq,
consider any y0, . . . , yn P d and let D be the dense set of Vmax conditions
deciding

pR; 9I˚, 9C˚q |ù θpy̌0, . . . , y̌nq.

Again by p♣q, D “ E˚ where E has the same definition in LpB,RV q so that
g meets E. Now E Ď D, which gives

g decides pR; 9I˚, 9C˚q |ù θpy̌0, . . . , y̌nq

A similar argument yields p♡.ivq. We already know that p♡.vq holds, so p
is indeed lovely.

A final use of p♣q shows that there must be a p in VLpB,Rq
max which is

lovely w.r.t. R, ζ. In fact, the argument above shows that there is such a
condition below every element of G. Thus there must be such a p in G and
hence ΨpR, ζq holds in V by Lemma 11.54.

Remark 11.56. Some assumption beyond Vmax-p˚q`A is necessary to prove
MM``

c pAq. For example in the case Vmax “ Pmax, MM``
c does not hold in

the Pmax extension of a model of the form LpΓ,Rq as BMM entails closure
of the universe under sharps. This was proven by Ralf Schindler in [Sch04]
and even more than that later in [Sch06].

Let us briefly discuss the remaining diagram. All implications we have
not discussed yet are either trivial or have been proven before. For exam-
ple, uB-BMM``pAq ñ Vmax-p˚quBA follows from (the proof of) the Second
Blueprint Theorem 4.58 making use of the following fact.
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Fact 11.57 (Woodin). If there is a proper class of Woodin cardinals, then

piq uB is closed under projections and

piiq the ˚ and DR operators commute on uB, i.e. in any forcing extension

pDRAq˚ “ DRA˚

for 8-universally Baire sets A.

The upshot of this is that if there are a proper class of Woodins and B
is projective in a 8-universally Baire set A then B is itself 8-universally
Baire and in any forcing extension B˚ has the same definition from A˚ as
B has from A in V . The relevant consequence in the current context is that
8-universally Baire dense subsets of Vmax have dense interpretations in any
forcing extension.
Let us now consider the remaining two negative results. Regarding the first,
Woodin [Woo10, Theorem 10.90] produced a model of MM``pcq in which
p˚q fails. Regarding the other one, i.e. MMcpfq œ BMM``pfq, Shelah has
shown that MM does not imply PFA`, see [She98, XVII §3]. He did this
by producing a model of MM in which there is a proper forcing P and a
P-name 9S for a stationary set so that for no P-filter F , the interpretation
9SF is stationary where

9SF “ tα | Dp P F p , α̌ P 9Su.

A simple trick shows that then the bounded version of PFA` fails, but we
do not bother defining this axiom, so officially we prove:

Proposition 11.58. Assume that there is a stationary set preserving forcing
P and a P-name 9S for a stationary subset of ω1 so that for no P-filter F P V
the interpretation 9SF is stationary. Then BMM`` fails.

Proof. We may assume that P is a complete Boolean algebra and that 9S is
of the form

9S “ tpβ̌, aβq | β ă ω1u.

Find θ large enough with P P Hθ and let X ă Hθ be of size ω1 with ω1 Ď X,
9S P X. Let P̄, 9T , āβ be the πX -preimage of P, 9S and aβ respectively for
β ă ω1.

Claim 11.59. pHω2 ; P,NSω1q
V P
|ù “there is a filter F so that 9TF R NSω1”.

Proof. Let G be P-generic. Then F “ π´1
X rGs is a P̄-filter: It is clearly

upwards closed and if p, q P F then p^ q P F . Moreover by our assumption,

9TF “ tβ | π´1
X paβq P F u “ tβ | aβ P Gu “

9SG

is stationary.
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On the other hand this statement is not true in V : If F is a P̄-filter then
the upwards closure F̂ of πXrF s is a P-filter with 9TF “ 9SF̂ non-stationary.

It follows that MM does not imply BMM``.

11.5 Disrespectful forcing and p;q

It seems plausible that a better understanding of respectful forcings could
lead to a reduction of the large cardinal assumption necessary to force QM,
perhaps to an argument that QM could be forced from one supercompact
cardinal only. One would thus hope for some sort of iteration theorem involv-
ing respectful forcings. We hint at some possible difficulties implementing
this strategy: We will show that in L, the σ-closed forcing Addpω1, 1q is
not respectful. This seems surprising as this forcing generally has very nice
properties. As a consequence, there does not seem to be a reasonable it-
eration theorem for respectful forcings provable in ZFC. For example, the
“iteration theorem for respectful semiproper forcing” is not provable.

Definition 11.60. An ω1-preserving forcing P is weakly respectful if the
following is true: Whenever

• θ is sufficiently large and regular,

• X ă Hθ is countable with P P X,

• 9S P X is a P-name for a subset of ω1 and

• p P PXX

then exactly one of the following holds:

pwRes.iq Either there is some pX,Pq-semigeneric q ď p so that

q , δX̌ R 9S

or

pwRes.iiq there is some A P X X Ppω1q with δX P A so that

p , Ǎ Ď 9S mod NSω1 .

It is not hard to see that respectful forcings are weakly respectful, just
consider the name 9I for the ideal generated by NSω1 and 9S in the extension.
All c.c.c. forcings are weakly respectful. However, in general not all σ-closed
forcings are weakly respectful.

Lemma 11.61. If V “ L, then Addpω1, 1q is not weakly respectful.

204



Part I. Forcing NSω1 Is ω1-Dense From Large Cardinals

Proof. Assume V “ L. Consider the function f : ω1 Ñ ω1 defined via
fpαq is the least β so that α is countable in Lβ`1 (this is the well known
example of a function in L not bounded by any canonical function). If G is
Addpω1, 1q-generic then in LrGs we can define

S :“ tα ă ω1 | G æ α is generic over Lfpαqu.

Here, “G æ α is generic over Lfpαq” means that

G æ α :“ tp P G | domppq ă αu

is generic for Addpα, 1qLfpαq over Lfpαq (so in particular G æ α Ď Lfpαq). Let
9S be a name in L for this set S.

Claim 11.62. It T P pNS`
ω1
qL then both TXS, T´S are stationary in LrGs.

Proof. First, let us see that T X S is stationary in V rGs. Let 9C P LAddpω1,1q

be a name for a club and p P Addpω1, 1q. Choose some sufficiently large and
regular θ and find X ă Hθ countable so that

pX.iq p, 9C P X and

pX.iiq δX P T .

X collapses to Lβ for some β ď fpδXq. We can now find a descending
sequence xpn | n ă ωy through AddpδX , 1qLβ so that for all dense D Ď

AddpδX , 1qLβ , D P LfpδXq there is n with pn P D. Clearly, q :“
Ť

năω pn is
pX,Addpω1, 1qq-generic so that

q , δX̌ P 9C.

The final point is that by acceptability of the L-hierarchy58,

AddpδX , 1qLβ “ AddpδX , 1q
L
fpδX q

so that
q , δX̌ P 9S

as well.
To see that T ´ S is stationary in LrGs, let 9C, p, θ and X be as before.
There is a descending sequence p⃗ :“ xpα | α ă ω1y P Hθ of conditions in
Addpω1, 1q so that

@α ă ω1Dα ď β ă ω1 pα , β̌ P 9C.

and p0 ď p. By elementarity, we may assume p⃗ P X. Let q “
Ť

αăδX pα. It

is clear that q is not pX,Addpω1, 1qq-generic, but we have q , δ̌X P 9C. It

follows that q , δX̌ P 9C X pŤ ´ 9Sq.

58This means that if γ ă δ are ordinals and Ppγq X Lδ Ĺ Ppγq X Lδ`1, then there is a
surjection h : γ Ñ δ in Lδ`1.
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It follows that pwRes.iq in the definition of weakly respectful fails for 9S
(for any appropriate θ, X, p).
To get a failure of pwRes.iiq as well, it is enough to find a countable X ă Hθ

so that if X – Lγ then Ppδq X Lγ “ Ppδq X Lfpδq for δ “ δX : Any q that is
pX,Addpω1, 1qq-semigeneric is in fact pX,Addpω1, 1qq-generic (as Addpω1, 1q
has size ω1) and hence as Lγ and Lfpδq have the same dense subsets of
Addpδ, 1q, such q forces G æ δ to be generic over Lfpδq.
Ralf Schindler explained the following example of such an X to the author:
Let X0 “ HullHθpHq and for n ă ω let Xn`1 “ HullHθptXnuq. Put X “
Ť

năωXn. We will show that this X works as intended. Let δ :“ δX and
find γ with X – Lγ .

Claim 11.63. fpδq “ γ ` 1.

Proof. Lγ is a model of ZF´, δ is uncountable in Lγ and so fpδq ą γ. For
n ă ω let Xn – Lγn . Then xγn | n ă ωy is definable over Lγ`1: γ0 is the
least ξ with Lξ ă Lγ and γn`1 is the least ξ ą γn with Lξ ă Lγ . Thus
xδXn | n ă ωy is definable over Lγ`1 and as δ “ supnăωδ

Xn , δ is countable
in Lγ`2.

As Lγ is a model of ZF´ we have

Ppδq X Lγ “ Ppδq X Lγ`1

so that X has the desired property.

Corollary 11.64. Assume V “ L. Then there is a nice (or RCS) iteration
of semiproper respectful forcings which is not weakly respectful.

Proof. Addpω1, 1q is isomorphic to the iteration of length ω1 of the respectful
forcing consisting of two incompatible conditions together with a maximal
element.

We will finish by showing that p;q can be phrased as a reflection principle.

Definition 11.65. Suppose I is a normal uniform ideal on ω1 and A is
uncountable with ω1 Ď A. A set S Ď rAsω is I-stationary if for all sufficiently
large regular λ and clubs C Ď rHλ`sω there is some countable X ă Hλ`

which respects I so that X P C and X XA P S.

Definition 11.66. Suppose I is a normal uniform ideal on ω1.

piq If A is uncountable with ω1 Ď A then a stationary set S Ď rAsω is
I-full if whenever

• λ is large enough regular with A P Hλ,

• X ă Hλ` is countable with A P X and X XA P S,
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• Y is countable with X Ď Y ă Hλ` and

• Y respects I

then Y XA P S.

piiq I-SSR holds if for any uncountable A any I-full I-stationary S Ď rAsω
I-reflects, that is there is some R Ď A of size ω1 with ω1 Ď R so that
S X rRsω Ď rRsω is I-stationary.

Note that NSω1-SSR is (equivalent to) the usual axiom SSR of Semista-
tionary Reflection. Recall that the principle p:q holds if every stationary set
preserving forcing is semiproper, see [FMS88].

Fact 11.67 (Shelah,[She98, XIII Claim 1.3]). p:q is equivalent to SSR.

p;q is a natural strengthening of p:q and we will find an equivalent of p;q
in terms of the principles I-SSR.

Theorem 11.68. The following are equivalent:

piq p;q.

piiq For all normal uniform ideals I on ω1, I-SSR holds.

Proof. piqñpiiq: Suppose I is a normal uniform ideal on ω1, λ ě ω2 is
uncountable and S Ď rλsω is I-full I-stationary but does not I-reflect. Let P
be the canonical forcing to shoot a continuous increasing chain of elementary
substructures of Hλ` of length ω1 through

T :“ rHλ`s
ω ´ tX P rHλ`s

ω | X X λ P S ^X respects Iu.

Conditions in P are countable approximations

xXi | i ď αy

to such a sequence of successor length. Let 9I be a P-name for the normal
ideal generated by I in V P.

Claim 11.69. 9Ip Ď I for all p P Q.

Proof. Note that P forces |I| “ ω1. Let T P I` and θ ą λ be sufficiently
large and regular. Let p P P, 9C a P-name for a club in ω1. Let xYi | i ă ω1y

be a continuous increasing chain of countable elementary substructures of
Hθ with λ,S, p, 9C P Y0. As S does not I-reflect, we have

tα ă ω1 | Yα X λ P Su P I.
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Thus we can find some α ă ω1 so that δYα P T , Yα respects I and YαXλ R S.
It is straightforward to build a condition q ď p that is pYα,Pq-generic. If G
is P-generic with q P G then YαrGs X V “ Yα and

δYα P 9CG ´
ď

ZPIXYαrGs

Z.

This shows that ␣pp , 9C X T P 9Iq.

Let θ be sufficiently large and regular. As S is I-stationary, there is some
countable Y ă Hθ with

pY.iq P P Y ,

pY.iiq Y X λ P S and

pY.iiiq Y respects I.

By p;q, there is some q which is pY,Pq-semigeneric so that

q , “Y̌ r 9Gs respects 9I”.

Let G be P-generic with q P G. Then Y Ď Y rGs and let X⃗ be the generic
sequence added by G. It is not difficult to see that

XδY “ Y rGs XHV
λ` .

Note that Y rGs XHV
λ` respects I and hence Y rGs X λ P S since S is I-full.

But then XδY R T , contradiction.
piiqñpiq: Suppose that P is an ω1-preserving forcing and p;q fails for P. We
can find a sufficiently large regular λ, some p P P and some P-name 9I for
a normal uniform ideal on ω1 so that the set S consisting of all countable
X ă Hλ with

pX.iq p,P, 9I P X,

pX.iiq X respects 9Ip and

pX.iiiq there is no pX,Pq-semigeneric q ď p with q , “X̌r 9Gs respects 9I”

is stationary in rHλs
ω. Clearly S is 9Ip-stationary and further note that S

is 9Ip-full by Proposition 3.56. By 9Ip-SSR, there is some R Ď Hλ of size ω1

with ω1 Ď R so that S X rRsω Ď rRsω is 9Ip-stationary. Let

r : ω1 Ñ R

be a surjection and note that T :“ tα ă ω1 | rrαs P Su R 9Ip. Let

S :“ tα ă ω1 | rrαs X ω1 “ α^ rrαs P Su.
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Claim 11.70. S P 9Ip.

Proof. Let G be generic with p P G and let I :“ 9IG. Suppose for a contra-

diction that S P I`. There is then some countable Y ă H
V rGs

λ` so that r P Y ,
Y respects I and δY P S. Consider X “ rrδY s. We have that X P S and
δX “ δY . Consequently XrGs Ď Y and XrGs respects I, but this clearly
contradicts X P S.

But T ´ S is nonstationary, contradiction.

What is the exact relationship between p;q and other reflection princi-
ples?

Question 11.71. Does p:q imply p;q? If not, does it follow from WRP?
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12 Introduction

This second part belongs to the topic of Set Theoretic Geology.

12.1 Set-theoretic geology

The interest of this area is the study of the structure of grounds, that is
inner models of ZFC that extend to V via forcing, and associated concepts.
Motivated by the hope to uncover canonical structure hidden underneath
generic sets, the mantle was born59.

Definition 12.1. The mantle, denoted M, is the intersection of all grounds.

This definition only makes sense due to the uniform definability of grounds.

Fact 12.2. There is a first order P-formula φpx, yq such that

Wr “ tx|φpx, rqu

defines a ground for all r P V and all grounds are of this form. Moreover,
if κ is a cardinal and W extends to V via a forcing of size ăκ then there is
r P Vκ with W “Wr.

This was proven independently by Woodin [Woo11] [Woo04], Laver [Lav07]
and was later strengthened by Hamkins, see [FHR15].

This allows us to quantify freely over grounds as we will frequently do.

It was quickly realized that every model of ZFC is the mantle of another
model of ZFC, see [FHR15], which eradicated any chance of finding nontriv-
ial structure in the mantle. However, the converse question remained open
for some while, namely whether the mantle is provably a model of ZFC.
This tough nut was cracked by Toshimichi Usuba.

Fact 12.3 (Usuba,[Usu17]). The mantle is always a model of ZFC.

Thereby the mantle was established as a well behaved canonical object
in the theory of forcing. Fuchs-Hamkins-Reitz [FHR15] suggested to study
restricted forms of the mantle.

Definition 12.4. Let Γ be a class60 Γ of forcings.

piq A Γ-ground is a ground W that extends to V via a forcing P P ΓW .

piiq The Γ-mantle MΓ is the intersection of all Γ-grounds.

59Rumor has it that Hamkins first thought of the mantle in the Mensa am Ring in
Münster.

60In this case, we think of Γ as a definition, possibly with ordinal parameters, so that
Γ can be evaluated grounds of V .
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piiiq We say that the Γ-grounds are downwards directed if for any two Γ-
grounds W0,W1 there is a Γ-ground W˚ ĎW0,W1.

pivq We say that the Γ-grounds are downwards set-directed if for any set-
indexed collection of Γ-grounds xWr | r P Xy there is a Γ-ground W˚

contained in all Wr for r P X.

pvq We say that Γ is ground absolute if the Γ-grounds of a Γ-ground W are
exactly those common grounds of V and W that are Γ-grounds from
the perspective of V , i.e. being a Γ-ground is absolute between V and
all Γ-grounds.

Remark 12.5. Note that if Γ is provably (in ZFC) closed under quotients
and two-step iterations then Γ is ground absolute.

Fuchs-Hamkins-Reitz [FHR15] have shown abstractly that if Γ is ground
absolute and has directed grounds then MΓ |ù ZF. To prove M |ù AC they
seemingly need the stronger assumption that the Γ-grounds are downwards
set-directed, the argument is as follows: Suppose X P M is not wellordered
in M. Then for every wellorder ă of X, we choose Wă a Γ-ground from
which ă is missing. By downwards set directedness, there is a Γ-ground W
contained in all such grounds Wă, but then X PW is not wellordered in W
either, contradiction. The main result of this part shows that indeed sim-
ple downwards directedness does not suffice to prove choice in MΓ in general.

We will be interested in MΓ for Γ the class of all forcings of size ăκ,
where κ is some given cardinal. In this case, we denote the Γ-mantle by Mκ

and call it the κ-mantle. The associated grounds are the κ-grounds. The
interest of the κ-mantle arose in different contexts.

The following is known:

Fact 12.6 (Usuba, [Usu18]). If κ is a strong limit then Mκ |ù ZF.

Usuba proved this by showing that the κ-grounds are directed in this
case. Usuba subsequently asked:

Question 12.7 (Usuba, [Usu18]). Is Mκ always a model of ZFC?

We will answer this question in the negative by providing counterexam-
ples for three different types of cardinals κ.

We also mention that Fuchs-Hamkins-Reitz demonstrated that MΓ can
fail to be a model of choice for a different class of forcings, Γ “ tσ-closed forcingsu.

Fact 12.8 (Fuchs-Hamkins-Reitz, [FHR15]). If Γ is the class of all σ-closed
forcings it is consistent that MΓ |ù ZF^␣AC.
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It turns out that there is an interesting tension between large cardinal
properties of κ and the failure of choice in Mκ. On the one side, Usuba has
shown:

Fact 12.9 (Usuba, [Usu18]). If κ is extendible then Mκ “M. In particular
Mκ is a model of ZFC.

Indeed, this result was the initial motivation of investigating the κ-
mantle. Sargsyan-Schindler [SS18] showed that a similar situation arises
in the least iterable inner model with a strong cardinal above a Woodin
cardinal for κ the unique strong cardinal in this universe. See also [SSS21]
and [Sch22b] for further results in this direction.
On another note, Schindler has proved the following.

Fact 12.10 (Schindler, [Sch18]). If κ is measurable then Mκ |ù ZFC.

The big difference to Fact 12.9 is that the existence of a measurable is
consistent with the failure of the Bedrock Axiom61. Particularly, we might
have Mκ ‰M for κ measurable.
If we go even lower in the large cardinal hierarchy then even less choice
principles seem to be provable in the corresponding mantle. The relevant
results here are due to Farmer Schlutzenberg.

Fact 12.11 (Schlutzenberg, [Sch22a]). Suppose that κ is weakly compact.
Then

piq Mκ |ù κ-DC and

piiq for every A P Hκ` XMκ,

Mκ |ù “A P Hκ` is wellorderable”.

Definition 12.12. Suppose α is an ordinal and X is a set. păα,Xq-choice
holds if for any β ă α and any sequence x⃗ :“ xxγ | γ ă βy of nonempty
elements of X there is a choice sequence for x⃗, that is a sequenece xyγ | γ ă
βy with yγ P xγ for all γ ă β.

Fact 12.13 (Schlutzenberg, [Sch22a]). Suppose κ is inaccessible. Then we
have

piq Vκ XMκ |ù ZFC and

piiq Mκ |ù “păκ,Hκ`q-choice”.

61The Bedrock Axiom states that the universe has a minimal ground, which turns out
to be equivalent to “M is a ground”.
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12.2 Overview

In Section 13.1, we will argue that “κ is measurable” cannot be replaced
by “κ is Mahlo” in Fact 12.10, as wells as that păκ,Hκ`q-choice cannot be
strengthened to păκ` 1, Hκ`q-choice in Fact 12.13.

Theorem 12.14. If ZFC is consistent with the existence of a Mahlo cardi-
nal, then it is consistent with ZFC that there is a Mahlo cardinal κ so that
Mκ fails to satisfy the axiom of choice. In fact we may have

Mκ |ù “păκ` 1, Hκ`q-choice fails”.

In Section 13.2, we will investigate the κ-mantle for κ “ ω1, as well as
the Γ-mantle where Γ “ tCohen forcingu, denoted by MC. We will first
proof that these mantles are always models of ZF and will go on to provide
a result analogous to Theorem 12.14.

Theorem 12.15. It is consistent relative to a Mahlo cardinal that both Mω1

and MC fail to satisfy the axiom of choice.

In Section 13.3, we will generalize this to any successor of a regular
cardinal.

Theorem 12.16. Suppose that

piq GCH holds,

piiq the Ground Axiom62 holds and

piiiq κ is a regular uncountable cardinal.

Then there is a cardinal preserving generic extension in which the κ`-mantle
fails to satisfy the axiom of choice.

In this case however, it is not known if the κ`-mantle is a model of ZF
in general. The proof of all these three theorems follows a similar pattern,
though the details differ from case to case and it seems that we cannot
employ a fully unified approach.

13 The Axiom of Choice May Fail in Mκ

13.1 The case “κ is Mahlo”

Here, we will construct a model where the κ-mantle for a Mahlo cardinal κ
does not satisfy the axiom of choice. We will start with L and assume that

62The Ground Axiom states that there is no nontrivial ground. See [Rei06] for more
information on this axiom.
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κ is the least Mahlo there. The final model will be a forcing extension of L
by

P “
ăκ-support

ź

λPIXκ

Addpλ, 1q

where I is the class of all inaccessible cardinals. We define P to be a product
forcing and not an iteration (in the usual sense), as we want to generate many
κ-grounds. Let G be P-generic over L. We will show that κ is still Mahlo in

LrGs and that MLrGs
κ does not satisfy the axiom of choice. We remark that,

would we start with a model in which κ is measurable, P would provably
force κ to not be measurable.

First, let’s fix notation. For λ ă κ, we may factor P as Pďλ ˆ Pąλ where in
each case we only take a product over all γ P I X κ with γ ď λ and γ ą λ
respectively. Observe that Pąλ is a ăκ-support product while Pďλ is a full
support product. We also factor G as GďλˆGąλ accordingly. For λ P IXκ
we denote the generic for Addpλ, 1qL induced by G as gλ. In addition to
this, for α ď κ we denote the α-th inaccessible cardinal by Iα.
For α ă κ let Eα : κÑ 2 be the function induced by gIα . It will be convenient
to think of G as a κˆκ-matrix M which arises by stacking the maps pEαqαăκ

on top of each other, starting with EI0 and proceeding downwards, and then
filling up with 0’s to produce rows of equal length κ. Let us write

eα,β “

#

Eαpβq if β ă Iα

0 else.

The peα,βqα,βăκ are the entries of M :

e0,0 e0,1 e0,2 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

e1,0 e1,1 e1,2 ¨ ¨ ¨ e1,I0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

...
...

...
. . .

...
. . . 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

eα,0 eα,1 eα,2 ¨ ¨ ¨ eα,I0 ¨ ¨ ¨ eα,I1 ¨ ¨ ¨ 0 ¨ ¨ ¨

...
...

...
. . .

...
...

...
. . . 0 ¨ ¨ ¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

r1

c2

Měα

M “

We will give the α-th row of M the name rα and we denote the β-th
column of M by cβ. One trivial but key observation is that rα carries the
same information as gIα .

We will be frequently interested in the matrix M with its first α rows
deleted for some α ă κ, so we will give this matrix the name Měα. Note that
Měα corresponds to the generic GěIα . Finally observe that we may think
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of conditions in P as partial matrices that approximate such a matrix M in
the sense that they already have the trivial 0’s in the upper right corner, in
any row α ă κ they have information for ăIα many β ă Iα on whether eα,β
is 0 or 1 and they contain non-trivial information in less than κ-many rows.

Lemma 13.1. L and LrGs have the same inaccessibles.

Proof. First, we show that all limit cardinals of L are limit cardinals in LrGs.
It is enough to prove that all double successors δ`` are preserved. This is
obvious for δ ě κ as P has size κ. For δ ă κ, Pąδ is ďδ``-closed so that
all cardinals ď δ`` are preserved in LrGąδs. Furthermore, Păδ has size at
most δ` in LrGąδs by GCH in L. Hence δ`` is still a cardinal in LrGs.

Now we have to argue that all λ P I remain regular. Again, this is clear if
λ ą κ. On the other hand, assume δ :“ cofpλqLrGs ă λ. As Pąδ is ďδ-closed,
λ is still regular in LrGąδs. Hence, a witness to cofpλq “ δ must be added
in the extension of LrGąδs by Pďδ. But this forcing has size ă λ in LrGąδs

and thus could not have added such a sequence.

In fact, P does not collapse any cardinals (if V “ L), but some more work
is required to prove this. This is, however, not important for our purposes.
Next, we aim to show that κ remains Mahlo in LrGs.

To prove this, it is convenient to introduce a generalization of Axiom A.

Definition 13.2. For κ an ordinal, λ a cardinal we say that a forcing Q
satisfies Axiom Apκ, λq, abbreviated by AApκ, λq, if there is a sequence
xďα| α ă κy of partial orders on Q so that

pAA.iq @α ď β ă κ ďβĎďαĎďQ,

pAA.iiq for all antichains A in Q, α ă κ and p P Q there is q ďα p so that
|ta P A | a}qu| ă λ and

pAA.iiiq for all β ă κ if p⃗ “ xpα | α ă βy satisfies pγ ďα pα for all α ă γ ă β
then there is a fusion pβ of p⃗, that is pβ ďα pα for all α ă β.

Remark 13.3. The usual Axiom A is thus Axiom Apω ` 1, ω1q.

Proposition 13.4. Suppose λ is regular uncountable cardinal and Q satis-
fies AApλ, λq. Then Q preserves stationary subsets of λ.

Proof. Suppose S Ď λ is stationary, 9C is a Q-name for a club in λ and
p P P. We will imitate the standard proof that a ăκ-closed forcing preserves
stationary sets. Let xďα| α ă λy witness that Q satisfies AApλ, λq.

Claim 13.5. For any q P Q, α ă λ there is r ďα q and some α ă γ ă λ
with q , γ̌ P 9C.

Proof. Construct a sequence xqα | α ă ωy of conditions in Q and an ascend-
ing sequence xγn | n ă ωy of ordinals with
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piq q0 “ q, γ0 “ α,

piiq qn`1 ďα`n qn for all n ă ω and

piiiq qn`1 , “ 9C X pγ̌n, γ̌n`1q ‰ H

for all n ă ω. The construction is immediate using that λ is regular un-
countable and pAA.iiiq. Then by pAA.iiq, there is q˚ ďα q which is below
all qn, n ă ω. It follows that

q˚ , γ̌˚ P 9C

where γ˚ “ supnăω γn.

Suppose toward a contradiction that p , 9C X Š “ H. By the claim
above, we can build sequences xpα | α ă λy of conditions in Q and an
increasing sequence xγα | α ă λy of ordinals below λ so that

piq p0 “ p,

piiq pβ ďα pα for all α ď β ă λ and

piiiq pα`1 , γ̌α P 9C for all α ă λ.

Let D be the set of all limit points ăλ of tγα | α ă λu. For any α ă λ, we
have

pα`1 , Ď X γα Ď 9C

which shows that D X S “ H, contradiction.

Lemma 13.6. P satisfies AApκ, κq.

Proof. For γ ă κ define ďγ by r ďγ q if r ď q and r æ γ “ q æ γ for q, r P P.
We will only show that pAA.iiq holds. So let p P P, γ ă κ and A Ď P a
maximal antichain. Let xqα|α ă δy be an enumeration of all conditions in
Pďgamma below p æ γ ` 1 with δ “ |Pďγ |. We construct a ďγ-descending
sequence xpα|α ď δy of conditions in P starting with p0 “ p as follows: If
α ď δ then choose some ďγ-bound of xpβ | β ă αy. This is possible as
Pąγ is ďδ-closed, as the next forcing only appears at the next inaccessible.
Moreover, if possible and α ă δ make sure that

q"
α pα æ pγ, κq

is below a condition in A. This completes the construction. Set q :“ qκ, we
will show that q is compatible with at most δ-many elements of A. Toward
this goal, suppose a P A and q is compatible with a. We may find some
α ă κ so that a æ γ ` 1 “ qα. It follows that we must have succeeded in the
construction of pα with the additional demand that

q"
α pα æ pγ, κq
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is below a condition in A, but this can only be true for a. We have shown that
for any a P A compatible with q there is α ă δ with q"

α q æ pγ, κq ď a and
note that no single α can witness this for more than one element of A.

Corollary 13.7. κ is Mahlo in LrGs.

Proof. This follows immediately from Lemma 13.1, Lemma 13.6 and Propo-
sition 13.4.

Next, we aim to find an easier description of MLrGs
κ . Recall the λ-

approximation property introduced by Hamkins [Ham03]:

Definition 13.8. Let W Ď V be an inner model, λ an infinite cardinal.

piq For x P V , a λ-approximation of x by W is of the form x X y where
y PW is of size ďλ.

piiq W Ď V satisfies the λ-approximation property if whenever x P V and
all λ-approximations of x by W are in W , then x PW .

All κ-grounds satisfy the κ-approximation property (cf. [FHR15]).

Lemma 13.9. MLrGs
κ “

Ş

λPIXκ LrGąλs.

Proof. Suppose W is a κ-ground of LrGs. It is enough to find λ P IXκ such
that LrGąλs Ď W . Clearly, P P L Ď W . As κ is a limit of inaccessibles,
we may take some λ ă κ inaccessible so that W is a λ-ground. Thus W Ď

LrGs satisfies the λ-approximation property. We will show Gąλ P W (even
Gěλ P W ). Find α with λ “ Iα, it is thus enough to show Měα P W . To
any λ-approximation MěαXa of Měα by W corresponds some a1 Ď κzαˆκ,
a1 PW of size ăλ so that

Měα X a “Měα æ a
1 :“ xeγ,β | pγ, βq P a

1y.

We will show that all such restrictions of Měα are in W . So let a P W ,
a Ď κzαˆκ, |a| ă λ. As 0# does not exist in W , there is b P L, b Ď κzαˆκ
of size ă λ with a Ď b. For all α ď γ ă κ, the set of β ă Iγ with pγ, βq P b
is bounded in Iγ . As described earlier, we may think of conditions in P as
partial κˆκ matrices. With this in mind, the conditions p P P that contain
information on the entry eγ,β for all pγ, βq P b form a dense set of P. Thus
M æ b “ xeγ,β | pγ, βq P by is essentially a condition p P P Ď W and hence
M æ a “ pM æ bq æ a P W . As W Ď LrGs satisfies the λ-approximation
property, we have Měα PW .

Remark 13.10. The above argument shows that for any λ P I X κ

MLrGąλs
κ “MLrGs

κ .
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In fact, whenever δ is a strong limit, the δ-mantle is always absolute to any
δ-ground. The use of Jensen’s covering lemma in the above argument is not
essential, in fact a model in which the κ-mantle does not satisfy choice for κ
Mahlo can be analogously constructed in the presence of 07. However, the
absence of 07 simplifies the proof.

We will later show that PpκqM
LrGs
κ does not admit a wellorder in MLrGs

κ .

First, we analyze which subsets of κ MLrGs
κ knows of. We call a Ď κ fresh if

aX λ P L for all λ ă κ.

Proposition 13.11. The subsets of κ in MLrGs
κ are exactly the fresh subsets

of κ in LrGs.

Proof. First suppose a Ď κ, a P MLrGs
κ . If λ ă κ then a P LrGąλs. As Pąλ

is ďλ-closed in L, aX λ P L.
For the other direction assume a P LrGs is a fresh subset of κ and assume
W is a κ-ground of LrGs. There is λ ă κ so that W Ď LrGs satisfies the
λ-approximation property. As a is fresh, all the λ-approximations of a in W
are in W . Thus a PW .

The columns cβ, β ă κ, of M are the fresh subsets of κ relevant to our
argument.

Proposition 13.12. All cβ, β ă κ, are Addpκ, 1q-generic over L.

Proof. The map π : PÑ Addpκ, 1q that maps p P P to the information that
p has on cβ is well-defined as P is a bounded support iteration of length κ.
Clearly, π is a projection.

This is exactly the reason we chose bounded support in the definition
of P.

We are now in good shape to complete the argument.

Theorem 13.13. păκ` 1, Hκ`q-choice fails in MLrGs
κ .

Proof. Note that any generic for Addpκ, 1qL is the characteristic function of

a fresh subset of κ so that cβ PM
LrGs
κ for any β ă κ. Of course, the sequence

xcβ|β ă κy is not in MLrGs
κ , as one can compute the whole matrix M (and

thus the whole generic G) from this sequence. However, we can make this

sequence fuzzy to result in an element of MLrGs
κ . Let „ be the equivalence

relation of eventual coincidence on pκ2qM
LrGs
κ , i.e.

x „ y ô Dδ ă κ x æ rδ, κq “ y æ rδ, κq.

We call xrcβs„|β ă κy the fuzzy sequence.

Claim 13.14. The fuzzy sequence is an element of MLrGs
κ .
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Proof. By Lemma 13.9, it is enough to show that for every α ă κ, LrGěIαs

knows of this sequence. But LrGąIαs contains the matrix Měα and thus the
sequence

xcβ æ pκzαq|β ă κy

so that LrGěαs can compute the relevant sequence of equivalence classes
from this parameter.

Finally, we argue that MLrGs
κ does not contain a choice sequence for the

fuzzy sequence63. Heading toward a contradiction, let us assume that

xxβ|β ă κy PMLrGs
κ

is such a sequence. LrGs knows about the sequence

xδβ|β ă κy

where δβ is the least δ with xβ æ pκzδq “ cβ æ pκzδq. The set of λ ă κ that
are closed under the map β ÞÝÑ δβ is club in κ. As κ is Mahlo in LrGs, there
is an inaccessible α “ Iα ă κ that is closed under β ÞÝÑ δβ. Now observe
that

xβpαq “ 1 ô cβpαq “ 1 ô rαpβq “ 1

holds for all β ă Iα, so that rα PM
LrGs
κ . But this is impossible as clearly rα

is not fresh.

Theorem 12.14 follows.

Remark 13.15. The only critical property of L that we need to make sure
that Mκ is not a model of choice in LrGs is that L has no nontrivial grounds,
i.e. L satisfies the ground axiom. GCH is convenient and implies that no
cardinals are collapsed, but it is not necessary. The use of Jensen’s covering
lemma can also be avoided, as discussed earlier.

13.2 The ω1-mantle

Up to now, we have focused on the κ-mantle for strong limit κ. We will get
similar results for the ω1-mantle. There is some ambiguity in the definition of
the ω1-mantle, depending on whether or not ω1 is considered as a parameter
or as a definition. In the former case, it is the intersections of all grounds
W so that W extends to V via a forcing so that W |ù |P| ă ωV1 , where
in the latter case we would require W |ù |P| ă ωW1 . These mantles are in
general not equal. To make the distinction clear, we give the latter version

63That is, there is no sequence xxβ | β ă κy P MLrGs
κ with xβ P rcβs„ for all β ă κ.
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the name “Cohen mantle” and denote it by MC. The reason for the name
is, of course, that all non-trivial countable forcings are forcing-equivalent to
Cohen forcing.

Lemma 13.16. Mω1 |ù ZF and MC |ù ZF.

Proof. First let us do it for MC. Clearly, MC is closed under the Gödel
operations. It is thus enough to show that MC X Vα P MC for all α P Ord.
Let W be any Cohen-ground. As Cohen-forcing is homogeneous, MV

C is a
definable class in W . Hence, MCXVα “MCXV

W
α PW . As W was arbitrary,

this proves the claim.

Now onto Mω1 . The above argument shows that all we need to do is
show that Mω1 is a definable class in all associated grounds. So let W be
such a ground. There are two cases. First, assume that ωW1 “ ωV1 . Then W
extends to V via Cohen forcing, so Mω1 is definable in W . Next, suppose
that ωW1 ă ωV1 . This can only happen if ωV1 is a successor cardinal in W ,
say W |ù ωV1 “ µ`. In this case, W extends to V via a forcing of W -size
ď µ and which collapses µ to be countable. It is well known that in this
situation, W extends to V via Colpω, µq, which is homogeneous as well, so
once again, Mω1 is a definable class in W .

Once again, choice can fail.

Theorem 13.17. Relative to the existence of a Mahlo cardinal, it is con-
sistent that there is no wellorder of PpωV1 qMω1 in Mω1.

We remark that the Mahlo cardinal is used in a totally different way than
in the last section. In the model we will construct, ω1 will be inaccessible
in Mω1 . Let us once again assume V “ L for the rest of the section and let
κ be Mahlo. Let P be the “ăκ-support version of Colpω,ăκq”, that is

P “
ăκ´support

ź

αăκ

Colpω, αq.

Let us pick a P-generic filter G over V . From now on, Mω1 will denote MV rGs
ω1

and MC will denote MV rGs

C .

Proposition 13.18. Suppose Q is a forcing, γ ă λ and λ is a cardinal. If
Q is AApγ, λq then in V Q there is no surjection from any β ă γ onto λ.

Proof. This is a straightforward adaptation of the proof that Axiom A forc-
ings preserve ω1.

The following lemma is the only significant use of the Mahloness of κ.

Lemma 13.19. P satisfies AApκ, κq.
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Proof. We define ďα independent of α ă κ as the order ď˚: Let p ď˚ q iff
p ď q and p æ supppqq “ q. The only nontrivial part is showing that for any
antichain A and any p P P there is q ď˚ p with

|ta P A | a}qu| ă κ.

Let

P æ α :“ tp P P | sup suppppq ă αu

for all α ă κ. We will proceed to find some q with the desired property. For
convenience, we may assume that A is a maximal antichain. As κ is Mahlo,
there is a regular λ ă κ so that pP æ λ and any r P P æ λ is compatible
with some a P A X P æ λ. As V “ L, ♢λ holds. Thus there is a sequence
d⃗ :“ xdα | α ă λy with

pd⃗.iq dα P Pďα and

pd⃗.iiq for all r P Pďλ there are stationarily many α ă λ with dα “ r æ α.

Construct a sequence

xqα | α ă λy

of conditions in P æ λ with qα ď
˚ qβ for all α ă β ă λ as follows: Set q0 “ p.

If qβ is defined for all β ă α, let first q1
α “

Ť

βăα qβ and note that this is a
condition. Let γα “ sup supppq1

αq. Now find a P AXP æ λ that is compatible
with dγα and let

qα :“ q1"
α a æ rγα, λq.

Finally, set q “
Ť

αăλ qα. We have to show that q is compatible with only
a few elements of A, so suppose b P A is compatible with q. The properties
of d⃗ guarantee that there is α ă λ so that

pα.iq γα “ α and

pα.iiq dα “ b æ α.

Hence in the construction of qα`1 we found some a P AX P æ λ compatible
with b æ α and have qα`1 æ rα, λq ď a æ rα, λq. If a ‰ b, then a K b and
the incompatibility must lie in the interval rα, λq. But then qα`1 and b are
incompatible as well, contradiction. Thus b “ a and it follows that q is
compatible with at most λ-many elements of A.

Corollary 13.20. We have

pG.iq ω
LrGs

1 “ κ and

pG.iiq if g : ω Ñ Ord P LrGs then there is some α ă κ so that g P V rGďαs.
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Proof. To see pG.iq, note that P collapses all cardinals ăκ to ω, so ω
LrGs

1 ě κ.
As P satisfies AApκ, κq, there is no surjection from ω onto κ in LrGs.
Next, let us prove pG.iiq. Let 9g P L be a name for g. In LrGs, find a
decreasing sequence of conditions xpn | n ă ωy in G so that pn decides the
value of 9gpňq (from the perspective of L). Let α “ supnăω sup suppppnq. By
pG.iq, α ă κ. But then LrGďαs can compute the whole of g.

From now on, Mω1 denotes MLrGs
ω1 and MC is MLrGs

C . Let us define an
auxiliary model N “

Ş

αăκ LrGąαs. It is clear that Mω1 Ď N .
Recall the following fact due to Solovay.

Fact 13.21 (Solovay, [Sol70]). If G,H are mutually generic filters over V
(for any forcings) then V rGs X V rHs “ V .

Proposition 13.22. We have that

pN.iq N |ù ZF and

pN.iiq N X Ppκq “Mω1 X Ppκq “MC X Ppκq “ ta Ď κ | @β ă κ aX β P V u.

Proof. First, we will prove pN.iq. Once again it is enough to show that N is
definable in all models of the form LrGąαs for α ă κ. But this is clear from
the definition of N .
Next, we show pN.iiq. Mω1 X Ppκq Ď MC X Ppκq Ď N X Ppκq is trivial. If
a P N X Ppκq and β ă κ then a X β P LrGďαs for some α by clause pG.iiq
of Corollary 13.20. As a P N , aX β P LrGąαs, too. Thus by Fact 13.21

a P LrGďαs X LrGąαs “ L.

The final inclusion N XPpκq ĎMω1 XPpκq holds since if W is a ground of
LrGs which extends to LrGs via Q of size ă κ then Q cannot add a fresh
subset of κ.

Proof of Theorem 13.17. We will show that in LrGs, neither Mω1 nor MC

possess a wellorder of its version of Ppκq. In fact, we will show that N does
not have such a wellorder, which is enough by pN.iiq of the above proposition.
Once again, let „ be the equivalence relation on functions f : κÑ κ P N of
eventual coincidence. For n ă ω, let

dn : κÑ κ, dnpαq “ gαpnq

where gα is the map ω Ñ α induced by the slice of G generic for Colpω, αq.
As before, we get that the fuzzy sequence xrdns„ | n ă ωy P N . If N had a
wellorder of Ppκq, then there would be a choice sequence xxn | n ă ωy P N
for the fuzzy sequence. In LrGs, one can define the sequence xδn | n ă ωy
where δn is the least point after which xn and dn coincide. As κ “ ω1 in
LrGs, the δn are bounded uniformly by some δ ă κ. But this means that
Gąδ P N , a contradiction.
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It is natural to conjecture that N “MC “Mω1 , though we do not have
a proof of any of these equalities. The problem is that we cannot follow the
strategy from Section 13.1: LrGs has Cohen-grounds which do not contain
any gα for α ă κ, let alone a tail of the sequence pgαqαăκ.

Question 13.23. Is N “MC “Mω1?

13.3 The successor of a regular uncountable cardinal case

We show that, again under V “ L, for every regular uncountable κ there is
a forcing extension in which Mκ` is not a model of ZFC. The upside here is
that we do not need any large cardinals at all in our construction, however
we pay a price: We do not know whether Mκ` is a model of ZF in general.

Theorem 13.24. Assume V “ L and suppose κ is regular uncountable.
Then after forcing with

P :“

ăκ`´support
ź

αăκ`

Addpκ, 1q

Mκ` is not a model of ZFC.

First, lets do a warm-up with an initial segment of P. We thank Elliot
Glazer for explaining (the nontrivial part of) the following argument to the
author.

Lemma 13.25 (Elliot Glazer). If κ is regular and ♢κ holds then

Pďκ “

full support
ź

αăκ

Addpκ, 1q

satisfies AApκ` 1, κ`q.

An additional assumption beyond “κ is regular” is necessary here: It is
well known that

full support
ź

năω

Addpω, 1q

collapses 2ω to ω.

Proof. We let p ďα q if p ď q and p æ α “ q æ α. It is easy to see that pAA.iq
and pAA.iiiq of Definition 13.2 hold, so let us show pAA.iiq. Therefore, let
α ă κ, p P Pďκ and an antichain A in Pďκ be given. As ♢κ holds, there is a
sequence xdβ | β ă κy with dβ P Pďβ so that for any q P Pďκ there is some
β with q æ β “ dβ. We will define a sequence ppβqαďβďκ inductively so that
pγ ďβ pβ for all β ď γ ď κ. We put pα “ p. At limit stages β we let pβ
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be the canonical fusion of xpγ | α ď γ ă βy. So assume pβ is defined. We
choose pβ`1 ďβ pβ so that, if possible,

d"
β pβ`1 ď a

for some a P A. Otherwise, we are lazy and set pβ`1 “ pβ.
Now clearly q :“ pκ ďα p and we will show that q is compatible with at
most κ-many conditions in A. To see this, suppose a P A is compatible with
q. We may find β ă κ so that dβ “ a æ β. In the construction of pβ`1 from
pβ, we tried to achieve that

d"
β pβ`1 æ rβ, κq

is below some condition in A, which is possible and only possible for a. This
shows that for any a P A that is compatible with q, there is β ă κ so that
q æ rβ, κq ď a æ rβ, κq. As Pďβ has size ďκ, it follows that there are at most
κ-many such a P A.

Corollary 13.26. Under the same assumptions as before, Pďκ preserves all
cardinals ď κ`.

Proof. Pďκ is ăκ-closed and satisfies AApκ` 1, κ`q.

We aim to prove a similar result for P.

Lemma 13.27. If κ is regular and ♢κ holds then P preserves all cardinals
ď κ`. Moreover, if G is P-generic and g : κÑ Ord is in V rGs then there is
α ă κ` with g P V rGďαs.

The argument is similar, but somewhat more complicated. To do so, we
introduce a further abstraction of AApκ, λq.

Definition 13.28. Suppose that P “ pP,ĺq is a partial order, Q is a forcing,
κ ă λ are ordinals. Q satisfies Strategic Axiom Apκ, λ,Pq (SAApκ, λ,Pq) if
there is a family xďx| x P P y of partial orders on Q so that

pSAA.iq ďyĎďxĎďQ whenever x ĺ y for x, y P P ,

pSAA.iiq for any antichain A Ď Q, any x P P and p P Q, there is q ďx p with

|ta P A | a}pu| ă λ

and

pSAA.iiiq player II has a winning strategy in the following game we call GpQ, κ,Pq:
I p0 p1 . . . pω . . .

II x0 x1 . . . xω . . .
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The game has length κ. In an even round α ¨ 2, Player I plays some
condition pα P Q so that pα ďxβ pβ for all β ă α played so far. In an
odd round α ¨ 2` 1, player II plays some xα P P with xβ ĺ xα for all
β ă α.
Player I wins the game iff some player has no legal moves in some
round ăκ. If the game last all κ rounds instead, II wins.

It is straightforward to generalize Proposition 13.18.

Proposition 13.29. Suppose Q satisfies SAApκ, λ,Pq. Then in V Q, there
is no surjection f : β Ñ λ for any β ă κ.

Lemma 13.30. If κ is regular and ♢κ holds then P satisfies

SAApκ` 1, κ`,Pκpκ`qq

where Pκpκ`q is ordered by inclusion.

Proof. For x P Pκpκ`q we will write p ďx q if p ď q and p æ x “ q æ x. It is
clear that pSAA.iq holds.
Next, we aim to establish pSAA.iiiq. We describe a strategy for player II in
the relevant game. We will need to do some additional bookkeeping. Let

h : κÑ κˆ κ

be a surjection such that if hpβq “ pα, γq then α ď β. Suppose that pα is the
last condition played by player I and pxβqβăα have been played already. In
the background, we already have chosen some surjections sβ : κÑ suppppβq
for β ă α and we will adjoin a surjection sα : κÑ suppppαq to that list. We
set

xα “ sγ0pγ1q Y
ď

βăα

xβ

where pγ0, γ1q “ hpαq. As κ is regular, xα P Pκpκ`q.

Claim 13.31. Player I does not run out of moves before the game ends.

Proof. Suppose we reached round 2 ¨ α ď κ and let x “
Ť

βăα xβ. We will
find a legal play p˚ for player I. For γ P κ`z

Ť

βăα suppppβq, let p˚pγq be
trivial. The point is that for γ P x, xpβpγq | β ă αy stabilizes eventually to
some p˚pγq. If α “ κ, then our bookkeeping made sure that we have

x “
ď

βăκ

suppppβq

so that p˚ is already fully defined and a legal play. If α ă κ instead, then
there are possibly γ P

Ť

βăα suppppβq ´ x, but then xpβpγq | β ă αy is a
sequence of length ăκ, so we may pick a lower bound p˚pγq P Addpκ, 1q for
it.
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It remains to show pSAA.iiq and here we will use that ♢κ holds. Let
xdβ | β ă κy be the “♢κ-sequence for Pďκ” that appeared in the proof of
Lemma 13.25 and let A be a maximal antichain in P. Choose τ to be a
winning strategy for player II in GpP, κ` 1,Pκpκ`qq and we will describe a
strategy σ for player I: Suppose α ď κ and pβ, xβ have already been played
for β ă α. This time, we will have picked some surjections sβ : κ Ñ xβ for
β ă α in the background. Let xăα :“

Ť

βăα xβ. Then, assuming there is a
legal move, pick some pα so that

ppα.iq pα ďxβ pβ for all β ă α and

ppα.iiq if possible, pα æ pκ
`zxăαq Y eα æ xăα is below a condition in A

where eα is defined by

eαpsγ0pγ1qq “ dαpγq

whenever γ ă α and hpγq “ pγ0, γ1q (and eα is trivial where we did not
specify a value)64.
Let xpα | α ď κy, xxα | α ă κy be the sequences of moves played by player I
and II in a game where player I follows σ and player II follows τ . As τ is a
winning strategy, the sequence must be of length κ` 1. We will show that
q :“ pκ is compatible with at most κ-many elements of A. So let a P A and
assume that q is compatible with a.

Claim 13.32. There is α ă κ so that eα P P and eα æ xăα “ a æ xăα.

Proof. We define b P Pďκ by bpγq “ apsγ0pγ1qq whenever hpγq “ pγ0, γ1q.
Then there is α ă κ with

pα.iq b æ α “ dα and

pα.iiq xăα “ tsγ0pγ1q | Dγ ă α hpγq “ pγ0, γ1qu.

It is easy to see now that α is as desired.

Thus in round α ¨ 2 in the game, player I tried to make sure that

a æ xăα Y pα æ pκ
`zxăαq

is below some condition in A. This is possible for a, and only for a as q and
a are compatible.
We have shown that for any a P A that is compatible with q, there is α ă κ
such that q æ pκ`zxăαq ď a æ pκ`zxăαq. As there are only ďκ-many r P P
with support contained in xăα, this implies that there are at most κ-many
such a P A.

64eα may fail to be a function, in which case ppα.iiq is void.
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Lemma 13.27 follows from Lemma 13.30 and Proposition 13.29 similarly
to how we proved Corollary 13.20.

Remark 13.33. If additionally GCH holds at κ` then P does not collapse
any cardinals at all by a standard ∆-system argument.

Proof of Theorem 13.24. Let G be P-generic over L. By Lemma 13.27, all
L-cardinals ď κ` are still cardinals in LrGs (in fact, all cardinals are pre-
served). Let N “

Ş

αăκ` LrGąαs. Using that N is definable in every model
of the form LrGąαs, it is easy to check that N is a model of ZF. Once again,
we call A Ď κ` fresh if AX α P L for all α ă κ`.

Claim 13.34. Ppκ`qMκ` “ Ppκ`qN “ tA Ď κ` | A is freshuLrGs.

Proof. Ppκ`qMκ` Ď Ppκ`qN is trivial. Suppose A Ď κ`, A P N . Given
α ă κ`, by Lemma 13.27, there is β ă κ` so that AX α P LrGďβs so that

AX α P LrGďβs X LrGąβs “ L

by Fact 13.21. For the last inclusion assume A P LrGs is a fresh subset of
κ` and W is any κ`-ground of LrGs. It follows that W Ď LrGs satisfies the
κ`-approximation property so that A PW as any bounded subset of A is in
L ĎW .

We will show that there is no wellorder of Ppκ`qMκ` in Mκ` . So assume
otherwise. Let „ be the equivalence relation of eventual coincidence on κ`

2
in N . We can realise G as a matrix where the α-th row is Addpκ, 1q-generic
over L. Now the columns are in fact Addpκ`, 1q-generic over L. Let us write
cα for the α-th column (α ă κ`q and dβ for the β-th row (β ă κ). For any
α ă κ` we have that xdβ æ rα, κ

`q | β ă κy P LrGąαs. Thus

xrdβs„ | β ă κy P N

and by our assumption there must be a choice function, say xxβ | β ă κy, in
N . In LrGs, we can define the sequence xδβ | β ă κy, where δβ is the least
point after which xβ and dβ coincide. As κ` is not collapsed by P, we can
strictly bound all δβ by some δ˚ ă κ`. But then

xxβpδ˚q | β ă κy P N

is Addpκ, 1q-generic over L, which contradicts that N and L have the same
subsets of κ.

Note that Fact 12.6 does not apply in the situation here, so we may ask:

Question 13.35. Is Mκ` a model of ZF? Is Mκ` “ N?
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13.4 Conclusion

There are a number of open questions regarding the interplay between large
cardinal properties of κ and the κ-mantle. The following table summarizes
what is known as presented in the introduction.

Large cardinal property of κ Theory of Mκ extends...

extendible ZFC`GA
measurable ZFC
weakly compact ZF` κ-DC
inaccessible ZF` pă κ,Hκ`q-choice

There is certainly much more to discover here. How optimal are these
results? Optimality has only been proven for one of them, namely the first.
This is due to Gabriel Goldberg.

Fact 13.36 (Goldberg, [Gol21]). Suppose κ is an extendible cardinal. Then
there is a class forcing extension in which κ remains extendible and Mκ is
not a κ-ground. In particular, if λ ă κ and Mλ |ù ZFC then Mλ has a
nontrivial ground.

The most interesting question seems to be up to when exactly the axiom
of choice can fail to hold in Mκ. Since this can happen at a Mahlo cardinal,
the natural next test question is whether this is possible at a weakly compact
cardinal.

Question 13.37. Suppose that κ is weakly compact. Must Mκ |ù ZFC?
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Nice iteration, 40
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Potential certificate, 73, 165, 176
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generic iteration of, 59

guided by g, 64
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Y -iterable, 92
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ψAC, 47
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Q-iteration, 136
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Semantic certificate, 76
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Singular Cardinal Hypothesis, 188
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Splitting node, 107, 190

of order n, 107
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-sequence, 187
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Strong Chang Conjecture, 25
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Strong club guessing sequence, 183
Strong Reflection Principle, 55
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Syntactic certificate, 76
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